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Abstract—An arithmetic version of the cross- number of zeros in one period of the sequence
correlation of twp sequences is defined, generalizing formed by addingS and T bit by bit modulo
,'Y'a”df'baums arithmetic a“tocor(;e'a!“r?f‘ds- '—Iarge Tar:T]' 2. Mandelbaum [5] investigated a notion of what
llies of sequences are constructed with ideal (vanishing) o .\ nts toarithmetic autocorrelationin which
arithmetic cross-correlations. These sequences are dec- dded hift of itsslfh
imations of the 2-adic expansions of rational numbers a sequence was ".i € .tO a shift of itse
p/q such that 2 is a primitive root modulo g. carry, rather than bit by bit modulo 2. He showed
Kev Word lat 2-Adic N that certain sequences have ideal arithmetic au-
bey ords —Cross-correlations, 2-Adic NUmM-,.qrrelations, in the sense that they are zero for

ers, Binary Sequences, FCSR Sequences. . gntrivial shifts.
In this paper we extend the notion of arithmetic
|. INTRODUCTION autocorrelation to the arithmetic cross-correlation
: of two sequences. We then show how to con-
In the study of pseudorandom binary se- e .
i ) struct families of sequences with ideal cross-
guences, we are often interested in the correlation ) : .
. correlations. That is, all the nontrivial cross-
properties of the sequences. These properties : . . .
: . ._correlations are identically zero. The sizes of
have importance for several practical applica: o :
. - _.ihese families are conjectured to be large on the
tions, such as spread spectrum communicatipn . . . N
. .__. basis of statistical evidence. This is in stark con-
systems, radar systems, signal synchronizatiQn : .
. . : rf'ist to the case of ordinary cross-correlations,
and cryptanalysis, as well as being of theoretica
. where there are well known lower bounds on the
interest as measures of randomness.

) . .minimal cross-correlations in families of a given
The usual notion of cross-correlation of two bi- 9

nary sequences andT is the sumy™,(—1)5+7:, size. For example, the maximum shifted cross-

where the addition in the exponent is modulo %(r)rrelatlon In a family of\/ sequences of period

H 2
For many classes of sequences, however, this s S at least/ \/(M _.1){(Q4N _thl) [G]B
is quite difficult to evaluate. The purpose of thi ur ~seguences Inciude N arrows-

paper is to investigate a different notion of cros c'aar(]adel\k/)\zu?avznﬂlrgveigc Icoriizrr :5 toa thsép?aCIZl
correlation between sequences, thathmetic se. ( p usly se as

cross-correlationThe usual cross-correlation Car{-sequences, in order to stress the analogy with

be thought of as the number of ones minus tj-sequences.) Like the Barrows-Mandelbaum
codes, they may be used for synchronization
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tral dispatch (S) wishes to send individual mesteed some algebraic framework. Recall th&-a
sages to one of a number of possible clienglic integeris an infinite series"2°, s;2¢, where
(R1, Rs, ..., Rg). Choose a family of sequences; € {0,1}, and the usual variable in a power
with at least & members; letN denote the series is replaced by the integer 2. The Bgbf
period of each sequence in this family. EacB-adic integers forms a ring under the operations
client R; is assigned a signature sequerf§e of addition and multiplicationwith carry. The
from the family. She monitors a common synfield of fractions of this ring, the 2-adic numbers
chronization and identification channel on whick), can be identified with the completion of
S broadcasts a bitstreaffi. At the n'* clock the rational numbers at the non-Archimedean
tick, the clientR?; computes the arithmetic crossvaluation associated to the ide@). This field
correlation ©g, v(n) between her signature seeontains the rational numbelQ, and Q N Z,
quenceS; and a window of sizeN in the is the set of 2-adic integers, s;2° whose asso-
bitstreamT. ciated binary sequendeo, s1, - -) is eventually
When the dispatcher S sends the signatupseriodic. Equivalently, this intersection is the set
sequencs; on the common channel, the receivesf rational numbers of the form/q with ¢ odd.
R; will compute a single large arithmetic crossSuch a number corresponds to a strictly periodic
correlation®© exactly N clock ticks later, while sequence if and only ¢ < a < 0. Note that in
the other clients will comput®s, v(m) = 0 for Z,, we have—1 =1+2+ 22 +.... See Koblitz
all j # ¢ and for all shiftsm. So the client?; has [4] for the basics on 2-adic algebra.
been identified as the intended recipient and herThe authors have previously studied the se-
receiver has been synchronized to the messaggiences that arise from 2-adic integers in terms
If S is any sequence andl# 0 is an integer, of the generation by feedback shift register like
then the sequencd’ is said to be ad-fold devices calledfeedback with carry shift regis-
decimationof S if for every i, we havel; = S;. ters (or FCSR$ [2], [3]. These devices output
Let ¢ be a power of a primeg = p°, such that precisely 2-adic expansions of rational numbers,
2 is a primitive root modulg,. (That is,ord,(2), hence all eventually periodic sequences. The
the least positive power of 2 that is congruenheory of linear feedback shift registers can be
to one modulo 2, i9°~!(p — 1). Henceord,(2) thought of as arising by associating to a binary
is as large as possible). We I8tbe the 2-adic sequence a power series in one indeterminate
expansion of a fractior-a/q, with 0 < a < ¢, an with the terms of the sequence as coefficients [1].
(-sequence (these concepts are explained in thee algebraic theory of 2-adic numbers provides
next section). We further leFs be the family of a framework analogous to LFSR theory for the
all d-fold decimations ofS, whered is relatively study of FCSR sequences.
prime to the period ofs. Our main result is the  An FCSR consists of am-bit register with
following. contents zo,---,z,_;, plus some additional

Theorem 1:If R andT are sequences ifs, memorym. The state is updated by computing
then the arithmetic cross-correlation Bfand T an integer linear combination

with shift 7 is zero unless =0 and T = R.
This theorem is proved in Section lll. "

0= Z ¢iTp—i + M,

II. DEFINITIONS AND BACKGROUND =1

To precisely describe the arithmetic crosswith ¢; € {0,1}. Then we replace the state
correlation of two binary sequences, we firsty, -, x, 1,mbyzy, -+, 2, 1,(c mod2),0/2



(integer division without remainder), and output Definition 1: Let S and T be two eventually

xo. The output is always eventually periodic. periodic sequences with periadl, and let0 <
SupposeS is the sequence generated by this < N. Let T™ be the sequence formed by shift-

FCSR, with associated rational numkee a/q. ing T by 7 positions,T; = T; .. Leta and3; be

Thenqg = 37, ¢;2° — 1, and is called theon- the 2-adic numbers whose coefficients are given

nection numbeof the FCSR. It is the analogueby S andT”, respectively. Then the sequence of

in FCSR theory to the connection polynomial icoefficients associated with — 3. is eventually

LFSR theory. Conversely, the 2-adic expansigreriodic, and its period divided/. The shifted

of every rational number with denominatgcan arithmetic cross-correlatio®g () of S andT

be output by a FCSR with connection number is the number of zeros minus the number of ones

There is also a representation of FCSR sequengga complete period of length of a—3,. When

that is analogous to the trace representation ®f= T, the arithmetic cross-correlation is called

LFSR sequences. Let=2"! modq. Then, ifS the arithmetic autocorrelatiorof S.

is strictly periodic, there is an integét such that  If for all 7 such thatS and T7 are distinct

S; = (B -+ mod ¢) mod 2. This double mod we have®sr(7) = 0, thenS and T are said

notation means first reduce modylto a reduced to have ideal arithmetic correlations. A family

residue (i.e., in the range from 0 to— 1), then of sequences is said to have ideal arithmetic

take the parity of the result. In particular, theorrelations if every pair of sequences in the

period ofS is the order of 2 modulg. The period family has ideal arithmetic correlations.

of a FCSR can be made large by choosingo

that 2 is a primitive root modulg. For this to be 1. M AIN RESULTS

true, it is necessary thatbe a power of a prime

g = p°, but no precise condition for 2 to be

primitive root modulog is known. However, it is

known that if 2 is a primitive root modulp and ¢ <. every i, we haveT, — S,;. Throughout this
modulo p?, then it is a primitive root modulg® : ’ L .

’ ! ection we lefy be a power of a primeg = p°,
for every e. The resulting sequences are the Z u P primey = p

. . such that 2 is a primitive root modutp We letS
adic analogues of m-sequences (maximum penBE

: . . the 2-adic expansion of a fractieru/q, with
linear feedback shift register sequences). We cgll, - ¢, an(-sequence (henceforth we obscure
them /-sequencegfor “long sequences”). They j

: e distinction between a binary sequence and its
are exponentially longer than the smallest FCS Ssociated 2-adic number). We further % be
that generate them, and are nearly deBruijn '

. ! Shie family of all d-fold decimations o, where
guences. It is these sequences which we consi et relatively prime to the period o8

here. See [3] for details of these and other facts.l.he remainder of this section consists of a

about FCSR sequences. roof of Theorem 1. We first need a constraint

_Recall that the ordinary cross-correla_tion wit n the sequences that can occur’@equences.
shift 7 of two sequence$ and T of period N Proposition 1:If S is an /-sequence, then

can behdefinedbeithe}r as the S!Eil(g 1>5i+ti; second half of one period db is the bitwise
or as the number of zeros minus the num ercg mplement of the first half.

ones in one period of the bitwise exclusive-or Qb .5t | ot + — ¢ We have that2¢@ =

S and ther shift of T [1]. The arithmetic cross- : ¢@ = -
. . 1 modgq. That is,

correlation is the with-carry analogue of the latter : ) .

definition. pe|2r T T —1 = (20 T2 (T (2 ),

As stated in the introduction, iS is any
equence andl # 0 is an integer, then the
sequencd is said to be al-fold decimatiorof S



These two factors are relatively prime, $6 Theorem 2:Let ¢ and d be relatively prime
divides one of them. By the primitivity o to p° — p~!. Let R and T be ¢ and d-fold
modulog, p° can’t divide the first factor, hence itdecimations o8, respectively. IfT is a shift ofR
divides the second factor. It follows th2t(@/? =  with shift 7, then the arithmetic cross-correlation
—1 mod q. Equivalently,v?/? = —1 mod q. of R and T with shift 7 is p° —p°~!. In all other
We haveS; = (B~' mod ¢) mod2 for some cases the arithmetic cross-correlationsRofand

B. Thus T are zero
oof t N = —p¢ L Let R and T
Sita/2 = —(B7' modg) mod2 = ¢—(By' mod Hgve assomated 2- adlc numbers= —d’ /¢’ and
which is the complement of;. O o = —d"/q", respectively, withged(d',q") =
The above property is extended to decimatiogsd(a”, ¢”) = 1. The shift of T by 7 corresponds
of /-sequences. to a 2-adic intege2¥ ~"o’ +x for some ordinary

Corollary 1: Let d > 0 be relatively prime to integerz. The arithmetic cross-correlation &t
p¢ — p¢~ L, the period ofS. Let T be ad-fold andT with shift 7 is the number of zeros minus
decimation ofS. Then the second half of onethe number of ones in one length—p°~! period
period of T is the complement of the first half. of 3 = o/ — (2¥ 7o/ +2) = —(a'q" -2V "¢ a" +
Proof: Note thatd must be odd and; = 1 — z¢'q")/¢'q". If T is a shift of R with shift 7, then
Sj+(pe—pe—1)/2. Thus we have =0 and the result follows.

SupposeT is not a shift ofR with shift 7. Let
Ti=Sia =125, et = 125, ety = 1_6%%%@ sequence associated3tdt suffices to
O show that any period oU is balanced. Lett =

In general, ifa is a 2-adic number, then we—b/r with ged(b,r) = 1. Thenr = lem(q’, ¢"),
let @ be the complementary 2-adic number. Thab by Corollary 2; divides2"/2 + 1. Moreover
is, we replace each 1 by 0 and each 0 by 1 inis nonzero. In a single period &f, we have
the 2-adic expansion af. Thena + a = —1. _

Corollary 2: Let d > 0 be relatively prime to Ui = (B-27 modr) mod2.
p¢ — p~ L, the period ofS. Let T be ad-fold for someB. Thus
decimation ofS. Let T be the 2-adic expansion B (i4N/2)
of a fraction—b/q’, with ged(b,¢/) = 1. Thenq ~ Uirne = (B2 mod r) mod 2
divides 2" 2"/ 4 1, = (B-27"-27"2 modr) mod 2
Proof: Let a be the 2-adic number associated to = (=B-27" modr) mod 2.

T. By Corollary 1, _ _ _ )
Sincer is odd, for anyy # 0 the parity of—y is

—a—l=a=xz+20"7"2q the complement of the parity af. Thus Uy x/s
for some ordinary integer (in fact, 0 < » < IS the complement ot/;. These elements occur
2 =p*"1)/2) 1t follows that in pairs inU (since N is a period ofU), soU is

R balanced. O

RUPTIP 4 Da = —(z+1) Theorem 1 follows immediately.

and therefore
[V. COMPUTING ARITHMETIC

e— 1
RUPTIR L1 = ¢ (x4 1). CROSSCORRELATIONS
The corollary follows sincé andq’ are relatively  If T and R are two periodic sequences with
prime. O associated 2-adic numbetsand 3, the sequence

4



associated with the differenece— 3 may not be computing the firstV bits of « + 3+ 1 is 1, then
strictly periodic (though it must be eventuallyy + 3 + 1 is strictly periodic, so the firsiV bits
periodic). Thus at first glance, computing theuffice. Otherwise, the periodic part is exactly the
arithmetic cross-correlation of two sequences fisst V bits of a + 5. Thus if we want to avoid
problematic. How many bits of the differencestoringa and 3, we can simultaneously compute
must be computed before we reach the periodize arithmetic cross-correlation based on the first
part? As it turns out, however, the number of bitd bits of o + 3+ 1 anda + 3 as the bits arrive,
needed is well bounded. and use the former if there is a carry from the
Proposition 2: Let T and R be periodic se- first N bits, and the latter otherwise.
quences with periodV. Let « and 3 be the 2-

adic numbers associated with and R. Let U V. GENERATING THE SEQUENCES
be the sequence associated with- 5. ThenU  |f the sequences we have discussed are to find
is strictly periodic from at least/y; on. application, it is important that they be easily

Proof: As noted earlier, the strict periodicity ofgenerated. As discussed in Section II, &n
T and R implies that there are integets ¢, b sequenceS can be easily generated by a short
andr such thatv = —a/q, 8 = —b/r,0 < a < ¢, FCSR. One way to generateddold decimation

and0 < b <r. Thus T of S is to iterate the FCSR fo8 d times for
_bg—ar each output bit. Unfortunately, this takeéd' total
a-f= qr iterations, which is nearlyw? if d is large.

Consider the analogous situation for FCSRs.
Here, if we iterate a registet times, the state
will still have been updated by a linear function
of the original state. The resulting register in turn

We have—qgr < —ar < bg — ar < bg <rq.
If bg —ar <0, thena — 3 is strictly periodic
and we are done. Otherwise
bg —ar — qr

a—0Ff=1+——— can be replaced by a LFSR of the same or smaller
ar size. The same thing doesn't work for FCSRs.
and —qr < bqg — ar — qr < 0. Therefore(bg — Iterating the register results in more complicated

ar—qr)/qr 2 ~ is strictly periodic. LefV be the state change functions, due to the mix of integer
sequence associated with If every bit of V is and modulo 2 operations.
1, theny = —1 anda — 3 = 0. Otherwise, there An alternative is to use the exponential rep-
is ani < N such thatV; = 0. It follows that the resentation. Recall that iff is the connection
bits of « — 3 = 1 + v are identical to those of number of the FCSR that outpu& and~y =
from bit i + 1 on. This proves the proposition. 27! mod ¢, then there is an integeB such that
O S; = (B-~" mod ¢) mod 2. It follows that if § =
Consequently, the arithmetic cross-correlatiort, thenT; = (B - 6* mod ¢) mod 2. Thus one
of T andR can be computed by computing thevay to generat& is to initialize a register with
first 2N bits of the differencex — 3, and finding the valueB, and at each iteration output the value
the difference between the number of zeros antbdulo 2 and update the state by multiplying
the number of ones in the lag{ of these2 N it by § modulo ¢q. This update can be done in
bits. This is a linear time computation iV time O(log(q)?) (faster using divide and conquer
(though not easily parallelizable as is the casechniques). This is much faster than iterating
with standard cross-correlations). the original FCSRd times for most values of
Furthermore, since-3 = 3 + 1, we can d, though not as fast as using the original FCSR
computea — 3 asa + 3 + 1. If the carry from to generateS.



VI. DISTINCTNESS fact for more general decimations that makes us

Let S be an/-sequence with associated 2-adignable to extend the proof. .
number—p/q, g prime. Lett = |log,(¢)| and let SupposeT is a shift of S. Then there is a
N = ¢(q) be the period o8. In this section we J Such thats; = t;,; = s_; ;. We now show
prove the following theorem. that we may assumg is 0 or 1. Consider the

Theorem 3:S is different from every shift of ¢ bit sequencer = (0,0,---,0). We haver =
ad— —1 decimation ofS. 0 for this z, so [—qx] = 2*. It follows that =
Proof: The basis for the proof is an analysis oPCCUrs exactly once if8. Since this sequence is
the numbers of occurences of certaiandt +1 & Palindrome, it follows that
bit binary sequences in a single periodofA &
bit sequencer = (zo,---,x_1) OCcursn times

in a period ofS if Note that if we replaces by a shift of S and
: : e _ then takeya—1 decimation, the result is a shift
n=0SJ S Nolis; =20, 85m = a1, Srthot S_(%}Tt_HgUghj may change). Thus we are free
We start by recalling a result from [3]. Everyto choose. It follows from equation (1) that we
shift of S corresponds to a 2-adic number of thean chooseé to make;j = 0 or 1, depending on
form —a/q, with 0 < a < ¢ andged(a,q) = 1. whethert — 1 is even or odd. From here on we
Thus each occurrence oftabit patternz in S assume this, that is, eitheérns odd ands; = s_;
corresponds to such anwith for all 7, or ¢ is even ands; = s_;_; for all <.
1 It also follows that(0,---,0) and (1,---,1)
v &S g0 = % mod ot are the onlyt bit palindromes that occur only
i=0 q once.

i=—i—t+1—j (1)

Lemma L:If z = (xg,---,x;) IS at + 1 bit
€palindrome, therr cannot occur irS. Moreover,
' = (xo,---, ;1) OCCUIS exactly once each in

Denote by[z] the residue o modulo2’ in the
rangel to 2°. Everyz occurs at least once, sinc
we can take: = [—qz| = [—ex], wheree = ¢—2°.

Any z occurs twice irfS if and only if there is an S _ ]
a with 0 < a < € such thatr = —a/q mod 2, Proof: For the first statement, suppose first that

or, equivalently, if and only if—ez] < e. In this 1S 0dd ands; = s_; for all .. Supposer occurs
case the second occurence corresponds(to+ At S+, Sj+t- Sl'ncex occurs at most once, we
2%) /q. Also, it follows from [3] that every+1 bit Musthavej = —j—t mod N. This is impossible
sequence occurs at most onceirFinally, itwas SincelN is even and is odd. A similar argument
shown in [3] that the second half of any perioOrks If ¢ is even ands; = s_i—1. o
of S is the complement of the first half. Thus the FOr the second statement,if occurs twice, it
number of occurences of amybit sequence irg Must be followed by dISt.InC'[ bits in its different
is the same as the number of occurences of f§currences (any + 1 bit sequence occurs at
complement. most once). Therefore occurs, which we have
Let T be a—1-fold decimation ofS. That is, Just shown is false. ' B
for eachi, t; = s_; (where all arithmetic in the We now proceed to derive a series of in-
indices is modulaV). We use repeatedly the facgqualities fore by applying Lemma 1 to various
that a—1 decimation carries & bit sequence of Sequences. In each cagéhas length.
consecutive symbols to anotherbit sequence 1) The sequence = (1,0,0,---,0) occurs
of consecutive symbols. It is the failure of this once. Herex = 1, soe < [—¢] = 2" —e.



Hencee < 2!~! (we cannot have equalityS of period N = p*~!(p — 1) and include alld-

sincee is odd).

2) The sequence = (1,0,0,---,1) occurs
twice. Herex = 2! + 1, soe > [—ex] =
2t=1 — ¢, Thuse > 212,

3) The sequence = (0,0,1,1,---,1,0) oc-
curs once. Herer = 27! — 4, soe <
[—e(2t71 —4)] = [4e +2'71]. By points (1)
and (2),2! < 4e+2071 < 3-20 If 442071 >
2.2 [de + 271 =4e 4271 — 2. 20 > ¢,

fold decimations ofS with d relatively prime to
N. The number of such is

o= {10 000 2

If, for example,p — 1 is two times a prime
number, then the number of sudhs about half
the period. However, it is possible that distinct
decimations give rise to sequences that are cyclic

soe > 21, This contradicts point (1), sopermutations of each other. This in fact happens

€< 32173,

4) The sequence = (1,1,0,0,---,0,1,1)
occurs twice. Herer = 2= + 272 1 3,
Thuse > [—e(271 + 272 4-3)] = [e(22 —
3)] = [2872 + €127 — 3¢] wheree =
1 + 2e; mod 4. Supposee; = 1. Then
—3-273 < 3(27% —¢) < 0 sO[2072 +
€127 —3e] =20 42072 4 2171 —3e < e It
follows that7 - 2!=* < ¢, which contradicts
point (3).

Therefore,e; = 0. Now [2!72 + ¢,2071 —
3e] = 2! + 2172 — 3¢ < e. It follows that
5-27% < e

5) The sequence = (0,0,0,1,1,---,1,0,0)
occurs once. Here = 2172 — 8. Thuse <
[—e(2072 — 8)] = [2!7! + 272 4 8¢] (since
e; = 0). It follows from points (3) and (4)
that 27! + 2072 4 8¢] = 2071 + 2072 - 8e —
3 -2t It then follows thate > (9/7) - 272,

6) The sequence = (1,0,0,1,1,---,1,0,0)
occurs once. Here = 272 — 7. Thuse <
[—€(2072=7)] = [2!7 14272+ 7€]. It follows
from points (3) and (5) tha!~! + 22 +
Te] = 2071 4 2072 4 7e — 3 - 28, It then
follows thate > 3 - 2/=3, which contradicts
point (3).

This completes the proof of Theorem 3. O

VII. CONCLUSIONS

To construct a family of sequences with ideaf’

arithmetic correlations, we choose é&sequence

whenp® € {5,9,11,13}. In these cases, the peri-
ods are 4, 6, 10, and 12, respectively, the values
of ¢(N) are 2, 2, 4, and 4, respectively, while
the numbers of cyclically distinct decimations
are 1, 1, 1, and 2, respectively. Surprisingly, a
computer search has shown that for every other
(-sequence with period up to 4253, the set of
these decimations is cyclically distinct.

Conjecture 1:Let S be an/-sequence with
connection numbep® and period N. Suppose
p° & {5,9,11,13}. Let d; and d, be relatively
prime to N and incongruent modulav. If R
is a d;-fold decimation ofS and T is a d,-fold
decimation ofS, then R and T are cyclically
distinct.

We have proved this conjecture in the case
d, = 1 anddy, = —1. Should this conjecture
be proved in general, we will have produced
large families of cyclically distinct sequences
with ideal arithmetic correlations. It would also
be interesting to know whether it is possible to
construct still larger families with ideal arith-
metic correlations.
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