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Arithmetic Cross-correlations of FCSR
Sequences

Mark Goresky Andrew Klapper

Abstract— An arithmetic version of the cross-
correlation of two sequences is defined, generalizing
Mandelbaum’s arithmetic autocorrelations. Large fam-
ilies of sequences are constructed with ideal (vanishing)
arithmetic cross-correlations. These sequences are dec-
imations of the 2-adic expansions of rational numbers
p/q such that 2 is a primitive root modulo q.

Key Words –Cross-correlations, 2-Adic Num-
bers, Binary Sequences, FCSR Sequences.

I. I NTRODUCTION

In the study of pseudorandom binary se-
quences, we are often interested in the correlation
properties of the sequences. These properties
have importance for several practical applica-
tions, such as spread spectrum communication
systems, radar systems, signal synchronization,
and cryptanalysis, as well as being of theoretical
interest as measures of randomness.

The usual notion of cross-correlation of two bi-
nary sequencesS andT is the sum

∑
i(−1)Si+Ti,

where the addition in the exponent is modulo 2.
For many classes of sequences, however, this sum
is quite difficult to evaluate. The purpose of this
paper is to investigate a different notion of cross-
correlation between sequences, thearithmetic
cross-correlation. The usual cross-correlation can
be thought of as the number of ones minus the
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number of zeros in one period of the sequence
formed by addingS and T bit by bit modulo
2. Mandelbaum [5] investigated a notion of what
amounts toarithmetic autocorrelationin which
a sequence was added to a shift of itselfwith
carry, rather than bit by bit modulo 2. He showed
that certain sequences have ideal arithmetic au-
tocorrelations, in the sense that they are zero for
nontrivial shifts.

In this paper we extend the notion of arithmetic
autocorrelation to the arithmetic cross-correlation
of two sequences. We then show how to con-
struct families of sequences with ideal cross-
correlations. That is, all the nontrivial cross-
correlations are identically zero. The sizes of
these families are conjectured to be large on the
basis of statistical evidence. This is in stark con-
trast to the case of ordinary cross-correlations,
where there are well known lower bounds on the
minimal cross-correlations in families of a given
size. For example, the maximum shifted cross-
correlation in a family ofM sequences of period
N is at leastM2

√
(M − 1)/(MN − 1) [6].

Our sequences include the Barrows-
Mandelbaum arithmetic codes as a special
case. (We have previously referred to these as
`-sequences, in order to stress the analogy with
m-sequences.) Like the Barrows-Mandelbaum
codes, they may be used for synchronization
[5]. However our sequences have an added
feature: they may be used for simultaneous
synchronization and identification in a multi-
user environment.

To give a simple example, suppose a cen-



tral dispatch (S) wishes to send individual mes-
sages to one of a number of possible clients
(R1, R2, . . . , Rk). Choose a family of sequences
with at least k members; letN denote the
period of each sequence in this family. Each
client Ri is assigned a signature sequenceSi

from the family. She monitors a common syn-
chronization and identification channel on which
S broadcasts a bitstreamT. At the nth clock
tick, the clientRi computes the arithmetic cross-
correlation ΘSi,T(n) between her signature se-
quence Si and a window of sizeN in the
bitstreamT.

When the dispatcher S sends the signature
sequenceSi on the common channel, the receiver
Ri will compute a single large arithmetic cross-
correlationΘ exactly N clock ticks later, while
the other clients will computeΘSj,T(m) = 0 for
all j 6= i and for all shiftsm. So the clientRi has
been identified as the intended recipient and her
receiver has been synchronized to the message.

If S is any sequence andd 6= 0 is an integer,
then the sequenceT is said to be ad-fold
decimationof S if for every i, we haveTi = Sdi.
Let q be a power of a prime,q = pe, such that
2 is a primitive root moduloq. (That is,ordq(2),
the least positive power of 2 that is congruent
to one modulo 2, ispe−1(p − 1). Henceordq(2)
is as large as possible). We letS be the 2-adic
expansion of a fraction−a/q, with 0 < a < q, an
`-sequence (these concepts are explained in the
next section). We further letFS be the family of
all d-fold decimations ofS, whered is relatively
prime to the period ofS. Our main result is the
following.

Theorem 1:If R andT are sequences inFS,
then the arithmetic cross-correlation ofR andT
with shift τ is zero unlessτ = 0 andT = R.

This theorem is proved in Section III.

II. D EFINITIONS AND BACKGROUND

To precisely describe the arithmetic cross-
correlation of two binary sequences, we first

need some algebraic framework. Recall that a2-
adic integeris an infinite series

∑∞
i=0 si2

i, where
si ∈ {0, 1}, and the usual variable in a power
series is replaced by the integer 2. The setZ2 of
2-adic integers forms a ring under the operations
of addition and multiplicationwith carry. The
field of fractions of this ring, the 2-adic numbers
Q2 can be identified with the completion of
the rational numbers at the non-Archimedean
valuation associated to the ideal(2). This field
contains the rational numbersQ, and Q ∩ Z2

is the set of 2-adic integers
∑

i si2
i whose asso-

ciated binary sequence(s0, s1, · · ·) is eventually
periodic. Equivalently, this intersection is the set
of rational numbers of the forma/q with q odd.
Such a number corresponds to a strictly periodic
sequence if and only if−q < a ≤ 0. Note that in
Z2, we have−1 = 1 + 2 + 22 + · · ·. See Koblitz
[4] for the basics on 2-adic algebra.

The authors have previously studied the se-
quences that arise from 2-adic integers in terms
of the generation by feedback shift register like
devices calledfeedback with carry shift regis-
ters (or FCSRs) [2], [3]. These devices output
precisely 2-adic expansions of rational numbers,
hence all eventually periodic sequences. The
theory of linear feedback shift registers can be
thought of as arising by associating to a binary
sequence a power series in one indeterminate
with the terms of the sequence as coefficients [1].
The algebraic theory of 2-adic numbers provides
a framework analogous to LFSR theory for the
study of FCSR sequences.

An FCSR consists of ann-bit register with
contents x0, · · · , xn−1, plus some additional
memorym. The state is updated by computing
an integer linear combination

σ =
n∑

i=1

qixn−i + m,

with qi ∈ {0, 1}. Then we replace the state
x0, · · · , xn−1, m by x1, · · · , xn−1, (σ mod 2), σ/2
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(integer division without remainder), and output
x0. The output is always eventually periodic.

SupposeS is the sequence generated by this
FCSR, with associated rational numberα = a/q.
Then q =

∑n
i=1 qi2

i − 1, and is called thecon-
nection numberof the FCSR. It is the analogue
in FCSR theory to the connection polynomial in
LFSR theory. Conversely, the 2-adic expansion
of every rational number with denominatorq can
be output by a FCSR with connection numberq.
There is also a representation of FCSR sequences
that is analogous to the trace representation of
LFSR sequences. Letγ = 2−1 mod q. Then, ifS
is strictly periodic, there is an integerB such that
Si = (B · γi mod q) mod 2. This double mod
notation means first reduce moduloq to a reduced
residue (i.e., in the range from 0 toq − 1), then
take the parity of the result. In particular, the
period ofS is the order of 2 moduloq. The period
of a FCSR can be made large by choosingq so
that 2 is a primitive root moduloq. For this to be
true, it is necessary thatq be a power of a prime
q = pe, but no precise condition for 2 to be a
primitive root moduloq is known. However, it is
known that if 2 is a primitive root modulop and
modulop2, then it is a primitive root modulope

for every e. The resulting sequences are the 2-
adic analogues of m-sequences (maximum period
linear feedback shift register sequences). We call
them `-sequences(for “long sequences”). They
are exponentially longer than the smallest FCSRs
that generate them, and are nearly deBruijn se-
quences. It is these sequences which we consider
here. See [3] for details of these and other facts
about FCSR sequences.

Recall that the ordinary cross-correlation with
shift τ of two sequencesS and T of period N
can be defined either as the sum

∑N
i=1(−1)si+ti+τ

or as the number of zeros minus the number of
ones in one period of the bitwise exclusive-or of
S and theτ shift of T [1]. The arithmetic cross-
correlation is the with-carry analogue of the latter
definition.

Definition 1: Let S and T be two eventually
periodic sequences with periodN , and let0 ≤
τ < N . Let Tτ be the sequence formed by shift-
ing T by τ positions,T τ

i = Ti+τ . Let α andβτ be
the 2-adic numbers whose coefficients are given
by S andTτ , respectively. Then the sequence of
coefficients associated withα− βτ is eventually
periodic, and its period dividesN . The shifted
arithmetic cross-correlationΘS,T(τ) of S andT
is the number of zeros minus the number of ones
in a complete period of lengthN of α−βτ . When
S = T, the arithmetic cross-correlation is called
the arithmetic autocorrelationof S.

If for all τ such thatS and Tτ are distinct
we haveΘS,T(τ) = 0, then S and T are said
to have ideal arithmetic correlations. A family
of sequences is said to have ideal arithmetic
correlations if every pair of sequences in the
family has ideal arithmetic correlations.

III. M AIN RESULTS

As stated in the introduction, ifS is any
sequence andd 6= 0 is an integer, then the
sequenceT is said to be ad-fold decimationof S
if for every i, we haveTi = Sdi. Throughout this
section we letq be a power of a prime,q = pe,
such that 2 is a primitive root moduloq. We letS
be the 2-adic expansion of a fraction−a/q, with
0 < a < q, an`-sequence (henceforth we obscure
the distinction between a binary sequence and its
associated 2-adic number). We further letFS be
the family of all d-fold decimations ofS, where
d is relatively prime to the period ofS.

The remainder of this section consists of a
proof of Theorem 1. We first need a constraint
on the sequences that can occur as`-sequences.

Proposition 1: If S is an `-sequence, then
second half of one period ofS is the bitwise
complement of the first half.
Proof: Let q = pe. We have that2φ(q) ≡
1 mod q. That is,

pe|2pe−1(p−1)−1 = (2pe−1(p−1)/2−1)(2pe−1(p−1)/2+1).
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These two factors are relatively prime, sope

divides one of them. By the primitivity of2
moduloq, pe can’t divide the first factor, hence it
divides the second factor. It follows that2φ(q)/2 ≡
−1 mod q. Equivalently,γφ(q)/2 ≡ −1 mod q.

We haveSi = (Bγi mod q) mod 2 for some
B. Thus

Si+φ(q)/2 = −(Bγi mod q) mod 2 = q−(Bγi mod q) mod 2

which is the complement ofSi. 2

The above property is extended to decimations
of `-sequences.

Corollary 1: Let d > 0 be relatively prime to
pe − pe−1, the period ofS. Let T be a d-fold
decimation ofS. Then the second half of one
period ofT is the complement of the first half.
Proof: Note thatd must be odd andSj = 1 −
Sj+(pe−pe−1)/2. Thus we have

Ti = Sid = 1−S
id+ pe−pe−1

2

= 1−S
(i+ pe−pe−1

2
)d

= 1−T
i+ pe−pe−1

2

.

2

In general, ifα is a 2-adic number, then we
let ᾱ be the complementary 2-adic number. That
is, we replace each 1 by 0 and each 0 by 1 in
the 2-adic expansion ofα. Thenα + ᾱ = −1.

Corollary 2: Let d > 0 be relatively prime to
pe − pe−1, the period ofS. Let T be a d-fold
decimation ofS. Let T be the 2-adic expansion
of a fraction−b/q′, with gcd(b, q′) = 1. Thenq′

divides2(pe−pe−1)/2 + 1.
Proof: Let α be the 2-adic number associated to
T. By Corollary 1,

−α− 1 = ᾱ = x + 2(pe−pe−1)/2α

for some ordinary integerx (in fact, 0 ≤ x <
2(pe−pe−1)/2). It follows that

(2(pe−pe−1)/2 + 1)α = −(x + 1)

and therefore

(2(pe−pe−1)/2 + 1)b = q′(x + 1).

The corollary follows sinceb andq′ are relatively
prime. 2

Theorem 2:Let c and d be relatively prime
to pe − pe−1. Let R and T be c and d-fold
decimations ofS, respectively. IfT is a shift ofR
with shift τ , then the arithmetic cross-correlation
of R andT with shift τ is pe−pe−1. In all other
cases the arithmetic cross-correlations ofR and
T are zero.
Proof: Let N = pe − pe−1. Let R and T
have associated 2-adic numbersα′ = −a′/q′ and
α′′ = −a′′/q′′, respectively, withgcd(a′, q′) =
gcd(a′′, q′′) = 1. The shift ofT by τ corresponds
to a 2-adic integer2N−τα′′+x for some ordinary
integerx. The arithmetic cross-correlation ofR
andT with shift τ is the number of zeros minus
the number of ones in one lengthpe−pe−1 period
of β = α′−(2N−τα′′+x) = −(a′q′′−2N−τq′a′′+
xq′q′′)/q′q′′. If T is a shift ofR with shift τ , then
β = 0 and the result follows.

SupposeT is not a shift ofR with shift τ . Let
U be the sequence associated toβ. It suffices to
show that any period ofU is balanced. Letβ =
−b/r with gcd(b, r) = 1. Then r = lcm(q′, q′′),
so by Corollary 2,r divides2N/2 + 1. Moreover
b is nonzero. In a single period ofU, we have

Ui = (B · 2−i mod r) mod 2.

for someB. Thus

Ui+N/2 = (B · 2−(i+N/2) mod r) mod 2

= (B · 2−i · 2−N/2 mod r) mod 2

= (−B · 2−i mod r) mod 2.

Sincer is odd, for anyy 6= 0 the parity of−y is
the complement of the parity ofy. ThusUi+N/2

is the complement ofUi. These elements occur
in pairs inU (sinceN is a period ofU ), soU is
balanced. 2

Theorem 1 follows immediately.

IV. COMPUTING ARITHMETIC

CROSS-CORRELATIONS

If T and R are two periodic sequences with
associated 2-adic numbersα andβ, the sequence
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associated with the differenceα− β may not be
strictly periodic (though it must be eventually
periodic). Thus at first glance, computing the
arithmetic cross-correlation of two sequences is
problematic. How many bits of the difference
must be computed before we reach the periodic
part? As it turns out, however, the number of bits
needed is well bounded.

Proposition 2: Let T and R be periodic se-
quences with periodN . Let α and β be the 2-
adic numbers associated withT and R. Let U
be the sequence associated withα − β. ThenU
is strictly periodic from at leastUN on.
Proof: As noted earlier, the strict periodicity of
T and R implies that there are integersa, q, b
andr such thatα = −a/q, β = −b/r, 0 ≤ a ≤ q,
and0 ≤ b ≤ r. Thus

α− β =
bq − ar

qr
.

We have−qr ≤ −ar ≤ bq − ar ≤ bq ≤ rq.
If bq − ar ≤ 0, thenα− β is strictly periodic

and we are done. Otherwise

α− β = 1 +
bq − ar − qr

qr

and−qr < bq − ar − qr ≤ 0. Therefore(bq −
ar−qr)/qr

∆
= γ is strictly periodic. LetV be the

sequence associated withγ. If every bit of V is
1, thenγ = −1 andα− β = 0. Otherwise, there
is an i < N such thatVi = 0. It follows that the
bits of α− β = 1 + γ are identical to those ofγ
from bit i + 1 on. This proves the proposition.
2

Consequently, the arithmetic cross-correlation
of T andR can be computed by computing the
first 2N bits of the differenceα−β, and finding
the difference between the number of zeros and
the number of ones in the lastN of these2N
bits. This is a linear time computation inN
(though not easily parallelizable as is the case
with standard cross-correlations).

Furthermore, since−β = β̄ + 1, we can
computeα − β as α + β̄ + 1. If the carry from

computing the firstN bits of α+ β̄ +1 is 1, then
α + β̄ + 1 is strictly periodic, so the firstN bits
suffice. Otherwise, the periodic part is exactly the
first N bits of α + β̄. Thus if we want to avoid
storingα andβ, we can simultaneously compute
the arithmetic cross-correlation based on the first
N bits of α + β̄ + 1 andα + β̄ as the bits arrive,
and use the former if there is a carry from the
first N bits, and the latter otherwise.

V. GENERATING THE SEQUENCES

If the sequences we have discussed are to find
application, it is important that they be easily
generated. As discussed in Section II, an`-
sequenceS can be easily generated by a short
FCSR. One way to generate ad-fold decimation
T of S is to iterate the FCSR forS d times for
each output bit. Unfortunately, this takesdN total
iterations, which is nearlyN2 if d is large.

Consider the analogous situation for FCSRs.
Here, if we iterate a registerd times, the state
will still have been updated by a linear function
of the original state. The resulting register in turn
can be replaced by a LFSR of the same or smaller
size. The same thing doesn’t work for FCSRs.
Iterating the register results in more complicated
state change functions, due to the mix of integer
and modulo 2 operations.

An alternative is to use the exponential rep-
resentation. Recall that ifq is the connection
number of the FCSR that outputsS, and γ =
2−1 mod q, then there is an integerB such that
Si = (B ·γi mod q) mod 2. It follows that if δ =
γd, then Ti = (B · δi mod q) mod 2. Thus one
way to generateT is to initialize a register with
the valueB, and at each iteration output the value
modulo 2 and update the state by multiplying
it by δ modulo q. This update can be done in
time O(log(q)2) (faster using divide and conquer
techniques). This is much faster than iterating
the original FCSRd times for most values of
d, though not as fast as using the original FCSR
to generateS.
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VI. D ISTINCTNESS

Let S be an`-sequence with associated 2-adic
number−p/q, q prime. Lett = blog2(q)c and let
N = φ(q) be the period ofS. In this section we
prove the following theorem.

Theorem 3:S is different from every shift of
a d = −1 decimation ofS.
Proof: The basis for the proof is an analysis of
the numbers of occurences of certaint andt + 1
bit binary sequences in a single period ofS. A k
bit sequencēx = (x0, · · · , xk−1) occursn times
in a period ofS if

n = {j, 0 ≤ j ≤ N−1 : sj = x0, sj+1 = x1, · · · sj+k−1 = xk−1}.

We start by recalling a result from [3]. Every
shift of S corresponds to a 2-adic number of the
form −a/q, with 0 < a < q and gcd(a, q) = 1.
Thus each occurrence of at bit patternx̄ in S
corresponds to such ana with

x
def
=

t−1∑
i=0

xi2
i ≡ −a

q
mod 2t.

Denote by[z] the residue ofz modulo2t in the
range1 to 2t. Every x̄ occurs at least once, since
we can takea = [−qx] = [−εx], whereε = q−2t.
Any x̄ occurs twice inS if and only if there is an
a with 0 < a < ε such thatx ≡ −a/q mod 2t,
or, equivalently, if and only if[−εx] < ε. In this
case the second occurence corresponds to−(a+
2t)/q. Also, it follows from [3] that everyt+1 bit
sequence occurs at most once inS. Finally, it was
shown in [3] that the second half of any period
of S is the complement of the first half. Thus the
number of occurences of anyt bit sequence inS
is the same as the number of occurences of its
complement.

Let T be a−1-fold decimation ofS. That is,
for eachi, ti = s−i (where all arithmetic in the
indices is moduloN ). We use repeatedly the fact
that a−1 decimation carries at bit sequence of
consecutive symbols to anothert bit sequence
of consecutive symbols. It is the failure of this

fact for more general decimations that makes us
unable to extend the proof.

SupposeT is a shift of S. Then there is a
j such thatsi = tj+i = s−j−i. We now show
that we may assumej is 0 or 1. Consider the
t bit sequencēx = (0, 0, · · · , 0). We havex =
0 for this x̄, so [−qx] = 2t. It follows that x̄
occurs exactly once inS. Since this sequence is
a palindrome, it follows that

i = −i− t + 1− j. (1)

Note that if we replaceS by a shift of S and
then take a−1 decimation, the result is a shift
of S (althoughj may change). Thus we are free
to choosei. It follows from equation (1) that we
can choosei to makej = 0 or 1, depending on
whethert − 1 is even or odd. From here on we
assume this, that is, eithert is odd andsi = s−i

for all i, or t is even andsi = s−i−1 for all i.
It also follows that(0, · · · , 0) and (1, · · · , 1)

are the onlyt bit palindromes that occur only
once.

Lemma 1: If x̄ = (x0, · · · , xt) is a t + 1 bit
palindrome, then̄x cannot occur inS. Moreover,
x̄′ = (x0, · · · , xt−1) occurs exactly once each in
S.
Proof: For the first statement, suppose first that
t is odd andsi = s−i for all i. Supposēx occurs
at sj, · · · , sj+t. Sincex̄ occurs at most once, we
must havej ≡ −j−t mod N . This is impossible
sinceN is even andt is odd. A similar argument
works if t is even andsi = s−i−1.

For the second statement, ifx̄′ occurs twice, it
must be followed by distinct bits in its different
occurrences (anyt + 1 bit sequence occurs at
most once). Thereforēx occurs, which we have
just shown is false. 2

We now proceed to derive a series of in-
equalities forε by applying Lemma 1 to various
sequences. In each casex̄ has lengtht.

1) The sequencēx = (1, 0, 0, · · · , 0) occurs
once. Herex = 1, so ε ≤ [−ε] = 2t − ε.
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Henceε < 2t−1 (we cannot have equality
sinceε is odd).

2) The sequencēx = (1, 0, 0, · · · , 1) occurs
twice. Herex = 2t−1 + 1, so ε > [−εx] =
2t−1 − ε. Thusε > 2t−2.

3) The sequencēx = (0, 0, 1, 1, · · · , 1, 0) oc-
curs once. Herex = 2t−1 − 4, so ε ≤
[−ε(2t−1 − 4)] = [4ε + 2t−1]. By points (1)
and (2),2t < 4ε+2t−1 < 3·2t. If 4ε+2t−1 >
2 · 2t, [4ε + 2t−1] = 4ε + 2t−1 − 2 · 2t > ε,
so ε > 2t−1. This contradicts point (1), so
ε < 3 · 2t−3.

4) The sequencēx = (1, 1, 0, 0, · · · , 0, 1, 1)
occurs twice. Herex = 2t−1 + 2t−2 + 3.
Thusε > [−ε(2t−1 +2t−2 +3)] = [ε(2t−2−
3)] = [2t−2 + e12

t−1 − 3ε] where ε ≡
1 + 2e1 mod 4. Supposee1 = 1. Then
−3 · 2t−3 < 3(2t−2 − ε) < 0 so [2t−2 +
e12

t−1 − 3ε] = 2t + 2t−2 + 2t−1 − 3ε < ε. It
follows that7 · 2t−4 < ε, which contradicts
point (3).
Therefore,e1 = 0. Now [2t−2 + e12

t−1 −
3ε] = 2t + 2t−2 − 3ε < ε. It follows that
5 · 2t−4 < ε.

5) The sequencēx = (0, 0, 0, 1, 1, · · · , 1, 0, 0)
occurs once. Herex = 2t−2 − 8. Thusε ≤
[−ε(2t−2 − 8)] = [2t−1 + 2t−2 + 8ε] (since
e1 = 0). It follows from points (3) and (4)
that [2t−1 +2t−2 +8ε] = 2t−1 +2t−2 +8ε−
3 · 2t. It then follows thatε > (9/7) · 2t−2.

6) The sequencēx = (1, 0, 0, 1, 1, · · · , 1, 0, 0)
occurs once. Herex = 2t−2 − 7. Thusε ≤
[−ε(2t−2−7)] = [2t−1+2t−2+7ε]. It follows
from points (3) and (5) that[2t−1 + 2t−2 +
7ε] = 2t−1 + 2t−2 + 7ε − 3 · 2t. It then
follows thatε > 3 · 2t−3, which contradicts
point (3).

This completes the proof of Theorem 3. 2

VII. C ONCLUSIONS

To construct a family of sequences with ideal
arithmetic correlations, we choose an`-sequence

S of periodN = pe−1(p − 1) and include alld-
fold decimations ofS with d relatively prime to
N . The number of suchd is

φ(N) =

{
pe−2(p− 1)φ(p− 1) if e ≥ 2
φ(p− 1) if e = 1.

If, for example, p − 1 is two times a prime
number, then the number of suchd is about half
the period. However, it is possible that distinct
decimations give rise to sequences that are cyclic
permutations of each other. This in fact happens
whenpe ∈ {5, 9, 11, 13}. In these cases, the peri-
ods are 4, 6, 10, and 12, respectively, the values
of φ(N) are 2, 2, 4, and 4, respectively, while
the numbers of cyclically distinct decimations
are 1, 1, 1, and 2, respectively. Surprisingly, a
computer search has shown that for every other
`-sequence with period up to 4253, the set of
these decimations is cyclically distinct.

Conjecture 1:Let S be an `-sequence with
connection numberpe and periodN . Suppose
pe 6∈ {5, 9, 11, 13}. Let d1 and d2 be relatively
prime to N and incongruent moduloN . If R
is a d1-fold decimation ofS andT is a d2-fold
decimation ofS, then R and T are cyclically
distinct.

We have proved this conjecture in the case
d1 = 1 and d2 = −1. Should this conjecture
be proved in general, we will have produced
large families of cyclically distinct sequences
with ideal arithmetic correlations. It would also
be interesting to know whether it is possible to
construct still larger families with ideal arith-
metic correlations.
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