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1. INTRODUCTION

1.1

A pseudo random number generator (RNG) for high speed simulation and Monte
Carlo integration should have several properties: (1) it should have enormous pe-
riod, (2) it should exhibit uniform distribution of d-tuples (for a large range of d),
(3) it should exhibit a good structure (usually a lattice structure) in high dimen-
sions, and (4) it should be efficiently computable (preferably with a base b which
is a power of 2). Typically the RNG is a member of a family of similar generators
with different parameters and one hopes that parameters and seeds may be easily
chosen so as to guarantee properties (1), (2), (3) and (4). Generators with these
properties are surprisingly rare. Perhaps the best candidates known at present are
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[L’Écuyer 1996] and [Matsumoto and Nishimura 1998].

1.2

In [Marsaglia and Zaman 1991], Marsaglia and Zaman showed that their add-with-
carry (AWC) generators satisfy condition (1). By giving up on (4) and using an
appropriate base b, they achieve good distribution properties of d-tuples for values
d which are less than the “lag.” It has been shown [Tezuka et al 1993] that these
generators fail the spectral test [Coveyou and MacPherson 1967] for large d. A gen-
eralization, the multiply-with-carry (MWC) generator, was described in [Marsaglia
1994], [Couture and L’Écuyer 1997] and independently, (motivated by some ques-
tions in cryptography) in [Klapper and Goresky 1994], [Klapper and Goresky 1993],
[Klapper and Goresky 1997], where it was called a feedback-with-carry shift reg-
ister, or FCSR. (This paper, which is largely expository, combines both points of
view.)

The MWC generator was proposed as a modification of the AWC generator which
satisfies both conditions (1) and (4). That is, all computations are performed
modulo a base b which is a power of 2. However the distributional properties (2) of
MWC sequences are not optimal, and in fact they are rather difficult to determine.
See [Couture and L’Écuyer 1997], where estimates on the distribution of d-tuples
are derived (using some sophisticated techniques from number theory).

In this paper we show that a slight (almost trivial) modification of the MWC
generator results in sequences with maximum period (from which it follows that
the distribution of d-tuples is uniform, for all d less than the lag, d0) and which
continue to satisfy properties (1) and (4). It is relatively easy to find generators
of this type with base b a power of 2 (say, b = 221), with d0 around 100, and with
periods around 10750. As in [Couture and L’Écuyer 1997], one could use the spectral
test to search for parameters which might satisfy (3) however it is expected that for
large d > d0 the lattice structure will suffer from the same shortcomings as those
described in [Couture and L’Écuyer 1997].

In Theorems 2.1, 2.2, 2.3, 2.4, 3.1 and 4.1 we describe the main properties of
these generators. The proofs of Theorems 3.1 and 4.1 are “elementary”. Proofs of
the other results may be distilled from the literature on AWC and MWC generators
([Couture and L’Écuyer 1994], [Couture and L’Écuyer 1997], [Marsaglia and Zaman
1991], [Tezuka et al 1993]). However there is a very illuminating algebraic technique
which may be used to give short and efficient proofs of these results. It is a simple
but not entirely obvious modification of the technique of [Klapper and Goresky
1997] (and, as such, it is a special case of the general technique of [Klapper and Xu
1996]). We have included these short proofs at the end of this paper for the benefit
of the reader who may not be familiar with the language of discrete valuations and
algebraic completions.

We are very grateful to the editor, and to an anonymous referee, for their thought-
ful comments and suggestions.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. MULTIPLY WITH CARRY GENERATORS

2.1

Fix an integer “base”, b ≥ 2 and fix integer coefficients a0, a1, . . . , ar with a0 chosen
to be relatively prime to b. (If b is a power of 2, this simply means that a0 is odd.)
A MWC generator of order r and base b consists of a state

σ = (x−1, . . . , x−r; c)

where 0 ≤ xi < b and c ∈ Z; and a transformation rule T : σ 7→ σ′ =
(
x′−1, . . . , x

′
−r, c

′)
which is defined as follows. If i < −1 then x′i = xi+1. The numbers x′−1 and c′ are
the unique solutions to

a0x
′
−1 + c′b =

r∑
i=1

aix−i + c (1)

with 0 ≤ x′i < b; . The values of x′−1 and c′ may be computed as follows. Calculate
once and for all

A = a−1
0 (mod b) (2)

and realize this as an integer between 0 and b− 1. Set τ =
∑r

i=1 aix−i + c. Then:

x′−1 = (Aτ) (mod b) (3)
c′ = (τ − a0x

′
−1)/b. (4)

The integer c is called the “carry” or the “memory” of the state. The output of the
state σ = (x−1, . . . , x−r; c) is the integer OUT(σ) = x−r and the normalized output
is the real number x−r/b.

Since c ∈ Z is arbitrary, there are infinitely many different states and infinitely
many different output sequences. However there are only finitely many periodic
states, in which case the carry c remains within a certain finite interval w− ≤
c ≤ w+ according to Theorem 3.1 below. Moreover, from any initial state, the
generator will eventually enter a periodic state. Consequently, for any initial state,
the output sequence from the generator is eventually periodic; it has an initial
transient segment whose size depends roughly on how far c is from this interval.

The analysis of the MWC generator relies heavily on the number theoretic prop-
erties of the connection integer

m = −a0 +
r∑

i=1

aib
i, (5)

(so named because it plays the same role as the connection polynomial of a linear
feedback shift register). It follows that m is relatively prime to b. Moreover, every
m > 0 which is relatively prime to b has a unique representation of the form (5)
with 0 ≤ ai < b (0 ≤ i ≤ r) and with a0 relatively prime to b (and a0 6= 0). In this
paper, however, we allow the ai to be arbitrary integers, so for a given connection
integer m the representation (5) is not necessarily unique: one could even take
a0 = −m. It would be interesting to study to what extent the computations (3)
and (4) might be optimized by appropriate choice of coefficients ai.

As originally defined in [Marsaglia 1994; Couture and L’Écuyer 1994], the coef-
ficient a0 was equal to 1. If the base b is chosen to be a power of 2, then these
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generators admit efficient implementations; however the connection integer will be
constrained to be of the form m = Nb − 1 for some integer N. In this case, b is
never a primitive root modulo m which implies (see Corollary 2.3) that the gener-
ator will never have maximal period. A similar criticism applies to the (original)
subtract-with-borrow (SWB) generator. The introduction of a nontrivial value for
a0 (as first described in [Klapper and Xu 1996]) comes with the cost of two more
multiplications per round, but it has the benefit that the connection integer m may
be chosen so that b is primitive modulo m and this leads to properties (1), (2) and
(4) listed above: (1) the period of the generator is m−1, which is maximal; (2) the
d dimensional distribution properties of this generator are optimal, for each d < r
and (4) the modulus b may be taken to be a power of 2.

2.2

Throughout the rest of this section we fix a modulus b and consider the MWC
generator corresponding to a connection integer m as in (5), where b is relatively
prime to m.

Suppose σ = (x−1, x−2, . . . , x−r; c) is a state of the generator. This state deter-
mines an integer

h = brc + a0

r−1∑
j=0

x−r+jb
j −

r−1∑
k=1

bk
k∑

i=1

aix−r+k−i. (6)

Conversely, the number h determines the state σ (an observation for which we
thank an anonymous referee). For, reading equation (6) modulo b allows us to
recover x−r from h; then reading modulo b2 and knowing x−r allows us to recover
x−r+1. Continuing this way by induction we recover xi for −r ≤ i ≤ −1. Finally,
knowledge of these xi and of h allows us to recover c. Several important properties
of the state can best be expressed in terms of h (cf. Theorems 2.1 and 2.2).

Let us say that a state of the generator is degenerate if the output remains
constant. The “bottom” state, in which all xi = 0 and c = 0 is degenerate with
output 0 (and h = 0). The “top” state, in which all xi = b− 1 and

c = −a0 +
r∑

i=1

ai

is degenerate with output b − 1 (and h = m). (There may be more degenerate
states.)

Theorem 2.1. The output sequence is strictly periodic if and only if 0 ≤ h ≤ m.

Define B = b−1 (mod m) and represent it as a non-negative integer 0 < B < m.
Define A as in (2).

Theorem 2.2. Suppose the register is in a strictly periodic state. Then for all
i ≥ 0 we have

x−r+i = −A
(
hBi (mod m)

)
(mod b). (7)

Equation (7) means that first the number hBi = hb−i is computed modulo m, and
is represented as a number between 0 and m − 1. Then this number is multiplied
by −A and reduced modulo b to give an integer between 0 and b− 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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2.3

Let Σ be the set of all possible states (x−1, . . . , x−r; c) where 0 ≤ xi < b and
where c ∈ Z. Let i : Z/(m) → Σ be defined by (6), associating h ∈ Z/(m) with
the state σ. Let S : Z/(m) → Z/(m) be the mapping S(h) = Bh (mod m). Let
φ : Z/(m) → Z/(b) be the mapping φ(h) = −Ah (mod b). Theorem 2.2 says the
following diagram “commutes”, that is, T (i(h)) = i(S(h)) and φ(h) = OUT(i(h)) for
all h ∈ Z/(m).

Z/(m) Σ-
i

��
?

S ��
?

T

HHH
HHHj

φ

���
����

OUT

Z/(b)

Corollary 2.3. If m is prime and if b is a primitive root modulo m then the
period of the MWC generator is m− 1.

In this case we say the resulting periodic sequence is a (generalized) `-sequence
(or long sequence), because of the many properties it shares with m-sequences (or
maximal length sequences) from the theory of linear feedback shift registers and
finite fields.

Theorem 2.4. Suppose m is prime and b is a primitive root (mod m). Fix
d ≥ 1 and let z = (z1, z2, . . . , zd) with 0 ≤ zi < b. Then the number N(z) of
occurrences of the d-tuple z which begin in any fixed period of the sequence (7) can
vary at most by 1. That is, N(z) is either⌊

m− 1
bd

⌋
or

⌊
m− 1

bd

⌋
+ 1.

In particular, if bd < m − 1 then every d-tuple occurs at least once in any fixed
period.

3. BOUNDS ON THE CARRY

3.1

Throughout this section we consider a MWC generator of order r with base b,
coefficients a0, a1, . . . , ar and state σ = (x−1, x−2, . . . , x−r; c) as described in §2.1.
Recall that c and ai are integers and that 0 ≤ xi < b− 1. We show that the carry
rapidly converges to a narrow range.

There are two generators which we refer to a the extremal generators. The
first extremal generator has a0 > 0 and all the remaining coefficients ai ≤ 0 (for
1 ≤ i ≤ r). The second has a0 < 0 and all the remaining coefficients ai ≥ 0.

3.2

If a0 > 0 define

w+ =
∑
ai>0

1≤i≤r

ai and w− = −a0 +
∑
ai<0

1≤i≤r

ai.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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If a0 < 0 define

w+ = −a0 +
∑
ai>0

1≤i≤r

ai and w− =
∑
ai<0

1≤i≤r

ai.

Theorem 3.1. Suppose the generator is not extremal. If the generator is in a
strictly periodic state then the carry c lies in the range

w− < c < w+. (8)

If c > w+ then it will drop monotonically and exponentially until it lies within
this range and it will remain within this range thereafter. If c < w− then it will
rise monotonically and exponentially until it lies within this range, and it will re-
main within this range thereafter. If the generator is extremal then c will move
monotonically until it lies within the range

w− ≤ c ≤ w+

and it will remain within this range thereafter.

3.3 Proof

Let us assume a0 > 0. (The proof for a0 < 0 is completely parallel.) From (1), since
0 ≤ xi ≤ b− 1 we have

c′ =
1
b

[
r∑

i=1

aix−i + c− a0x
′
−1

]
≤

(
b− 1

b

)
w+ +

c

b
. (9)

If c < w+ this gives c′ < w+. If c = w+ this gives c′ ≤ w+. If c > w+ this gives

c′ − c ≤ (w+ − c)
(

b− 1
b

)
< 0,

hence the carry decreases monotonically. Moreover, if c > 0 then c′ − w+ ≤
(c − w+)/b, which is to say that c − w+ decreases exponentially. It is easy to
see that there are no strictly periodic states with c = w+ unless the generator is
extremal. For if c = c′ = w+ then (1) gives

(b− 1)w+ =
r∑

i=1

aix−i − a0x
′
−1.

The right side of this equation achieves its maximum value, (b−1)w+, when x′−1 = 0
and

x−i =

{
0 whenever ai < 0
b− 1 whenever ai > 0.

Eventually this 0 = x′−1 will get shifted into one of the positions where ai > 0 and
then the value of c will drop below w+. (If ai ≤ 0 for all i, then the generator is
extremal, w+ = 0, and the degenerate “bottom” (all-zero) state satisfies c = w+.)
In summary, if the generator is not extremal and if the carry starts out at any
positive value, it will drop until c < w+ and will remain there forever.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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To obtain the lower bound on c, equation (1) gives

c′ =
1
b

[
r∑

i=1

aix−i + c− a0x
′
−1

]
≥ b− 1

b
w− +

c

b
.

If c > w− then c′ > w−. If c = w− then c′ ≥ w−. If c < w− then

c′ − c ≥
(

b− 1
b

)
(w− − c) > 0

so the value of c will increase monotonically (and exponentially). Let us examine
the possible periodic states with c = c′ = w−. For such a state, equation (4) gives

(b− 1)w− =
r∑

i=1

aix−i − a0x
′
−1.

The right side of this equation achieves its minimum value, (b− 1)w− when x′−1 =
b− 1 and

xi =

{
b− 1 whenever ai < 0
0 whenever ai > 0.

If some coefficient ai is positive (which is to say, if the generator is not extremal)
then this b− 1 = x′−1 will eventually be shifted into the ith position, and the value
of c will rise above w−. However, if the generator is extremal (that is, if ai ≤ 0 for
1 ≤ i ≤ r) then this argument fails and indeed, the degenerate “top” state satisfies
c = w− and xi = b − 1 for all i. In summary, if the generator is not extremal and
if the carry starts out at some negative value, then it will rise until c > w− and it
will remain there forever.

4. LATTICE STRUCTURE

4.1

Consecutive d-tuples (xk, xk+1, . . . , xk+d−1) of numbers generated by the MWC
generator (1) do not form a d-dimensional lattice. However in [Couture and L’Écuyer
1994], R. Couture and L. Écuyer discovered the remarkable fact that these vectors
very nearly lie on the lattice of vectors formed by the associated linear congruen-
tial generator with base b, multiplier B, and modulus m. To be precise, using the
notation of §2.3, we have the following result.

Theorem 4.1. [Couture and L’Écuyer 1994] For every z ∈ Z/(m),

φ(z)
b

≤ S(z)
m

≤ φ(z) + 1
b

.

The sequence of numbers z, S(z), S2(z), . . . form the output of the LCG with base b,
multiplier B, and modulus m (so consecutive d-tuples in this sequence form vectors
which lie on a lattice in Rd).

4.2 Proof

Consider z ∈ Z/(m) to be an integer 0 ≤ z ≤ m − 1. Since b is relatively prime
to m there exists a unique u ∈ Z/(m) so that bu ≡ z (mod m), or u = S(z) =

ACM Journal Name, Vol. V, No. N, Month 20YY.
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b−1z (mod m). Realizing u as an integer, 0 ≤ u ≤ m− 1 gives

bu = z + em (10)

from which it also follows that 0 ≤ e ≤ b − 1. (On the one hand, z = bu − em <
(b − e)m implies e ≤ b − 1. On the other hand, bu = z + em < (1 + e)m implies
e ≥ 0.) Dividing (10) by m gives e ≤ bu/m ≤ e + 1 while reading (10) modulo b
gives z = −ea0 (mod b) or e = φ(z). Hence, φ(z) ≤ bS(z)/m ≤ φ(z) + 1.

5 b-ADIC NUMBERS

5.1

As in §2.1 we fix a base b and consider the MWC generator which corresponds to a
connection integer m of equation (5). In the literature, it is customary to analyze
this generator by associating to each fraction h/m its fractional digital expansion
in base b. Instead, we use the equivalent, but more abstract expansion of −h/m as
an element of the ring Zb of b-adic numbers. (One expansion is just the reverse of
the other.) The proofs become cleaner since various number-theoretic operations,
such as (mod b), may be applied to elements of Zb.

5.2

A b-adic number (or, more precisely, a b-adic integer) α ∈ Zb is a formal power
series,

α = x0 + x1b + x2b
2 + . . . (11)

with 0 ≤ xi < b. The sequence x0, x1, . . . is referred to as the coefficient sequence of
α. Addition and multiplication in Zb are performed “with carry.” That is, xbr+(b−
x)br = br+1. It is clear that Zb contains the positive integers, but it also contains
the negative integers since −1 = (b− 1) + (b− 1)b + (b− 1)b2 + . . . as may be seen
by adding 1 to both sides. It also contains all fractions of the form h/m where m
is relatively prime to b. In fact, if a positive integer m is expanded in base b,

m = m0 + m1b + . . . + mrb
r (12)

then m is relatively prime to b if and only if m0 is invertible in Z/(b). Then

1
m

= a0 + a1b + . . . (13)

where m0a0 ≡ 1 (mod b) and where the higher order coefficients ai may be com-
puted, one at a time, by substituting (12) and (13) in the equation m 1

m = 1.
It is easy to see that the fractions α = h/m (with h, m ∈ Z and m relatively prime

to b) are precisely the elements of Zb whose coefficient sequence (11) is eventually
periodic. We also refer to the coefficient sequence as the b-adic expansion of h/m.

The ring of b-adic numbers Zb is isomorphic to the direct product
∏

p Zp of the
p-adic numbers Zp over all prime factors b of p.

5.3

By summing the relevant geometric series, it is easy to see that the fractions h/m
with −m ≤ h ≤ 0 are precisely the elements of Zb whose coefficient sequence
is strictly periodic (cf. [Klapper and Goresky 1997] Thm. 2.1). The case h = 0
ACM Journal Name, Vol. V, No. N, Month 20YY.
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corresponds to the coefficient sequence 0, 0, . . . and the case h = −m corresponds
to the coefficient sequence b− 1, b− 1, . . .

5.4

Now suppose we have a MWC generator with base b and with parameters a0, a1, . . . , ar,
where a0 is relatively prime to b. Let m = −a0+

∑r
i=1 aib

i be the connection integer
as in equation (5). Choose a seed state σ = (x−1, x−2, . . . , x−r; c) as in §2.1. The
output sequence x−r, x−r+1, . . . , x−1, x0, x1, . . . correspond to the following b-adic
number

α = x−r + x−r+1b + . . . + x0b
r + x1b

r+1 + . . . (14)

Lemma 5.1. Let σ = (x−1, x−2, . . . , x−r; c) be the seed state of the generator and
define the integer h ∈ Z by equation (6). Then the resulting b-adic number α is the
b-adic expansion of the fraction −h/m.

5.5 Proof

This is a special case of [Klapper and Xu 1996] Theorem 3. Alternatively, one may
easily adapt the proof of [Klapper and Goresky 1997] Theorem 4.1, replacing 2 by
b. (In both cases, the proof is parallel to the original method of [Golomb 1982]
Sect. 2.5.)

5.6 Proof of Theorem 2.1

This follows immediately from Lemma 5.1 and §5.3.

5.7 Proof of Theorem 2.2

To a given state σ = (x−1, x−2, . . . , x−r; c) we associate the b-adic number f(σ) =
α of (14). By Lemma 5.1, α = −h/m for some integer h. (The precise value
of h is given by (6) however this fact is not needed for the argument.) If σ′ =
(x′−1, . . . , x

′
−r; c

′) represents the next state then

f(σ′) = x−r+1 + x−r+2b + . . . = −h′/m

for some integer h′. So the following equation holds in Zb :

bf(σ′) + x−r = f(σ)

or

h = bh′ −mx−r. (15)

Although this is an equation in Zb, all the terms are integers, so it is an equal-
ity among integers. Reading this equation modulo b gives x−r ≡ −m−1h ≡
−Ah (mod b) (since m ≡ a0 (mod b)). In other words, the output is OUT(σ) =
−Ah (mod b).

Reading equation (15) modulo m gives h′ ≡ Bh (mod m). Now suppose the
state σ is a nonzero, strictly periodic state. Then the same is true for σ′, hence by
Theorem 2.1, 0 < h, h′ < m. So we have the following equality,

h′ = Bh (mod m),

provided we interpret the instructions (mod m) to mean: reduce modulo m then
represent this quantity as an integer between 0 and m− 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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It follows that the ith state σ(i) will correspond to the fraction f(σ(i)) = h(i)/m
where h(i) = Bih (mod m), and the output will therefore be

OUT(σ(i)) = −Ah(i) (mod b) = −A(Bih (mod m)) (mod b).

5.8 Proof of Theorem 2.4

(This proof is parallel to [Klapper and Goresky 1997] Sect. 13.4.) A purely periodic
nonzero sequence x = (x0, x1, . . .) with connection integer m is the b-adic expansion
of a rational number −h/m with 0 < h < m. Since b is chosen to be primitive,
the different nonzero choices of h correspond to cyclic shifts of x. Thus, a d-digit
subsequence z = (z1, z2, . . . , zd) occurs in x if and only if it occurs as the first d
digits in the b-adic expansion of some rational number −h/m. Moreover, two such
rational numbers −h1/m and −h2/m have the same first d digits if and only if

−h1

m
≡ −h2

m
(mod bd),

that is, if and only if h1 ≡ h2 (mod bd). So we only need to count the number of h
with a given first d digits and with 0 < h < m.

Suppose that br < m < br+1. If d > r then there is at most one such h and
the result follows. Thus we may assume that d ≤ r. Now we count the number of
possible h with 0 < h < m whose first d digits are fixed. Write

h = (h0 + h1b + . . . + hd−1b
d−1) + bd(hd + . . . + hrb

r−d) = h′ + bdh′′ (16)

with 0 ≤ hi < b. Similarly set m = m′ + bdm′′. Then

m′′ =
⌊m

bd

⌋
=

⌊
m− 1

bd

⌋
and

0 ≤ h′,m′ < bd. (17)

First note that h′′ ≤ m′′. For if h′′ ≥ m′′ + 1 then

h ≥ bdh′′ ≥ bdm′′ + bd > bdm′′ + m′ = m

which contradicts h < m. We now consider two cases.
Case 1: h′ ≥ m′ Every choice of h′′ ≤ m′′ − 1 will give 0 < h < m since, by (17),

h = h′ + bdh′′ < bd + bdh′′ ≤ bd + bd(m′′ − 1) ≤ bdm′′ + m′ = m.

There are m′′ such choices.
Case 2: h′ < m′ Any choice of h′′ ≤ m′′ will give h < m. If h′ 6= 0 then then
all such choices give 0 < h < m and there are m′′ + 1 possible such choices. If
h′ = 0 then all nonzero choices of h′′ ≤ m′′ give 0 < h < m and there are m′′ such
choices.

We remark that if b = 2 and d = 1 (that is, when counting the number of
occurrences of a single bit in a binary `-sequence), then m′ = 1 so the two cases
are: h′ = 1 and h′ = 0. In particular, Case 2 with h′ 6= 0 never occurs. In other
words, the sequence (7) is balanced: the number of 0’s equals the number of 1’s,
and this number is (m− 1)/2.
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6. EXAMPLES

6.1

Let m > 2 be a prime number and let b = 2ω with ω ≥ 1. Then b is a primitive root
modulo m if and only if 2 is a primitive root modulo m and ω is relatively prime
to m− 1. Moreover 2 is not primitive modulo m if and only if

2(m−1)/p ≡ 1 (mod m) (18)

for some prime factor p of m − 1. If 2 is a primitive root modulo m then m ≡
3 or 5 (mod 8). These facts make it fairly easy to find large primes for which 2 is a
primitive root. The following examples were found in a few hours using MAPLE.
They use auxiliary primes p and q. According to Theorem 2.4, in each of these cases,
the resulting MWC generator will have period m−1 and the resulting d-tuples will
be uniformly distributed, with every d-tuple occurring whenever d ≤ d0. The last
column, T = m− 1, gives the approximate period of the generator.

b p q m d0 T
221 b14 − b2 + 1 b58 − b36 + 1 4pq + 1 71 10455

221 b52 − b7 − 1 4p2 + 1 103 10657

221 b60 − b13 − 1 b60 − b26 − 1 2pq + 1 119 10758

223 b12 + b7 + 1 b25 + b19 + 1 2pq + 1 37 10256

223 b14 − b7 − 1 b27 + b26 + 1 4pq + 1 41 10284

224 b48 − b46 − b38 − b14 + 1 2p + 1 47 10347

224 b41 − b38 − 2b14 + 1 2p + 1 40 10296

225 b6 − b4 − 1 b16 − b11 − 1 2pq + 1 21 10166

231 b7 + b4 + 1 b30 + b14 − 1 4pq + 1 37 10345

232 b33 − b20 − b14 − b11 − b4 + 1 4p + 1 32 10318

233 b3 + b2 + 1 b27 + b14 + 1 4pq + 1 30 10298

235 b2 + b− 1 b41 − b28 + 1 4pq + 1 43 10453
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