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This document is an introduction to a variety of topics in modern algebra. It is extracted from
a book on algebraically defined pseudorandom sequences and the set of topics is geared to that
purpose. There is an emphasis, for example, on finite fields and adic rings. The beginning sections,
however, are quite general and can serve as an introduction to the algebra needed for such topics
as coding theory and cryptography. There is a bibliography that contains many general books on
algebra.
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Chapter 1 Abstract Algebra

Abstract algebra plays a fundamental role in many areas of science and engineering. In this chapter
we describe a variety of basic algebraic structures that play roles in the generation and analysis
of sequences, especially sequences intended for use in communications and cryptography. This
include groups (see Section 1.1), rings (see Section 1.2), and polynomials over rings (see Section
1.4). We also explore characters and Fourier transforms, basic tools for understanding structures
based on groups and rings (see Section 1.3).

1.1 Group theory

Groups are among the most basic building blocks of modern algebra. They arise in a vast range
of applications, including coding theory, cryptography, physics, chemistry, and biology. They are
commonly used to model symmetry in structures or sets of transformations. They are also building
blocks for more complex algebraic constructions such as rings, fields, vector spaces, and lattices.

1.1.a Basic properties

Definition 1.1.1. A group is a set G with a distinguished element e (called the identity) and a
binary operation ∗ satisfying the following axioms:

1. (Associative law) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
2. (Identity law) For all a ∈ G, a ∗ e = e ∗ a = a.
3. (Inverse law) For all a ∈ G, there exists b ∈ G such that a ∗ b = e. The element b is called

an inverse of a.

A group G is commutative or Abelian if it also satisfies the following axiom:

4. (Commutative law) For all a, b ∈ G, a ∗ b = b ∗ a.

The order of a group G, denoted |G|, is its cardinality as a set.

Proposition 1.1.2. Let G be a group. Then the following statements hold.

1. If a, b ∈ G and a ∗ b = e then b ∗ a = e.
2. Every a ∈ G has a unique inverse.
3. The identity e ∈ G is unique.
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Proof. To prove the first claim, suppose a∗b = e. Let c be an inverse of b. By associativity we have
(b∗a)∗b = b∗(a∗b) = b∗e = b. Therefore e = b∗c = ((b∗a)∗b)∗c = (b∗a)∗(b∗c) = (b∗a)∗e = b∗a.

To prove the second claim, suppose a ∗ b = e = a ∗ c. Then b = e ∗ b = (b ∗ a) ∗ b = b ∗ (a ∗ b) =
b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

To prove the third claim, suppose e and f are both identities in G. Then e ∗ f = e since e is
an identity, and e ∗ f = f since f is an identity. Thus e = f .

Sometimes we use multiplicative notation and write a−1 to denote the inverse of a, ab for a ∗ b,
a0 = e, and an = aan−1 for n a positive integer. Then anam = an+m and (an)m = anm. If G is
Abelian, it is common to use additive notation in which we write + instead of ∗, −a instead of a−1,
a− b for a+ (−b), and 0 instead of e. Also, 0a = 0 and na = a+ (n− 1)a for n a positive integer.
Then na + ma = (n + m)a and n(ma) = (nm)a. We sometimes write e = eG when considering
several different groups.

Examples:

1. The integers Z with identity 0 and addition as operation is an Abelian group.

2. The rational numbers Q with identity 0 and addition as operation is an Abelian group.

3. The nonzero rational numbers Q − {0} with identity 1 and multiplication as operation is an
Abelian group.

4. If S is any set, the set of permutations of S is a (non-Abelian if |S| ≥ 3) group with composition
as operation and the identity function as identity. The order of the permutation group of S is |S|!.

5. For any n ≥ 1, the set of invertible n × n matrices (that is, with nonzero determinant) with
rational entries is a (non-Abelian if n ≥ 2) group with multiplication as operation and the n× n
identity matrix as identity.

6. If N ≥ 2, a, and b are integers, then a is congruent to b modulo N , written a ≡ b (mod N),
if N divides a− b. This is an equivalence relation on Z. Let Z/(N) denote the set of equivalence
classes for this relation. That is, Z/(N) is the set of sets of the form

a+NZ = {a+Nb : b ∈ Z}.

Then Z/(N) is an Abelian group with the operation (a + NZ) + (b + NZ) = (a + b) + NZ and
0 + Z as identity. To prove this it suffices to show that this definition of addition is independent
of the choice of representatives a and b (that is, if a+NZ = c+NZ and b+NZ = d+mZ, then
(a+ b) +NZ = (c+ d) +NZ) and that the group axioms for Z/(N) follow immediately from the

5



group axioms for Z. We have |Z/(N)| = N . The elements of Z/(N) are sometimes referred to as
residues mod N .

The set of equivalence classes of elements that are relatively prime to m, denoted (Z/(N))×, is
also an Abelian group, with multiplication as operation and 1 as unit. We denote the order of this
group by φ(N), Euler’s totient function (or “φ” function). That is, φ(N) is the number of positive
integers less or equal to than m and relatively prime to m. We also define φ(1) = 1. We say more
about Euler’s totient function in Section 1.2.d.

Following is a basic fact about groups that we use later.

Theorem 1.1.3. If G is a finite group and a ∈ G, then a|G| = e.

Proof. First suppose that G is Abelian. Let us define a function from G to itself by f(b) = ab.
This function is one-to-one (if ab = ac then multiplying by a−1 on the left gives b = c), so it is also
a permutation of G. Therefore ∏

b∈G

b =
∏
b∈G

ab = a|G|
∏
b∈G

b.

Multiplying by the inverse of ∏
b∈G

b

gives the result of the theorem.

Now suppose that G is arbitrary. Nonetheless,

H = {ai : i = 0, 1, · · ·}

is an Abelian group, so a|H| = e. Thus it suffices to show that |H| divides |G|. Consider the cosets
bH with b ∈ G. Suppose two of these have a nonempty intersection, bH ∩ cH 6= ∅. Then there are
integers i, j so that bai = caj. It follows from this that every bak is in cH and every cak is in bH.
That is, bH = cH. This implies that the set of all cosets bH forms a partition of G. Since each
bH has cardinality |H|, |G| is a multiple of |H| as desired.

1.1.b Subgroups

In this section we examine subsets of group that inherit a group structure of their own.

Definition 1.1.4. If G is a group, then a subset H ⊆ G is a subgroup if it is a group with the
same operation as G and the same identity as G.
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This means that H is a subset of G such that (1) e ∈ H; (2) if a, b ∈ H, then a + b ∈ H; and
(3) if a ∈ H, then a−1 ∈ H. Then the group axioms hold in H. Also, if G is Abelian then H is
Abelian.

For example, the additive group of integers is a subgroup of the additive group of rational num-
bers. The set of cyclic permutations of {1, 2, · · · , n} is a subgroup of the group of all permutations.

If G1 and G2 are groups with operations ∗1 and ∗2 and identities e1 and e2, then their direct
product G1 ×G2 = {(a, b) : a ∈ G1, b ∈ G2} is a group with operation (a, b) ∗ (c, d) = (a ∗ c, b ∗ d)
and identity (e1, e2). More generally, if {Gi : i ∈ I} is any collection of groups, indexed by a set I,
then the Cartesian product ∏

i∈I

nGi

is a group, again called the direct product of {Gi : i ∈ I}. The group operation is defined
coordinate-wise. If all the groups are Abelian, then so is the product. If I = {1, 2, · · · , n} for some
natural number n, then we write

∏
i∈I

nGi =
n∏
i=1

Gi = G1 ×G2 × · · · ×Gn.

If a ∈ G then we let 〈a〉 denote {ai : i ∈ Z}. This set is an Abelian subgroup, called the subgroup
generated by a. If |〈a〉| < ∞ then we say the order of a is this cardinality, |〈a〉|. Otherwise we
say a has infinite order. Equivalently, the order of a is the least k > 0 such that ak = e, if such
a k exists. A group is cyclic if G = 〈a〉 for some a and then a is called a generator of G. Every
cyclic group is Abelian. The group Z/(N) is cyclic with generator 1. It is sometime referred to as
the cyclic group of order N .

We need a basic lemma from number theory.

Lemma 1.1.5. Let a, b be integers. Then there exist integers s, t with gcd(x, y) = sx+ ty.

Proof. First we may assume that x and y are nonnegative since we can negate x or y without
changing either gcd(x, y) or the set of integers of the form sx+ ty. We can also assume y ≤ x.

Now we proceed by induction on y. If y = 0, then gcd(x, y) = x and we can take s = 1 and
t = 0. Otherwise, let x = ay + z with 0 ≤ z < y. Then by induction there exist integers u, v with
gcd(y, z) = uy + vz. But gcd(x, y) = gcd(y, z) = uy + v(x− ay) = vx+ (u− av)y as claimed.

Theorem 1.1.6. Every subgroup of a cyclic group is cyclic. Suppose 〈a〉 is a finite cyclic group
with order n.

1. If k is a positive integer, then 〈ak〉 is a subgroup of 〈a〉 of order n/ gcd(n, k).
2. If d|n and d > 0, then 〈a〉 contains one subgroup of order d.
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3. If d|n and d > 0, then 〈a〉 contains φ(d) elements of order d.
4. 〈a〉 contains φ(n) generators.

Proof. Let H be a nontrivial subgroup of 〈a〉. H contains some ak with k > 0. Let k be the
smallest positive integer with ak ∈ H and let am ∈ H. Suppose k does not divide m. Then
gcd(k,m) < k and gcd(k,m) = sk + tm for some integers s, t. Indeed, every common divisor
ofThen

agcd(k,m) = (ak)s(am)t ∈ H,

which is a contradiction. Therefore H = 〈ak〉. Thus every subgroup of 〈a〉 is cyclic.
(1) Let H = 〈ak〉 and b = gcd(n, k). We have (ak)r = e if and only if n|kr. Thus the order of

H is the least positive r such that n|kr. This is equivalent to (n/b)|(k/b)r, and this is equivalent
to (n/b)|r. That is, the order of H is n/b.

(2) By (1), a subgroup H = 〈ak〉 has order d|n if and only if d = n/ gcd(n, k), or, equivalently,
d · gcd(n, k) = n. Let b = gcd(n, k) = sn + tk for some s, t ∈ Z. Then e = an ∈ H, so ab ∈ H as
above. Since b|k, we also have H = 〈ab〉. But b = n/d so H is the unique subgroup of order d.
Conversely, 〈an/d〉 is a subgroup of order d, proving existence.

(3) Let n = df . By (1), an element ak has order d if and only if gcd(n, k) = n/d = f . This
holds precisely when k = gf with g relatively prime to n/f = d and 0 < k < n. That is, 0 < g < d.
The number of such g is φ(d).

(4) Follows immediately from (3) with d = n.

For example, the group Z is cyclic (with generator 1) so every subgroup is of the form mZ =
{mk : k ∈ Z} for some integer m.

1.1.c Homomorphisms

More generally, relationships between groups often arise as functions from one group to another
that preserve all the relevant algebraic structures and operations.

Definition 1.1.7. Let G and H be two groups. A function ϕ : G → H is a homomorphism if
it preserves the group operations. That is, if for every a, b ∈ G we have ϕ(ab) = ϕ(a)ϕ(b). The
image of ϕ, denoted by Im(ϕ), is the set of b ∈ H such that there is a ∈ G with ϕ(a) = b. The
kernel of ϕ, denoted by Ker(ϕ), is the set of a ∈ G such that ϕ(a) = eH . The homomorphism ϕ is
an endomorphism if G = H. It is an epimorphism or is surjective if it is onto as a set function. It
is a monomorphism or is injective if it is one-to-one as a set function. It is an isomorphism if it is
both injective and surjective. It is an automorphism if it is an endomorphism and an isomorphism.

If G is a group and a ∈ G, then we can define the function ϕ(n) = an. This function is a
homomorphism and is a monomorphism if and only if a has infinite order. If a has finite order
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m, then ϕ induces a monomorphism from Z/mZ to G. In particular, every infinite cyclic group
is isomorphic to the integers Z and every finite cyclic group is isomorphic to the (additive) group
Z/(m) where m is the order of any generator.

Proposition 1.1.8. Let ϕ : G→ H be a homomorphism. Then ϕ preserves identity elements and
inverses. Morever Ker(ϕ) is a subgroup of G and Im(ϕ) is a subgroup of H.

Proof. To see that ϕ preserves identities observe that ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG). Multiplying
by ϕ(eG)−1 then gives eH = ϕ(eG). To see that ϕ preserves inverses, let a ∈ G. Then eH = ϕ(eG) =
ϕ(aa−1) = ϕ(a)ϕ(a−1) so ϕ(a)−1 = ϕ(a−1) by uniqueness of inverses. The remaining statements
are left to the reader.

Proposition 1.1.9. If ϕ : F → G and ψ : G → H are homomorphisms, then the composition
ψ◦ϕ : F → H is a homomorphism.

Proof. For all a, b ∈ F , we have (ψ◦ϕ)(a+ b) = ψ(ϕ(ab)) = ψ(ϕ(a)ϕ(b)) = ψ(ϕ(a))g(ϕ(b)).

Definition 1.1.10. A pair of homomorphisms ϕ : F → G and ψ : G → H is exact (at G) if the
kernel of ψ equals the image of ϕ. A sequence of maps

1→ F → G→ H → 1 (1.1)

is a short exact sequence if it is exact at F , G, and H. Here 1 denotes the trivial group with a
single element.

The short exact sequence in (1.1) splits if there is a homomorphism µ : H → G so that g · h is
the identity.

Note that in equation (1.1), exactness at F is equivalent to ϕ being injective and exactness at
H is equivalent to ψ being surjective.

Proposition 1.1.11. If 1→ F → G→ H → 1 is a short exact sequence and all three groups are
finite, then |G| = |F | · |H|.

Proof. Let ϕ denote the homomorphism from F to G, and let ψ denote the homomorphism from
G to H. Since ψ is surjective, there is a subset U of G that maps one to one and onto H. If b is
any element of G, then there is some u ∈ U so that ψ(u) = ψ(b). Then bu−1 maps to the identity
in H, so bu−1 = a ∈ Im(ϕ). Thus we can write b = au with a ∈ Im(ϕ). Suppose that au = a′u′ for
some a, a′ ∈ Im(ϕ) and u, u′ ∈ U . Then u′u−1 = (a′)−1a ∈ Im(ϕ). It follows that ψ(u′u−1) = eH ,
so ψ(u′) = ψ(u). By the choice of U , we have u = u′. Then also a = a′. It follows that for each b
there is a unique representation in the form b = au. The proposition is follows from this.
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Proposition 1.1.12. Suppose 1 → F → G → H → 1 is a short exact sequence with ϕ : F → G
and ψ : G→ H, all three groups are Abelian, and the short exact sequence splits via a homomor-
phism h : H → G, then there is an isomorphism between F ×H and G given by (a, b) 7→ ϕ(a)µ(b).
Conversely, if G = F×H, then there is a short exact sequence as in (1.1), where ψ is the projection
map and ϕ maps a to (a, 1).

Proof. In Proposition 1.1.11 we can take U to be the image of µ to prove the first statement. The
converse is trivial.

1.1.d Quotients

If m is any positive integer, then the set of multiples of m, mZ, is a subgroup of the (additive)
group Z. In Sect. 1.1.a the quotient group Z/mZ is defined as the set of equivalence classes of Z
under the following equivalence relation: a ≡ b (mod m) if a− b ∈ mZ.

More generally, suppose G is any group and H is a subgroup of G. Define an equivalence
relation by saying a ∼ b if there is an h ∈ H such that b = ah (The proof that this is an
equivalence relation is left as an exercise). The equivalence class of a is aH = {ah : h ∈ H} and
is called the left coset of a. The set of left cosets is denoted G/H. It is not always possible to form
a group out of these cosets (but see Sect. 1.1.e).

In fact, we could have started by defining a ∼′ b if there is an h ∈ H such that b = ha. This is
also an equivalence relation. The equivalence class Ha of a with respect to this relation is called
the right coset of a, the set of which is denoted H\G. If G is Abelian, then Ha = aH for all a ∈ G.
More generally:

Definition 1.1.13. If H is a subgroup of G, then H is normal in G if for every a ∈ G, we have
aH = Ha or equivalently, if aha−1 ∈ H for every a ∈ G and every h ∈ H.

Theorem 1.1.14. If H is normal in G, then G/H = H\G is a group under the operation
(aH)(bH) = abH.

In this case, G/H is called the quotient group of G modulo H. The natural mapping G→ G/H
(given by a 7→ aH) is a homomorphism. If the set of left cosets is finite, then we say H has finite
index in G. The number of left cosets (which equals the number of right cosets) is called the index
of H in G. Thus if H is normal in G and of finite index, then G/H is finite and |G/H| equals the
index of H in G. If G is finite, so is G/H, and we have |G/H| = |G|/|H|.

Theorem 1.1.15. If ϕ : G→ G′ is a homomorphism then the following statements hold.

1. Ker(ϕ) is normal in G.
2. The quotient G/Ker(ϕ) is isomorphic to Im(ϕ).
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3. Conversely, if H is a normal subgroup of G, then the natural mapping a 7→ aH is a surjection
from G to G/H with kernel equal to H.

Thus if H is normal in G, then we have a short exact sequence

1→ H → G→ G/H → 1.

1.1.e Conjugacy and groups acting on sets

Two elements a and b in a group G are conjugate if there is an element g ∈ G such that b = gag−1.
This is an equivalence relation on G whose equivalence classes are called conjugacy classes. If G is
Abelian, then every conjugacy class has a single element, but if ab 6= ba, then both a and bab−1 are
distinct elements in the same conjugacy class. Thus the number of conjugacy classes gives some
measure of how far G is from being Abelian. If H and H ′ are subgroups of G, we say they are
conjugate if there is an element g ∈ G such that H ′ = hHg−1.

An action of a group G on a set S is a mapping G× S → S, written (g, s) 7→ g · s, such that
(gh) · s = g · (h · s) for all g, h ∈ G and all s ∈ S. It follows that the identity e ∈ G acts trivially
(e · s = s) and that each g ∈ G acts by permutations. The orbit of an element s ∈ S is the set

G · s = {g · s : g ∈ G} .

If H ⊂ G is a subgroup then G acts on G/H by g · xH = (gx) ·H.
If G acts on S, and if s ∈ S, define the stabilizer or isotropy subgroup,

StabG(s) = {g ∈ G : g · s = s} .

It is a subgroup of G. If s, s′ ∈ S are in a single orbit then their stabilizers are conjugate. In fact if
s′ = gs then StabG(s′) = gStabG(s)g−1. The action of G on S is transitive if there is a single orbit,
i.e., for every s, s′ ∈ S there exists g ∈ G such that s′ = g · s. Suppose this to be the case, choose a
“base point” s0 ∈ S, and let H = StabG(s0). This choice determines a one to one correspondence
ϕ : G/H → S with ϕ(gH) = g · s0. The mapping ϕ is then compatible with the actions of G on
G/H and on S, that is, g · ϕ(xH) = ϕ(g · xH) for all g ∈ G and all xH ∈ G/H. If |G| < ∞ it
follows that |S| = |G|/|H| divides |G|.

The group G acts on itself by translation (g · x = gx) and by conjugation (g · x = gxg−1). The
first action is transitive; the second is not, and its orbits are the conjugacy classes of G.

1.1.f Finitely generated Abelian groups

An Abelian group G is finitely generated if there is a finite set V ⊆ G such that every element of
G is equal to a finite product of elements of V . We state without proof the fundamental theorem
of finite Abelian groups (See, for example, Lang [20, p. 46]):
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Theorem 1.1.16. Let G be a finitely generated Abelian group. Then G is isomorphic to a direct
product of cyclic groups.

Corollary 1.1.17. Let G be a finite Abelian group with nm elements, where n and m are relatively
prime positive integers. Then there are groups H1 and H2 with n and m elements, respectively, so
that G is isomorphic to H1 ×H2.

An element g in an Abelian group G is a torsion element if g 6= 0 and if some finite sum
g + g + · · · + g = 0 vanishes. That is, if it has finite order. The group G is torsion-free if it
contains no torsion elements.

Corollary 1.1.18. Let G be a finitely generated torsion-free Abelian group. Then G is isomorphic
to a direct product of finitely many copies of Z.

1.2 Rings

Many important algebraic structures come with two interrelated operations. For example, addition
and multiplication of integers, rational numbers, real numbers, and complex numbers; AND and
XOR of Boolean valued functions; and addition and multiplication of n × n matrices of integers,
etc.

Definition 1.2.1. A ring R is a set with two binary operations + and · and two distinguished
elements 0, 1 which satisfy the following properties for all a, b, c ∈ R:

1. R is an Abelian group with operation + and identity 0;
2. a · (b · c) = (a · b) · c and 1 · a = a · 1 = a; and
3. a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a) (the distributive law).

It follows that a · 0 = 0 for all a, since a · 0 = a · (0 + 0) = a · 0 + a · 0. If 0 = 1 then R = {0}
is the zero ring. It is common to denote by R+ the Abelian group that is obtained from R by
forgetting the multiplication operation.

A ring R is commutative if a · b = b · a for all a, b ∈ R. Throughout this book, all rings are
commutative unless otherwise stated. We generally write ab for the product a · b.

1.2.a Units and zero divisors

Let R be a commutative ring. An element a ∈ R is a unit if it is invertible, that is, if there exists
b ∈ R so that ab = 1. In this case b is unique. The collection of all units in R is denoted R×. It
forms an Abelian group (under multiplication). An element a ∈ R is a zero divisor if there exists
a nonzero element b ∈ R such that ab = 0. The ring of integers Z has no zero divisors, but only
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1 and −1 are units. However if the ring R is finite then a given element is either a unit or a zero
divisor. Indeed, let ϕa : R→ R be the mapping which is given by multiplication by a. If ϕa is one
to one, then it is also onto, hence a is invertible. If ϕa is not one to one, then there exist b 6= c
so that ab = ac or a(b − c) = 0, so a is a zero divisor. If a, b ∈ R and ab = 0, then b is said to
annihilate a, and the set of such b is called the annihilator of a, denoted Za.

Let b ∈ R be a unit. The smallest integer m > 0 such that bm = 1 is called the multiplicative
order of b, if such an m < ∞ exists; otherwise b is said to have infinite order. If b ∈ R has order
m < ∞, if u ∈ R and if t > 0 is the smallest integer such that (bt − 1)u = 0 then t divides m.
(For, the group Z/(m) acts transitively on the set {u, bu, · · · , bt−1u} with k ∈ Z/(m) acting by
multiplication by bk.) In particular, if s > 0 is relatively prime to m then bs − 1 is not a zero
divisor in R

Definition 1.2.2. An integral domain (also called an entire ring) is a commutative ring with no
zero divisors. A field is a commutative ring in which every nonzero element is invertible.

In particular, a finite integral domain is necessarily a field. Every commutative ring R embeds
in a ring S−1R which has the property that every element is either a zero divisor or is invertible,
cf. Section 1.2.e.

1.2.b Ideals and quotients

Definition 1.2.3. A subring S of a ring R is a subset of R, which is a ring under the same
operations as R, and with the same zero and identity.

If I is an additive subgroup of R (meaning that if a, b ∈ I then a + b ∈ I and −a ∈ I) then
the quotient R/I is the set of equivalence classes under the equivalence relation a ∼ b if a− b ∈ I.
The equivalence class containing a ∈ R is the coset a + I. Then R/I is an Abelian group under
addition: (a + I) + (b + I) = a + b + I. However, the multiplication operation on R does not
necessarily induce a well defined multiplication on R/I. For if a′ ∼ a, say, a′ = a+ c and if b′ ∼ b,
say, b′ = b + d (where c, d ∈ I) then a′b′ = ab + ad + bc + cd which is not equivalent to ab unless
ad + bc + cd ∈ I. The following definition is necessary and sufficient to ensure this holds for all
a, b ∈ R and c, d ∈ I.

Definition 1.2.4. An ideal is an additive subgroup I ⊂ R such that for any a ∈ I and for any
b ∈ R we have ab ∈ I.

It follows that the set of equivalence classes R/I inherits a ring structure from R if and only
if I is an ideal. Two elements a, b ∈ R are said to be congruent modulo I if they are in the same
equivalence class. That is, if a− b ∈ I. Each equivalence class is called a residue class modulo I.

An ideal I is proper if I 6= R, in which case it does not contain any units. An ideal I is
principalif there exists an element a ∈ R such that I = {ar : r ∈ R}, in which case we write
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I = (a). If I, J are ideals then the sum I + J is the set of all sums a + b where a ∈ I and b ∈ J .
It is an ideal and is the smallest ideal containing both I and J . The intersection I ∩ J is also an
ideal. The product ideal IJ is the set of all finite sums

∑
aibi where ai ∈ I and bi ∈ J . An ideal

I ⊂ R is maximal if I is proper and is not a proper subset of any other proper ideal. An ideal I is
prime if ab ∈ I implies a ∈ I or b ∈ I. An ideal I ⊂ R is primary if I 6= R and whenever ab ∈ I,
either a ∈ I or bn ∈ I for some n ≥ 1.

A field contains only the ideals (0) and (1).

Theorem 1.2.5. Let R be a commutative ring. Then the following statements hold.

1. An ideal P ⊂ R is maximal if and only if R/P is a field (called the residue field with respect
to P ).

2. An ideal P ⊂ R is prime if and only if R/P is an integral domain. (See Definition 1.2.13.)
3. Every maximal ideal is prime.

Proof. (1) Let P be maximal and a ∈ R − P . Then J = {ab + c : b ∈ R, c ∈ P} is closed under
addition and under multiplication by elements of R. It contains P (take b = 0) and a (take b = 1
and c = 0) so it properly contains P . By maximality it is not a proper ideal, so it must not be a
proper subset of R. That is, J = R. In particular, 1 ∈ J , so 1 = ab+ c for some b ∈ R and c ∈ P .
Therefore (a+P )(b+P ) = ab+P = 1− c+P = 1 +P so a+P is invertible in R/P . Thus R/P is
a field. On the other hand, suppose R/P is a field and J is an ideal containing P . Let a ∈ J −P .
Then a + P is invertible in R/P , so there is a b ∈ R such that (a + P )(b + P ) = 1 + P . That is,
such that ab = 1 + c for some c ∈ P . But then 1 = ab− c ∈ J . By closure under multiplication by
R, we have R ⊆ J . But this contradicts the fact that J is an ideal. Therefore P is maximal.

(2) Let a, b ∈ R. Then (a + P )(b + P ) = 0 in R/P if and only if ab ∈ P . If P is prime, this
says (a + P )(b + P ) = 0 implies a ∈ P or b ∈ P , which implies a + P = 0 or b + P = 0 in R/P ,
so R/P is an integral domain. Conversely, if R/P is an integral domain, then ab ∈ P implies
(a + P )(b + P ) = 0 which implies a + P = 0 or b + P = 0. That is, a ∈ P or b ∈ P , so P is a
prime ideal.

(3) This follows from (1) and (2).

For example, consider the ring of ordinary integers Z. Let I be an ideal containing a nonzero
element. Multiplication by −1 preserves membership in I, so I contains a positive element. Let
m be the least positive element of I. Suppose that a ∈ I is any other element of I. Then
gcd(m, a) = um+ va for some integers u and v, so gcd(m, a) ∈ I. We have gcd(m, a) ≤ m, so by
the minimality of m, gcd(m, a) = m. That is, m divides a. Since every multiple of m is in I, it
follows that I consists exactly of the multiples of m. In particular, I = (m) is principal.

The ideal (m) is contained in the ideal (n) if and only if m is a multiple of n. The ideal (m) is
prime if and only if m is prime. In this case it is also maximal. It is primary if and only if m is a
power of a prime.
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Definition 1.2.6. A function ϕ : R → S from a ring R to a ring S is a ring homomorphism if
ϕ(a+b) = ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R. The homomorphism ϕ is a surjection
(or epimorphism) if it is onto. It is an injection (or monomorphism) if it is one to one. It is an
isomorphism if it is both an injection and a surjection. It is an endomorphism if R = S. It is an
automorphism if it is an endomorphism and an isomorphism.

The set of automorphisms of a ring S forms a group under composition, denoted by Aut(S).
More generally, if R is a subring of S (we also say that S is an extension of R), then the set of
automorphisms of S whose restrictions to R are the identity forms a subgroup AutR(S). The proof
of the following theorem is left as an exercise.

Theorem 1.2.7. If ϕ : R→ S is a ring homomorphism, then

Ker(ϕ) = {r ∈ R : ϕ(r) = 0}

is an ideal of R, the image of ϕ is a subring of S, and ϕ induces an isomorphism between R/Ker(ϕ)
and Im(ϕ). Conversely, if I is an ideal of R then the map a 7→ a+I is a surjective homomorphism
from R→ R/I with kernel I.

If f : R→ S is a surjective ring homomorphism with kernel I ⊂ R, then

0→ I → R→ S

is a short exact sequence of additive groups. Sometimes there is also an injection g : S → R such
that f ◦g is the identity function (a right inverse of f). In this case it makes sense to think of S as
a subring of R so that R is an algebra over S. We say that g is a splitting of f .

If R is a ring and a ∈ R, then the annihilator Za of a is an ideal. It is proper because 1 6∈ Za.

1.2.c Characteristic

Let R be a commutative ring. If m is a nonnegative integer, we write m ∈ R for the sum 1+1 · · ·+1
(m times). This defines a homomorphism from Z into R. That this function is a homomorphism
can be shown by a series of induction arguments. In fact this is the unique homomorphism from Z
into R, since any such homomorphism is completely determined by the facts that 1Z maps to 1R,
and the ring operations are preserved. The kernel of this homomorphism is an ideal in Z, hence
by the example in Section 1.2.b is of the form (m) for some nonnegative integer m. This integer is
called the characteristic of R. For any a ∈ R, we have ma = a+a+ · · ·+a (m times). Hence if the
characteristic is nonzero, it is the smallest positive integer m such that ma = 0 for all a ∈ R. If
the characteristic is zero, then no such m exists and Z is isomorphic to a subring of R. Otherwise
Z/(m) is isomorphic to a subring of R. If R is finite then its characteristic is positive since the
sequence of elements 1, 2, 3, · · · ∈ R must eventually lead to a repetition.
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Theorem 1.2.8. If R is an integral domain then its characteristic is either 0 or is a prime number.
In particular, the characteristic of any finite field is prime.

Proof. Suppose R is an integral domain. Let k > 0 be the characteristic and suppose k = mn (in
Z), with m,n > 0. Then mn = 0 in R, so m = 0 or n = 0 in R. Suppose m = 0. For any c ∈ R,
the element c + · · · + c (m times) is mc = 0. By the minimality of k, we must have m = k and
n = 1. A similar argument holds when n = 0 in R. It follows that k is prime.

Lemma 1.2.9. Let R be a commutative ring. If the characteristic k of R is a prime number, and
if q is any positive power of k then

(a+ b)q = aq + bq ∈ R (1.2)

for every a, b ∈ R.

Proof. Suppose k is prime and 0 < m < k. The binomial coefficient(
k

m

)
=

k!

m!(k −m)!

is divisible by k since k appears as a factor in the numerator but not in the denominator. Conse-
quently (a+ b)k = ak + bk and equation (1.2) follows by induction.

If k is not prime, then equation (1.2) is generally false.

1.2.d The Ring Z/(N) and primitive roots

In this section we continue the example of the modular integers introduced in Section 1.1.a. Fix
a nonzero integer N . The ring Z/(N) is the (cyclic) group of order N , Z/(N), together with
the operation of multiplication. The same symbol is used for both structures, which often causes
some confusion. The group Z/(N) is sometimes referred to as the additive group of Z/(N). The
characteristic of the ring Z/(N) is |N |.

As in Section 1.2.c, the mapping (mod N) : Z→ Z/(N) is a ring homomorphism. If x ∈ Z we
sometimes write x ∈ Z/(N) for its reduction modulo N . Conversely, it is customary to represent
each element y ∈ Z/(N) by the corresponding integer ŷ ∈ Z with 0 ≤ x̂ ≤ N − 1, but note that
this association Z/(N) → Z is neither a group nor a ring homomorphism. It is also common to
omit the “bar” and the “hat”, thereby confusing the integers between 0 and N − 1 with Z/(N).

If m divides N then the mapping (mod m) : Z/(N)→ Z/(m) is a ring homomorphism. If a, b
are nonzero, relatively prime integers, then the mapping

Z/(ab)→ Z/(a)× Z/(b) (1.3)
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given by x 7→ (x (mod a), x (mod b)) is a ring isomorphism. (Since both sides have the same
number of elements it suffices to check that the kernel is zero. But if x is divisible by a and by
b and if a, b are relatively prime, then x is divisible by ab. This is a special case of the Chinese
remainder theorem, Theorem 1.2.18).

Let x ∈ Z. The following statements are equivalent:

1. The element x = x (mod N) ∈ Z/(N) is invertible in Z/(N).

2. The element N = N (mod x) ∈ Z/(x) is invertible in Z/(x.)

3. The integers x and N are relatively prime.

4. There exists n > 0 so that x|(Nn − 1)

5. There exists m > 0 so that N |(xm − 1)

6. The element x ∈ Z/(N) generates the additive group of Z/(N). That is, the elements
{0, x, x+ x, x+ x+ x, · · ·} account for all the elements in Z/(N).

As we saw in Section 1.2.c, the units in Z/(N) form an Abelian group under multiplication,
the multiplicative group Z/(N)×. Euler’s totient function, φ(N) = |Z/(N)×| is defined to be the
number of units in Z/(N). For any y ∈ Z/(N)× there is a least power d, called the order of y
and denoted d = ordN(y), such that yd = 1 ∈ Z/(N). It follows from Theorem 1.1.3 that d|φ(N),
so if y is relatively prime to N then yφ(N) ≡ 1 (mod N), which is called Fermat’s congruence or
Fermat’s little theorem. The least n,m in (4), (5) is n = ordx(N) and m = ordN(x) respectively.

Lemma 1.2.10. Let N be a positive integer. Then the following statements hold.

1. If N =
∏k

i=1 p
mi
i is the prime factorization of N then φ(N) =

∏k
i=1 φ(pmi

i ).

2. φ(pm) = pm−1(p− 1) if p is prime.

3. N =
∑

d|N φ(d).

Proof. The first statement follows from equation (1.3). In the second statement, since p is prime,
the only integers that are not relatively prime to pm are the multiples of p. There are pm−1 of
these in Z/(pm), which leaves pm−1(p − 1) integers that are relatively prime to p, proving the
second statement. (In fact, the group Z/(pm)× is described in Section 3.2.a: it is cyclic of order
pn−1(p− 1) if p > 2. If p = 2 and m ≥ 3 then it is a product of two cyclic groups, one of order 2
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(generated by −1) and one of order pm−1, generated by 5.) For the third statement, consider the
set of fractions {1/N, 2/N, · · · , N/N}. They are distinct, positive, and ≤ 1. Reduce each of these
to its lowest terms. Then the denominator of each fraction will be a divisor d of N . For a given
denominator d the possible numerators will be any integer relatively prime to d and ≤ d, so there
are φ(d) of them. Therefore, adding φ(d) over all d|N gives N .

From the comments in the preceding paragraph, it follows that the multiplicative group Z/(N)×

is cyclic if and only if N = pm, 2pm, 2, or 4, where p ≥ 3 is an odd prime. In this case a generator
a ∈ Z/(N)× is called a primitive root modulo N . The number of primitive roots modulo N
is therefore φ(φ(N)). The Artin conjecture states in part that each prime number p ∈ Z is a
primitive root modulo q for infinitely many primes q. The following proposition helps enormously
in verifying primitivity modulo a prime power pt.

Lemma 1.2.11. Let p be prime and let s ≥ 1, t ≥ 1, b ∈ Z. Then b is a unit modulo ps if and only
if it is a unit modulo pt.

Proof. We may assume that s = 1. If a is a unit modulo pt, then pt|bc− 1 for some b, so p|bc− 1
as well, and b is a unit modulo p.

Conversely, suppose b is a unit modulo p, so p|bc − 1 for some c. We claim by induction that
for all i there is a ci so that pi|bci − 1. Indeed, for i ≥ 2 by induction let

bci−1 = 1 + pi−1di−1.

Then by the binomial theorem,

(bci−1)p = (1 + pi−1di−1)p = 1 + pidi−1 + (pi−1)2z

for some integer z. But 2(i− 1) = 2i− 2 ≥ i, so

b(bp−1cpi−1) ≡ 1 (mod pi)

as claimed. In particular, b is a unit modulo pt.

Proposition 1.2.12. Suppose N = pt with p ≥ 3 an odd prime and t ≥ 2. Let 2 ≤ a ≤ N − 1.
Then a is primitive modulo N if and only if a is primitive modulo p2. This holds if and only if a
is primitive modulo p, and p2 does not divide ap−1 − 1.

Proof. If a is primitive modulo pt, then by Lemma 1.2.11 every unit b modulo p or p2 is a unit
modulo pt. Thus b is congruent to a power of a modulo t, and hence also modulo p and p2. Thus
a it is primitive modulo p and p2. We prove the converse by induction on t, following [13, Section
4.1 Theorem 2]. Fix t ≥ 3 and suppose that a is primitive in Z/(ps) for all s < t. The order of
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a is a divisor of φ(pt) = pt−1(p − 1), the cardinality of the group of units in Z/(pt). We want to
show that the order of a is not a divisor of pt−1(p − 1)/r, for any prime divisor r of pt−1(p − 1).
First we take r = p. Since

ap
t−3(p−1) = aφ(pt−2) ≡ 1 (mod pt−2)

we have
ap

t−3(p−1) = 1 + cpt−2

for some c 6= 0, and c is relatively prime to p since a is primitive for Z/(pt−1). Then

ap
t−2(p−1) = (1 + cpt−2)p ≡ 1 + cpt−1 6≡ 1 (mod pt)

since
(
p
i

)
is a multiple of p. This shows that the order of a modulo pt is not φ(pt)/r with r = p.

Now suppose that r is a prime divisor of p− 1 and

ap
t−1(p−1)/r ≡ 1 (mod pt).

Let b be a primitive element modulo pt and a ≡ bk (mod pt). Then

bkp
t−1(p−1)/r ≡ 1 (mod pt)

so pt−1(p− 1) divides kpt−1(p− 1)/r. Equivalently, r divides k. But then

ap
t−2(p−1)/r ≡ bkp

t−2(p−1)/r ≡ 1 (mod pt−1)

as well and this is a contradiction. This proves the first statement.
We have shown that if a is primitive modulo pt then a is primitive modulo p, and p2 does not

divide ap−1− 1. Now we prove the converse. If p2 does not divide ap−1− 1, then the only way that
a can fail to be primitive modulo p2 is if a has order modulo p2 dividing p(p− 1)/r for some prime
divisor of p− 1. But as we saw in the previous paragraph, this implies that a has order modulo p
dividing (p− 1)/r, which would contradict a’s primitivity modulo p.

1.2.e Divisibility in rings

Let R be a commutative ring. If a, b ∈ R then a is a divisor of b if there exists c ∈ R such that
ac = b, in which case we write a|b. The element a is a unit if it is invertible, or equivalently, if it is
a divisor of 1. Elements a, b ∈ R are associates if a = εb for some unit ε. A nonzero element c ∈ R
is a common divisor of a and b if c|a and c|b. It is a greatest common divisor of a and b (written
c = gcd(a, b)) if it is a common divisor and if every other common divisor of a and b divides c.
An element c 6= 0 is a common multiple of a and b if a|c and b|c. It is a least common multiple
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(written c = lcm(a, b)) if it is a common multiple and if it divides every other common multiple of
a and b.

A nonzero element r ∈ R is prime if (r) is a proper prime ideal, meaning that if ab ∈ (r) then
a ∈ (r) or b ∈ (r). It is primary if (r) is primary, meaning that ab ∈ (r) implies a ∈ (r) or bn ∈ (r)
for some n > 0. It is irreducible if it is not a unit and if r = ab implies that a or b is a unit. Two
nonzero non-units r, s ∈ R are coprime or relatively prime if (r) + (s) = R or equivalently if there
exist a, b ∈ R so that 1 = ar + bs. See also Theorem 1.2.15.

Definition 1.2.13. Let R be a commutative ring.

1. R is an integral domain (or simply a domain, or entire) if it has no zero divisors.
2. R is principal if every ideal in R is principal. It is a principal ideal domain or PID if it is

principal and is an integral domain.
3. R is a GCD ring if every pair of elements has a greatest common divisor.
4. R is a local ring if it contains a unique maximal ideal (which therefore consists of the set of

all non-units).
5. R is a unique factorization domain (or UFD, or factorial) if it is an integral domain and

every nonunit a ∈ R has a factorization into a product

a =
m∏
i=1

pi (1.4)

of irreducible elements (not necessarily distinct), which is unique up to reordering of the pis
and multiplication of the pis by units. That is, if a =

∏n
i=1 qi, then m = n and there is a

permutation σ of {1, · · · ,m} so that pi and qσ(i) are associates.
6. R is a factorization ring if every nonunit a ∈ R has a factorization into a product of irre-

ducible elements, not necessarily distinct, and not necessarily in a unique way. An entire
factorization ring is a factorization domain.

7. R is Noetherian if every increasing sequence of ideals I1 ⊂ I2 ⊂ · · · stabilizes at some finite
point, or equivalently, if every ideal is finitely generated.

8. R is Euclidean if there is a function δ : R → {0, 1, 2, · · ·} ∪ {−∞} such that (1) for every
a, b ∈ R with a and b both nonzero, we have δ(ab) ≥ δ(a), and (2) for every a, b ∈ R with
b 6= 0 there exist q ∈ R (the quotient) and r ∈ R (the remainder)
so that

a = qb+ r and δ(r) < δ(b). (1.5)

Theorem 1.2.14 summarizes the various inclusions among the special types of rings that we
have discussed. We have included the polynomial ring R[x] for ease of reference although it will
not be considered until Section 1.4.
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Theorem 1.2.14. Let R be a commutative ring and let R[x] be the ring of polynomials with
coefficients in R (see Section 1.4). Then we have the following diagram of implications between
various possible properties of R.

field =⇒ Euclidean =⇒ PID =⇒ UFD =⇒ entire =⇒ R[x]entire
⇓ ⇓

R[x]Euclidean GCD

If R is finite and entire then it is a field. If R is an order in an algebraic number field (see
Section 2.4.c) then it is entire and Noetherian. The following additional implications hold.

PID =⇒ Noetherian =⇒ factorization
⇓ factorization

R[x]Noetherian =⇒ R[x]factorization ⇐= domain + GCD

Proof. The properties of the polynomial ring R[x] are proved in Lemma 1.4.1 and Theorem 1.4.2.
If R is a field then it is Euclidean with δ(0) = −∞ and δ(r) = 0 for all nonzero elements r ∈ R.

To show that every Euclidean ring is a PID, let R be Euclidean. Suppose a ∈ R is nonzero.
We can write 0 = qa+ r with δ(r) < δ(a). Suppose that q is nonzero. Then δ(r) = δ(−qa) ≥ δ(a),
which is a contradiction. Thus q = 0 so r = 0. But then we must have δ(0) < δ(a) for every a 6= 0.
In particular, δ(a) ≥ 0 if a is nonzero. Now let I be a nonzero ideal in R. Let a ∈ I − {0} be an
element such that δ(a) is minimal. There is at least one such element since δ(I − {0}) ⊂ N has a
least element (by the well ordering principal). We claim that I = (a). Let b be any other element
in I. Then b = qa+ r for some q, r ∈ R such that δ(r) < δ(a). But r = b− qa ∈ I, so r = 0. That
is, b = qa, as claimed. Moreover, if 0 = ab for some nonzero a, then the argument above shows
that b = 0, so R is an integral domain.

Now assume that R is a PID. If a and b are two elements of R, then the ideal (a, b) has a
principal generator, (a, b) = (c). Thus c divides both a and b, and c = ua+ vb for some u, v ∈ R.
Therefore any common divisor of a and b divides c as well. That is, c is a GCD of a and b. It
follows that R is a GCD ring. It also follows that the GCD c can be written in the form c = ua+vb.

To see that R is Noetherian, let I1 ⊂ I2 ⊂ · · · be an increasing chain of ideals in R. The union
of the Ins is an ideal, so it is principal,

∪∞n=1In = (a)

for some a. But there is a natural number n with a ∈ In, so the chain stabilizes at In.
Suppose that R is Noetherian. We prove that R is a factorization ring. That is, that every

element a ∈ R has a prime factorization. Let S be the set of nonzero elements of R that do not
have prime factorizations, and suppose S is nonempty. Let a ∈ S. Then a is not prime, so we
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can write a = bc with neither b nor c in (a). Since a is in S, either b or c is in S. Repeating
this infinitely gives a chain (a1) ⊂ (a2) ⊂ · · · with ai ∈ S and (ai) 6= (ai+1) for every i ≥ 1. This
contradicts the fact that R is Noetherian.

Now we return to the case when R is a PID (and hence a GCD ring and Noetherian and so a
factorization ring) and prove uniqueness of factorizations. Suppose a ∈ R is irreducible and a|bc.
If a 6 |b, then 1 is a gcd of a and b, so we have

1 = ua+ vb,

for some u, v ∈ R. Thus c = uac + vbc, so a|c. That is, if a|bc, then a|b or a|c. In other words, a
is prime if a is irreducible. Suppose some nonunit b ∈ R can be factored in two ways,

b =
k∏
i=1

pi =
∏̀
i=1

qi.

Since b is not a unit, we have k > 0 and ` > 0. We use induction on k. Since pk|
∏`

i=1 qi, we have
pk|qn for some n by the primality of pk, say qn = dp1. By the irreducibility of pk and qn, d is a
unit. Then

∏k−1
i=1 pi = d(

∏`
i=1 qi)/qn, and the result follows by induction. This completes the proof

that a PID R is a UFD.
The implication UFD =⇒ GCD is straightforward. Every UFD is an integral domain by

definition. This completes the first diagram of implications.
The implication (finite + entire =⇒ field) was proven in Section 1.2.a. An order R in a number

field is a free Z module of finite rank, so the same is true of any ideal in R, hence such an ideal is
finitely generated (as an Abelian group). Thus R is Noetherian.

The proof that (Noetherian =⇒ R[x] Noetherian) is fairly long and will be omitted; it is called
Hilbert’s basis theorem, see any book on commutative algebra, for example [1]. The remaining
results involving polynomials are proved in Section 1.4.a.

Theorem 1.2.15. Let R be a commutative ring and let a, b ∈ R. Then

1. The element a is prime if and only if it has the following property: if a|cd then a|c or a|d.
2. If a is prime and is not a zero divisor, then a is irreducible.
3. If R is a UFD, then a is prime if and only if a is irreducible.
4. The elements a and b are coprime if and only if (the image of) a is invertible in R/(b) (if

and only if the image of b is invertible in R/(a)).
5. If a and b are coprime, then every common divisor of a and b is a unit.
6. If R is a PID and if every common divisor of a and b is a unit, then a and b are coprime.
7. If R is a PID and a ∈ R, then a is prime if and only if (a) is maximal (if and only if R/(a)

is a field).
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Proof. Part (1) is just a restatement of the definition that (a) is a prime ideal.
Now suppose a is prime and is not a zero divisor, and suppose a = cd. Then either c ∈ (a)

or d ∈ (a); we may assume the former holds. Then c = ea for some e ∈ R, so a = cd = ead or
a(1− ed) = 0. Since a is not a zero divisor, we have ed = 1 hence d is a unit. This proves (2).

For part (3), first suppose that a ∈ R is irreducible and let cd ∈ (a). Then cd = ae for some
element e ∈ R. The right side of this equation is part of the unique factorization of the left side, so
a must divide either c or d. Therefore either c ∈ (a) or d ∈ (a). The converse was already proven
in part (2). (Note that a UFD contains no zero divisors, due to the unique factorization of 0.)

For part (4), if a is invertible in R/(b) then there exists c ∈ R so that ac ≡ 1 (mod b), meaning
that there exists d ∈ R so that ac = 1 + db. Hence (a) + (b) = R. The converse is similar.

For part (5), supposing a and b are coprime, we may write 1 = ac + bd for some c, d ∈ R. If
e|a and e|b then a = fe and b = ge for some f, g ∈ R. This gives 1 = (fc+ gd)e so e is invertible.

For part (6), Suppose R is a PID. Given a, b the ideal (a) + (b) is principal, so it equals (c) for
some c ∈ R, which implies that c|a and c|b. Therefore c is a unit, so (a) + (b) = (c) = R.

For part (7), we have already shown, in Theorem 1.2.5 that (a) maximal implies that a is
prime. For the converse, suppose that (a) is prime and that (a) ⊂ (b) 6= R. Then b is not a unit,
and a = cb for some c ∈ R. Since the ring R is also a UFD, the element a is irreducible, so c is a
unit. Therefore (a) = (b) hence (a) must be maximal.

1.2.f Examples

Here are a few standard examples of rings.

1. The integers Z is a Euclidean ring with δ(a) = |a|.

2. The rational numbers Q, the real numbers R, and the complex numbers C are fields.

3. If k = mn is a composite integer (with m,n ≥ 2) then Z/kZ is not an integral domain since
m · n = 0.

4. If R is a ring and S is a nonempty set, then the set of functions from S to R is a ring with the
operations (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). The zero is the function z(x) = 0
for all x, and the identity is the function i(x) = 1 for all x.

5. If R is a ring then the collection R[x] of polynomials with coefficients in R (see Section 1.4) is
a ring.

6. Let G be an Abelian group with operation ∗ and identity e. The set E of endomorphisms of G
is a ring with the operations +E = “product” and ·E = “composition”. The zero is the function
z(a) = e for all a, and the identity is the function i(a) = a for all a.
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1.2.g The Euclidean algorithm

If R is Euclidean (and hence a GCD domain) via function δ : R→ {0, 1, 2, · · ·} ∪ {−∞}, then the
Euclidean algorithm, given in Figure 1.1, computes the gcd of any two elements. We assume that
addition and multiplication of elements in R are atomic operations and that given a, b ∈ R, we
can compute q, r ∈ R as in equation (1.5). The algorithm assumes that a and b are nonnegative.

Euclid(a, b)
begin
while (b 6= 0) do

Let a = qb+ r
(a, b) = (b, r)

od
return(a)
end

Figure 1.1: The Euclidean Algorithm.

The proof of correctness of the Euclidean algorithm is essentially the same as in the integer
case, which can be found in most general texts on algorithms. The time complexity depends on
the ring, and in particular on the maximum time M(d) it takes to compute q and r as in equation
(1.5) when max(δ(a), δ(b)) ≤ d.

If d = max(δ(a), δ(b)) decreases by an additive constant ε at each stage, then the complexity
is at most O(dM(d)). This is the case when R = F[x] for a finite field F and δ(a) = deg(a).
In this case M is the time required to multiply polynomials, say M(d) ∈ O(d log(d)) using fast
Fourier transforms. The resulting complexity of the Euclidean algorithm is O(deg(a)2 log(deg(a))).
However a better bound can be found in this case by taking into account the degrees of the
intermediate quotients. Two degree d polynomials can be divided in time O(d(e+ 1)), where e is
the degree of the quotient. Suppose that the sequence of polynomials produced by the algorithm
is r0 = a, r1 = b, r2, · · · , rn. Then n ≤ d. If ri has degree di, then the ith quotient has degree at
most di−1 − di. Thus the complexity is in

O(
d∑
i=0

di−1(di−1 − di + 1)) ∈ O(d
d∑
i=1

(di−1 − di + 1)) = O(d(d0 − dn + d)) = O(d2).

If for some constant ε < 1, δ(a) is decreased by a factor of ε after a constant number c of
steps, then a simple bound on the complexity is O(log(d)M(d)). This is the case when R = Z
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and δ(a) = |a|. However a better bound can be found in this case by taking into account the
actual numbers involved. Two k-bit numbers can be divided in time O(k(` + 1)), where ` is the
number of bits in the quotient. Suppose that the sequence of numbers produced by the algorithm
is r0 = a, r1 = b, r2, · · · , rn. Then n ≤ k. If ri has ki bits, then the ith quotient has at most
ki−1 − ki + 1 bits. Thus the complexity is in

O(
k∑
i=1

ki−1(ki−1 − ki + 2)) ∈ O(k
k∑
i=1

(ki−1 − ki + 2)) = O(k(k0 − kn + 2k)) = O(k2) = O(log(d)2).

Theorem 1.2.16. If R = F[x] for a finite field F , then the complexity of the Euclidean algorithm
on inputs of degree ≤ d is in O(d2). If R = Z, the the complexity of the Euclidean algorithm on
inputs of size ≤ d is in O(log(d)2).

If R is a Euclidean domain, then (by Theorem 1.2.14) it is also a PID. If a, b ∈ R, then the
ideal generated by a and b has a generator c. As in the proof of Theorem 1.2.14, c = gcd(a, b) and
there are elements u, v ∈ R so that c = ua+vb. The elements u and v are sometimes called Bézout
coefficients It turns out that with a simple modification, the Euclidean algorithm can be used to
compute the Bézout coefficients. This can be described by keeping track of all the intermediate
information in the computation of the Euclidean algorithm:

r0 = a, u0 = 1, v0 = 0;

r1 = b, u1 = 0, v1 = 1;

and for i ≥ 1

ri+1 = ri−1 − qiri, ui+1 = ui−1 − qiui, vi+1 = vi−1 − qivi.

The sequence halts with i = n so that rn = 0. The sequence (ui, vi, ri), i = 0, 1, · · · , n is called
the Bézout sequence of a and b. We have the following facts on rational approximation of N -adic
numbers using the Euclidean algorithm.

Lemma 1.2.17.

1. r1 > r2 > · · · > rn−1 = gcd(a, b) ≥ 0.

2. For 0 ≤ i ≤ n,
uia+ vib = ri. (1.6)

3. For 0 ≤ i ≤ n− 1,
uivi+1 − ui+1vi = (−1)i. (1.7)
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4. If i is even then ui ≥ 0 and vi ≥ 0. If is odd then ui ≥ 0 and vi ≥ 0.

5. |u1| < |u2| < · · · |un| and |v0| < |v1| < · · · |vn|.

6. For 0 ≤ i ≤ n− 1, |ui+1ri| ≤ b, |vi+1ri| ≤ a, |uiri+1| ≤ b, and |viri+1| ≤ a.

1.2.h Fractions

The field of rational numbers Q is constructed from the ring of integers Z as the set of all fractions
a/b, where we identify a/b with (ax)/(bx) for any nonzero integer x. A similar construction can
be made in great generality. Let R be a commutative ring. A subset S of R is multiplicative if it
is closed under multiplication. If S is any multiplicative subset of R, define the ring S−1R to be
the collection of all formal symbols a/b (where a ∈ R and b ∈ S), under the following equivalence
relation: a/b ∼ a′/b′ if there exists s ∈ S such that

s(ab′ − ba′) = 0. (1.8)

Addition and multiplication of fractions are defined by the usual formulas:

a

b
+
a′

b′
=
ab′ + a′b

bb′
and

a

b

a′

b′
=
aa′

bb′
.

The ring S−1R consists of a single element if 0 ∈ S, so sometimes this case is excluded.
Now suppose that S does not contain any zero divisors (which will always be the case in our

applications). Then equation (1.8) may be replaced by the more familiar equivalence relation:
ab′ = a′b. The natural mapping R → S−1R (which takes a to a/1) is an injection, so S−1R
“contains” R. Every element of S has become invertible in S−1R. If the set S consists of all the
elements that are not zero divisors, then an element of S−1R is either a zero divisor or else it is
invertible. In this case, the ring S−1R is called the (full) ring of fractions of R. If R is an integral
domain then its ring of fractions is a field, which is called the fraction field of R. See for example,
Section 2.4.7, Section 4.2 and Section 4.4.

1.2.i Chinese remainder theorem

If R1 and R2 are rings then their Cartesian product R1 × R2 is a ring under the coordinate-
wise operations of addition and multiplication. The Chinese remainder theorem gives a sufficient
condition under which a ring may be decomposed as a product.

Theorem 1.2.18. Let R be a ring and let I1, · · · , Ik be ideals such that Ii+Ij = R for every i 6= j.
Let

I = ∩kj=1Ij.
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Then for every ai, · · · , ak ∈ R there is an element a ∈ R such that for every i, a ≡ ai (mod Ii).
The element a is unique modulo I. Furthermore,

R/I ∼=
k∏
j=0

R/Ij.

Proof. For k = 1 the statement is trivial. If k = 2, then there are elements b1 ∈ I1 and b2 ∈ I2 so
that 1 = b1 + b2. Let a = a1b2 + a2b1.

Now suppose k > 2. For every i let

Ji =
∏
j 6=i

Ij.

For every i ≥ 2 there are elements ci ∈ I1 and bi ∈ Ii such that 1 = ci + bi. In particular,

k∏
i=2

(ci + bi) = 1.

This product is in I1 + J1, so R = I1 + J1. Similarly, R = Ij + Jj for every j. By the theorem in
the case of two ideals, there is an element dj ∈ R such that dj ≡ 1 (mod Ij) and dj ≡ 0 (mod Jj).
Then a = a1d1 + · · ·+ akdk satisfies our requirements

For each i there is a reduction homomorphism ϕi from R/I to R/Ii. This induces a homomor-
phism ϕ from R/I to

k∏
j=1

R/Ij

whose kernel is

I =
k⋂
j=1

Ij.

Thus ϕ is injective. By the first part it is surjective, hence an isomorphism. This also proves the
uniqueness of a.

Corollary 1.2.19. Suppose R is a PID and b1, · · · , bk ∈ R are pairwise relatively prime. If
a1, · · · , ak ∈ R, then there exists an element a ∈ R such that for every i, a ≡ ai (mod bi).

Proof. By Theorem 1.2.18 it suffices to show that for each i 6= j we have (bi) + (bj) = R. The set
(bi) + (bj) is an ideal. Since R is a PID, there is some b ∈ R so that (bi) + (bj) = (b). This says
that b is a common divisor of bi and bj, so b is a unit by assumption. Thus (bi) + (bj) = R.

By Theorem 1.2.14, Corollary 1.2.19 applies in particular when R is a Euclidean domain. The
case when R = Z is the classical Chinese Remainder Theorem.

27



1.2.j Vector spaces

In many settings we have a notion of one algebraic object “acting on” another by multiplication.
For example, a real number r acts on the set of points in the plane by (x, y) 7→ (rx, ry).

Definition 1.2.20. A vector space over a field F is a set V such that V is an Abelian group with
an operation +, and there is a function · from F × V to V such that for all a, b ∈ F and u, v ∈ V

1. a · (u+ v) = (a · u) + (a · v);
2. (ab) · u = a · (b · u);
3. (a+ b) · u = (a · u) + (b · u); and
4. 1 · u = u.

It follows from these axioms that for every u ∈ V , 0 · u = 0.
For example, the set of points in the real plane is a vector space over the real numbers. If F is a

field which is a subring of a ring R, then R is a vector space over F (just use the multiplication in
R for the action of F on R). If F is a field and S is a nonempty set, then the set of functions from
S to F is a vector space over F with the operations (f+g)(x) = f(x)+g(x) and (a ·f)(x) = af(x)
for a ∈ F , x ∈ S, and f, g : S → F . Various restrictions can be put on the functions to produce
interesting vector spaces (e.g., continuity if S = F = R).

Let V be a vector space over a field F . The elements of V are called vectors. A linear
combination of vectors v1, v2, · · · , vk ∈ V is a vector a1v1 +a2v2 + · · ·+akvk with a1, a2, · · · , ak ∈ F .
A set of vectors S ⊆ V is linearly independent if the only linear combination of elements of S
that is zero is the one with all the coefficients ai equal to zero. S spans V if every vector can be
written as a linear combination of elements of S. S is a basis for V if it spans V and is linearly
independent. The proof of the following is an exercise.

Theorem 1.2.21. Let V be a vector space over a field F . If V has more than one element then
it has a nonempty basis. If S is a basis, then every vector can be written uniquely as a linear
combination of elements of S.

If V has a basis S with a finite number of elements, then we say V is finite dimensional with
dimension = |S|. In this case it can be shown that every basis has the same number of elements.
In the important case when F is a subfield of a field E, E is called an extension field. If E is finite
dimensional as a vector space over F , then its dimension is called the degree of the extension and
is denoted [E : F ].

Theorem 1.2.22. If F is a finite field and V is a finite dimensional vector space over F with
dimension d, then |V | = |F |d.
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Proof. Let S be a basis for V . Thus |S| = d. That is S = {v1, v2, · · · , vd} for some v1, v2, · · · , vd.
By the previous theorem, the elements of V are in one-to-one correspondence with the linear
combinations

∑d
i=1 aivi, ai ∈ F . There are exactly |F |d such linear combinations.

Definition 1.2.23. If F is a field and V and W are vector spaces over F , then a function
L : V → W is a homomorphism or is F -linear if it is a group homomorphism and for all a ∈ F
and v ∈ V we have L(av) = aL(v).

If S = {v1, v2, · · · , vd} is a basis for V , then an F -linear function L is completely determined
by its values on the elements of S since

L

(
d∑
i=1

aivi

)
=

d∑
i=1

aiL(vi).

On the other hand, any choice of values for the L(vi) determines an F -linear function L. Further-
more, if T = {w1, w2, · · · , we} is a basis for W , then each value L(vi) can be expressed as a linear
combination

L(vi) =
e∑
j=1

bijwj

with bij ∈ F .

Theorem 1.2.24. If F is finite and V and W are finite dimensional with dimensions d and e,
respectively, then there are |F |de F -linear functions from V to W .

The image and kernel of L are Abelian groups, and it is straightforward to check that they are
also vector spaces over F . Their dimensions are called the rank and co-rank of L, respectively. We
leave it as an exercise to show that the rank plus the co-rank equals the dimension of V .

We can identify an element
∑

i aivi ∈ V with the column vector (a1, · · · , ad)t (where the
superscript t denotes the transpose of a matrix), and similarly for an element of W . Then the
linear function L is identified with ordinary matrix multiplication by the matrix B = [bij]. The
rank of L is the size of a maximal set of independent columns or independent rows of B.

If B is a square matrix, then the determinant of B is defined as usual in linear algebra. In this
case the kernel is nonempty if and only if the determinant is zero.

If V and W are vector spaces over a field F , then the set of F -linear homomorphisms from V to
W is denoted HomF(V,W). It is again a vector space over F with F acting by (a ·L)(v) = L(av).
By Theorem 1.2.24, if V and W are finite dimensional then the dimension of HomF(V,W) is the
product of the dimensions of V and W .

In the special case when W = F , the dimension of HomF(V,F) is the same as that of V , so
HomF(V,F) and are isomorphic as vector spaces over F (but not canonically – an isomorphism
depends on a choice of bases). HomF(V,F) is called the dual space of V .
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1.2.k Modules and lattices

The notion of a vector space over a field can be generalized to rings.

Definition 1.2.25. Let (R,+, ·, 0, 1) be a commutative ring. A module over R is an Abelian group
(M,+, 0M) with an operation · from R×M to M such that for all a, b ∈ R and u, v ∈M

1. a · (u+ v) = (a · u) + (a · v);
2. (ab) · u = a · (b · u);
3. (a+ b) · u = (a · u) + (b · u); and
4. 1 · u = u.

Again, it follows from these axioms that for every u ∈ V , 0 · u = 0.
For example, every Abelian group is a module over the integers (if n ∈ Z+, then n · a equals

the sum of n copies of a). If f is a homomorphism from a ring R to a ring S, then S is a module
over R with the operation a · u = f(a)u.

It is apparent that the notion of basis does not make sense for modules in general – even a
single element of a module may not be linearly independent. However, if there is a finite set of
elements m1, · · · ,mk ∈ M such that every element of M can be written (perhaps not uniquely)
as a linear combination a1m1 + · · · + akmk with a1, · · · , ak ∈ R, then we say that M is finitely
generated over R. If M is finitely generated, then the size of the smallest set of generators for M
over R is called the R-rank or simply the rank of M .

A module M over a ring R is free if M is isomorphic to the Cartesian product of a finite number
of copies of R. That is, M is free if there are elements m1, · · · ,mk ∈ M such that every element
m ∈M can be represented uniquely in the form

m =
k∑
i=1

cimi, ci ∈ R.

In this case the set m1, · · · ,mk is called a basis of M over R.

Definition 1.2.26. A lattice L is the set of integer linear combinations of a collection U =
{u1, · · · , uk} of R-linearly independent vectors in Rn. The set U is called a basis for L. The
lattice L is full if k = n, which we now assume. Then MU is defined to be the matrix whose
rows are u1, u2, · · · , un. The volume of the parallelepiped spanned by these vectors is denoted DU =
| det(MU)|, and it is referred to as the volume of the lattice L, or the determinant of L.

It is immediate that a lattice is a free Z-module. A basis for a full lattice L is also a basis for
Rn. A full 2-dimensional lattice with basis (5, 1), (3, 4) is shown in Figure 1.2.k. The following
theorem says that vol(L) is well-defined and it gives a way to tell when a collection of vectors
forms a basis of a given lattice.
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Figure 1.2: A lattice with basis (5, 1), (3, 4)

Theorem 1.2.27. Let L be a full lattice in Rn. Then vol(L) is independent of the choice of basis.
If V = {v1, · · · , vn} ⊂ L is any linearly independent set of vectors in L, then DV 6= 0 and it is an
integral multiple of vol(L). Moreover, DV = vol(L) if and only if V is a basis of L.

Proof. Let U = {u1, · · · , un} be a basis of L. Then each vi can be written as an integer linear
combination of the uj. This gives a matrix S with integer entries such that MV = SMU . The
determinant of S is an integer so DV = | det(S)|DU is an integral multiple of DU . If V is also
a basis of L then we similarly obtain a matrix T with integer entries such that MU = TMV .
This implies TS = I so the determinants of S and T are integers with integer inverses, hence
| det(S)| = 1 and DU = DV . This proves the first two statements.

For the last statement, suppose U ⊂ L and V ⊂ L are collections of n linearly independent
vectors, suppose U is a basis of L, and suppose DV = DU . We claim that V is also a basis of
L. As above, write V = SU where S is a matrix of integers. Then det(V ) = det(S) det(U) so
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det(S) = ±1. By Cramer’s rule, the inverse of S consists of rational numbers whose denominators
are det(S), so S−1 also has integer entries. Hence, the equation U = S−1V expresses the ui as
integer linear combinations of the vj, so V is also a basis for L.

The proof of the following fact about lattice bases may be found in [3] Lemma 1, Section 2.6.

Theorem 1.2.28. Let L ⊂ K ⊂ Rn be full lattices. Then K/L is a finite Abelian group. Let
u1, · · · , un and v1, · · · , vn be bases of L and K respectively. Each ui is an integer linear combination
of the vectors vi, say, ui = Ai1v1 + · · ·+Ainvn. Then the matrix A = (Aij) has integer entries and
|K/L| = | det(A)|.

In a lattice, linear dependence over R implies linear dependence over Z.

Lemma 1.2.29. Let u1, · · · , uk be a set of vectors in Rn that is linearly independent over R. Let
v be a vector in the Z-span of u1, · · · , uk and suppose that v is in the R-span of u1, · · · , u` with
` ≤ k. Then v is in the Z-span of u1, · · · , u`

Proof. Write v = a1u1 + · · · + akuk with each ai ∈ Z, and v = b1u1 + · · · + b`u` with each bi ∈ R.
By the uniqueness of the representation of a vector as a linear combination of a set of linearly
independent vectors over a field, we have a1 = b1, a2 = b2, · · · , a` = b` and a`+1 = · · · = ak = 0.

For any positive real number r, let Br(x) ⊂ Rn denote the (closed) ball of radius r, centered
at x ∈ Rn. A subset L ⊂ Rn is discrete if for every x, r the set Br(x) ∩ L is finite.

Theorem 1.2.30. Every lattice L ∈ Rn is discrete.

Proof. Any lattice is contained in a full lattice, so we may assume L is full, say with basis u1, · · · , un.
Define f : Rn → Rn by f(a1u1 + · · · + anun) = (a1, a2, · · · , an). Then f maps the lattice L
isomorphically to the standard lattice Zn ⊂ Rn consisting of vectors with integer coordinates. For
any x, r the image f(Br(x)) is compact, hence closed and bounded, so it is contained in some
n-cube with integer vertices and with edges of some (possibly very large) integer length, D. Such
a cube contains (D+ 1)n integer vertices. Therefore Br(x) contains no more than (D+ 1)n lattice
points in L.

We leave as an exercise the proof that every discrete Z-module in Rn is a lattice. This provides
an alternate characterization of lattices that is sometimes used in the literature as definition.
Although we will not need to use it, we state for completeness the following theorem of Minkowski,

Theorem 1.2.31. Let L ⊂ Rn be a full lattice and let X ⊂ Rn be a bounded convex subset that is
centrally symmetric. If vol(X) > 2nvol(L) then X contains a nonzero element of L.
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Sometimes a module M over a ring R has the structure of a commutative ring. If the function
a 7→ a · 1M is a ring homomorphism, then we say that M is a (commutative) S-algebra. For
example, every commutative ring is a Z-algebra. If R is a subring of a ring R′, then R′ is an
R-algebra. If R is commutative ring and S is a multiplicative set in R, then S−1R is an R-algebra.
More generally, if I is an ideal of R and R/I is a subring of a ring R′, then R′ is an R-algebra.

1.2.l Inverse limits

The notions of directed system and inverse limit provide a powerful mechanism for studying infinite
sequences.

Definition 1.2.32. Let R be a ring and let (P,≺) be a partially ordered set. A directed system
of modules over R indexed by P is a set of modules {Mr : r ∈ P} and, for each pair p, q ∈ P with
p ≺ q, a homomorphism µq,p : Mq →Mp. If p ≺ q ≺ r, then we must have µr,p = µq,p◦µr,q.

If {Mr : r ∈ P} is a directed system of modules over R indexed by P , then let the inverse limit
of the system be

lim
←−

Mr = lim
←−
{Mr : r ∈ P} =

{
z ∈

∏
r∈P

Mr : if p ≺ q, then µq,p(zq) = zp

}
.

Here zp denotes the pth component of z ∈
∏

r∈P Mr.

Theorem 1.2.33. The set lim
←−

Mr is a module. For each q ∈ P there is a homomorphism

ϕq : lim
←−

Mr →Mp

so that ϕp = µq,p◦ϕq whenever p ≺ q.
That is, the following diagram commutes.

Mp Mq�

µq,p

��
����

ϕp HH
HHHj

ϕq

lim
←−

Mr

If N is any R-module and {τp : p ∈ P} is a set of homomorphisms such that τp = µq,p◦τq whenever
p ≺ q, then there is a unique homomorphism τ : N → lim

←−
Mr so that τp = ϕp◦τ . That is, the

following diagram can be completed to a commutative diagram.
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Mp Mq�
µq,p

lim
←−

Mr

?

ϕp

HHH
HHH

HHH
HHj

ϕq

N

6

τp

�
��

�
��

�
��

��*

τq

�

�-

τ

If also the Mp’s are R-algebras and the homomorphisms µq,p are R-algebra homomorphisms, then
lim
←−

Mr is an R-algebra

Proof. Any Cartesian product
∏

r∈P Mr of R-modules is an R-module, and lim
←−

Mr is a subset

that is closed under addition and scalar multiplication, so is also an R-module. The function ϕp is
simply the restriction of the projection on Mp to lim

←−
Mr. The commutativity of the first diagram

follows from the constraint on the elements of lim
←−

Mr.

If N and {τp} are as in the second condition and a ∈ N , then we define τ(a) to be the element
of
∏

r∈P Mr whose rth component is τr(a). That τ(a) ∈ lim
←−

Mr follows from the commutativity

of the τr and the µq,p. It is immediate that the second diagram commutes and that τ is unique.

The extension to R-algebras is straightforward.

In the language of category theory, lim
←−

Mr is a universal object for the directed system {Mr :

r ∈ P}. This theorem often allows simple proofs that certain rings defined by different infinite
constructions are isomorphic.

1.3 Characters and Fourier transforms

The Fourier transform can be defined in tremendous generality. In this section we describe the
main properties of the Fourier transform for finite Abelian groups.
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1.3.a Basic properties of characters

Definition 1.3.1. A (complex) character of an Abelian group G is a group homomorphism from
G to the multiplicative group C× = C − {0} of the complex numbers. That is, it is a function
χ : G → C such that χ(a + b) = χ(a)χ(b) for all a, b ∈ G. Such a character is nontrivial if
χ(a) 6= 1 for some a. The trivial character is denoted 1, and the collection of all characters of G

is denoted Ĝ.

The group operation in an Abelian group is usually denoted “+”, and this can lead to some
confusion since a character takes values in a multiplicative group. In particular, if χ is a character
of G then χ(mg) = χ(g)m (for any integer m), and χ(0) = 1. For example, if G = Z/(2) then
there is a unique nontrivial character χ and it converts {0, 1} sequences into {±1} sequences. If
G is a finite Abelian group then |χ(g)| = 1 for all g ∈ G (since χ(g)|G| = 1) so χ takes values in
the set µ|G| of roots of unity. It follows that χ(−g) = χ(g) (complex conjugate) for all g ∈ G.

The set of characters Ĝ of a group G is itself a group with group operation defined by

(χ1 · χ2)(a) = χ1(a)χ2(a)

and with the trivial character as identity. If G = Z/(N) is the additive group of integers modulo

N then the group Ĝ of characters is also cyclic and is generated by the primitive character χ(k) =

e2πik/N for k ∈ Z/(N). If G = G1×G2 is a product of two groups then Ĝ = Ĝ1× Ĝ2. Specifically,
if χ is a character of G then there are unique characters χ1, χ2 of G1, G2 (respectively) such that
χ(g1, g2) = χ1(g1)χ2(g2), namely χ1(g1) = χ(g1, 1) and χ2(g2) = χ(1, g2) (for any g1 ∈ G1 and
g2 ∈ G2). From this, together with the fundamental theorem for finite Abelian groups 1.1.16, it

follows that the collection Ĝ of characters of a finite Abelian group G is itself a finite Abelian
group which is isomorphic to G. (The corresponding statement for infinite Abelian groups is false:
for example, any nonzero x ∈ C defines a character of the integers Z by setting χ(m) = xm.)

Proposition 1.3.2. Let G be a finite Abelian group, let χ : G→ C× be a character, and let g ∈ G.
Then ∑

h∈G

χ(h) =

{
0 if χ 6= 1
|G| if χ = 1

(1.9)

and ∑
ψ∈Ĝ

ψ(g) =

{
0 if g 6= 0
|G| if g = 0.

(1.10)

Proof. If χ is nontrivial, there exists a ∈ G with χ(a) 6= 1. Then

χ(a)
∑
h∈G

χ(h) =
∑
h∈G

χ(ah) =
∑
h′∈G

χ(h′)
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so
(1− χ(a))

∑
h∈G

χ(g) = 0.

For the second statement, note that g determines a character ψg of Ĝ by the equation ψg(χ) = χ(g).
This character is nontrivial precisely when g 6= 0. In this case, the sum is

∑
χ∈Ĝ ψg(χ), which is

zero by the first part of the lemma.

Corollary 1.3.3. If G is a finite Abelian group and if g, h ∈ G with g 6= h, then there exists a
character χ such that χ(g) 6= χ(h).

Proof. If χ(g − h) = 1 for every χ ∈ Ĝ, then summing over all characters gives |G|. By equation
(1.10) we conclude that g − h = 0.

Corollary 1.3.4. (Orthogonality relations) If G is a finite Abelian group and if ψ, χ ∈ Ĝ are
distinct characters then ∑

g∈G

ψ(g)χ(g) = 0. (1.11)

If g, h ∈ G are distinct elements then ∑
χ∈Ĝ

χ(g)χ(h) = 0. (1.12)

Proof. The first equation follows by applying Proposition 1.3.2 to the character ψχ−1. The second
equation is

∑
χ χ(g − h) = 0, also by Proposition 1.3.2.

1.3.b Fourier transform

Let G be a finite Abelian group and f : G→ C be a function. Its Fourier transform f̂ : Ĝ→ C is
defined by

f̂(χ) =
∑
g∈G

χ(g)f(g).

There are three standard properties of the Fourier tranform. First, the inversion formula

f(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g) (1.13)

expresses an arbitrary function f as a linear combination of characters, so in particular, the char-
acters span the group C[G] of complex-valued functions on G. Equation (1.13) follows immediately
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from the orthogonality relation for characters, for the sum on the right hand side is

1

|G|
∑
χ∈Ĝ

∑
h∈G

f(h)χ(h)χ(g) =
1

|G|
∑
h∈G

f(h)
∑
χ∈Ĝ

χ(h− g) = f(g)

by equation (1.10). Second, the convolution formula

f̂ · ĥ = f̂ ∗ h (1.14)

expresses the product of f̂ , ĥ as the Fourier transform of the convolution

(f ∗ h)(y) =
∑
g∈G

f(g)h(y − g).

Finally, Parseval’s formula says that for any function f : G→ C,

|G|
∑
g∈G

|f(g)|2 =
∑
χ∈Ĝ

|f̂(χ)|2. (1.15)

To see this, multiply f̂(χ) =
∑

g χ(g)f(g) by its complex

conjugate,
∑

h χ(h)f(h) to get∑
χ

|f̂(χ)|2 =
∑
χ

∑
g

∑
h

f(g)f(h)χ(g)χ(h) =
∑
g,h

f(g)f(h)
∑
χ

χ(g)χ(h).

The inner sum vanishes unless g = h, which leaves |G|
∑

g f(g)f(g) as claimed.
If G ∼= Z/(N) is a cyclic group then a choice ζ ∈ C of primitive N -th root of unity determines

an isomorphism G ∼= Ĝ which takes 1 to the character χ1 with χ1(k) = ζk. The other nontrivial
characters χm are powers of this: χm(k) = ζmk. If f : G→ C is a function, its Fourier transform

f̂ may be considered as a function f̂ : G→ C by writing f̂(m) rather than f̂(χm). Thus

f̂(m) =
N−1∑
k=0

ζmkf(k). (1.16)

Finally we remark that throughout this section, it is possible to replace the complex numbers
C with any field K, provided K contains |G| distinct solutions to the equation x|G| = 1. No

changes to any of the proofs are needed; see Section 2.2.h. The resulting function f̂ is defined on
all K-valued characters χ : G → K×. If K is a finite field then f̂ is called the discrete Fourier
transform.

A generalized discrete Fourier transform is applicable when x|G| − 1 has repeated roots in K.
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1.4 Polynomials

In this section we describe some of the basic properties of the ring of polynomials. The polynomial
ring is among the most fundamental algebraic constructions. It is needed for much of the analysis
of shift register sequences.

1.4.a Polynomials over a ring

Throughout this section R denotes a commutative ring. A polynomial over R is an expression

f = f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d =
d∑
i=0

aix
i

where a0, a1, · · · , ad ∈ R and x is an indeterminate. The ai are called the coefficients of R. When
writing polynomials we may omit terms whose coefficients equal zero. We may also write the terms
in a different order. If ad 6= 0, then we say that f(x) has degree d = deg(f(x)). In this case ad
is called the leading coefficient of f(x). We say deg(0) = −∞. If deg(f(x)) = 0 then f(x) is a
constant polynomial. If ad = 1 then f(x) is monic. The term a0 is called the constant term. The
value of f(x) at an element b ∈ R is f(a) =

∑d
i=0 aib

i. An element a ∈ R is a root of f(x) if
f(a) = 0. If g(x) =

∑e
i=0 bix

i is a second polynomial over R, then we define

(f + g)(x) = f(x) + g(x) =

max(d,e)∑
i=0

(ai + bi)x
i

(where we may have to extend one of the polynomials with zero coefficients so that this makes
sense) and

(fg)(x) = f(x)g(x) =
d+e∑
i=0

 min(d,i)∑
j=max(0,i−e)

ajbi−j

xi.

The set of polynomials over R is denoted R[x]. The operations of addition and multiplication
make R[x] into a ring whose zero is the polynomial with every ai = 0, and whose identity is the
polynomial with a0 = 1 and ai = 0 for i ≥ 1. The proof of the following lemma is straightforward.

Lemma 1.4.1. If f(x), g(x) ∈ R[x], then deg(f + g) ≤ max(deg(f), deg(g)) with equality if
deg(f) 6= deg(g). Also, deg(fg) ≤ deg(f) + deg(g), and equality can fail only when the product of
the leading coefficients of f and g equals zero. In particular, if R is an integral domain then so is
R[x].
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If R is an integral domain, then the units in R[x] are exactly the polynomials with degree zero
and whose constant terms are units of R. This is false in general. For example, if R = Z/(4), then
(1 + 2x)2 = 1, so 1 + 2x is a unit with degree one. The following result says that sometimes we
can perform division with remainder in R[x].

Theorem 1.4.2. (Division Theorem for polynomials)
Let f(x), g(x) ∈ R[x]. Suppose the leading coefficient of g is a unit in R. Then there exist

unique polynomials q, r ∈ R[x] such that deg(r) < deg(g) and

f(x) = q(x)g(x) + r(x).

Proof. By induction on the degree d of f . If deg(f) < deg(g), take q = 0 and r = f . Otherwise,
suppose f has leading coefficient ad. Suppose g has degree e ≤ d and leading coefficient be. Then
we have f(x) = adb

−1
e xd−eg(x) + f ′(x) for some polynomial f ′. The degree of f ′ is less than the

degree of f , so by induction we have f ′ = q′g + r. It follows that f = (adb
−1
e + q′)xd−eg + r. For

uniqueness, suppose f = q1g+r1 = q2g+r2 with deg(ri) < deg(g). Then 0 = (q1− q2)g+(r1−r2).
The leading coefficient of g is invertible, and deg(r1 − r2) < deg(g). It follows that the leading
coefficient of q1 − q2 is zero, that is, q1 − q2 = 0. Therefore r1 − r2 = 0.

Corollary 1.4.3. If R is a field then R[x] is a Euclidean domain with δ(f) = deg(f).

Theorem 1.4.4. If a is a root of f(x) ∈ R[x], then there exists a polynomial q(x) ∈ R[x] such
that

f(x) = (x− a)q(x).

If R is an integral domain, then the number of distinct roots of f is no more than the degree of f
(but see exercise 16).

Proof. Use the division theorem (Theorem 1.4.2) with g = x−a. The remainder r has degree zero
but has a as a root. Thus r is zero. If R is an integral domain and if b 6= a is another root of f(x)
then b is necessarily a root of q(x). So the second statement follows by induction.

The following theorem completes the proof of Theorem 1.2.14.

Theorem 1.4.5. Suppose R is a GCD ring and a factorization domain. Then R[x] is a factor-
ization domain.

Proof. We claim that every f ∈ R[x] can be factored into a product of irreducibles. First we show
that every f ∈ R[x] has an irreducible divisor. Suppose not, and let d be the smallest degree of
an element f ∈ R[x] that has no irreducible divisor. Since R is a factorization domain, d > 0.
Moreover, f is reducible. That is, f = gh with neither g nor h a unit. The elements g and h
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have no irreducible divisors since such a divisor would be a divisor of f as well. In particular,
deg(h) > 0. But then deg(g) < deg(f) since R is an integral domain and this contradicts the
minimality of deg(f).

Now let f be any element in R[x]. We already know that if f has degree zero, then it has
an irreducible factorization, so let f have positive degree. Let a be the greatest common divisor
of the coefficients of f and let g = f/a. If g has an irreducible factorization, then we obtain
an irreducible factorization of f by multiplying those of g and a. Thus we may assume that the
greatest common divisor of the coefficients of f is 1.

Now we use induction on the degree of f . If f has degree 1, then it is irreducible since no
non-unit of R divides f other than an associate of f . If f has degree greater than 1, then by the
first paragraph of this proof f has an irreducible divisor h. But h has positive degree so f/h has
degree less than deg(f). By induction f/h has an irreducible factorization. Multiplying this by h
gives an irreducible factorization of f .

A root a of polynomial f is said to be simple if a is not a root of f(x)/(x− a).

Lemma 1.4.6. Let q =
∑m

i=0 qix
i ∈ R[x] be a polynomial with coefficients in R. Consider the

following statements

1. q0 is invertible in R.
2. The polynomial x is invertible in the quotient ring R[x]/(q).
3. The polynomials q(x) and x are relatively prime in the ring R[x].
4. There exists an integer T > 0 such that q(x) is a factor of xT − 1.
5. There exists an integer T > 0 such that xT = 1 in the ring R[x]/(q).

Then statements (1), (2), and (3) are equivalent and if they hold, then

x−1 = −q−1
0 (q1 + q2x+ · · ·+ qmx

m−1)

in R[x]/(q). Statements (4) and (5) are equivalent (and the same T works for both) and x−1 = xT−1

in R[x]/(q). Statement (4) (or (5)) implies (1), (2), and (3). If R is finite then (1) (or (2) or
(3)) implies (4),(5).

Proof. The statements are all straightforward except (possibly) the last one. Suppose that R is
finite. Then the quotient ring R[x]/(q) also contains finitely many elements so the powers {xn} of
x in this ring cannot all be different. Hence there exists T such that xn+T ≡ xn (mod q) for all
sufficiently large n. Under assumption (2) this implies that xT ≡ 1 (mod q). In other words, q
divides the polynomial xT − 1, as claimed.

When condition (4) (or (5)) in Lemma 1.4.6 holds, the smallest T such that q(x)|(xT − 1)
is called the order of the polynomial q. This is admittedly confusing terminology since, in the
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language of group theory, the order of the polynomial q is the order of x in the group (R[x]/(q))×.
If condition (4) does not hold, then one may say that q does not have an order, or that its order
is infinite. (For example, if R = Q the polynomial q(x) = x− 2 has infinite order.)

The following theorem will be useful when we discuss roots of unity.

Theorem 1.4.7. Let a and b be positive integers. Then over any ring R the polynomial xa − 1
divides xb − 1 if and only if a divides b.

Proof. By the Division Theorem for integers, we can write b = qa+ r with 0 ≤ r < a. Then

xb − 1 = (xb−a + xb−2a + · · ·+ xr)(xa − 1) + xr − 1.

Sine deg(xr − 1) < deg(xa− 1), it follows that xa− 1 divides xb− 1 if and only if xr − 1 = 0. This
holds if and only if r = 0, hence if and only if a divides b.

1.4.b Polynomials over a field

Theorem 1.4.8. If F is a field, then F [x] is Euclidean with δ(f) = deg(f). Every ideal in F [x]
has a unique monic principal generator. Any f(x) ∈ F [x] can be written in the form

f(x) = ape11 p
e2
2 · · · p

ek
k

where a ∈ F , the pi are distinct monic irreducible elements of F [x], and the ei are positive integers.
This representation is unique apart from changing the order of the pi.

Proof. It follows from Theorem 1.4.2 that F [x] is Euclidean. It is also principal and is a UFD by
Theorem 1.2.14. Each irreducible polynomial has a unique monic associate (divide by the leading
coefficient). This accounts uniquely for a.

It also follows from Theorem 1.2.14 that F [x] is a GCD ring, but to be precise we have the
following theorem.

Theorem 1.4.9. Let F be a field and f1, · · · , fk ∈ F [x], not all zero. There is a unique monic
g ∈ F [x] such that (1) g divides every fi and (2) if h divides every fi then h also divides g.
Moreover, g can be written in the form

g = h1f1 + h2f2 + · · ·+ hkfk (1.17)

for some h1, h2, · · · , hk ∈ F [x].

Proof. Let I = {h1f1 + h2f2 + · · · + hkfk : h1, h2, · · · , hk ∈ F [x]}. Then I is an ideal in F [x], so
by Theorem 1.4.8, I has a unique monic generator g. Since g ∈ I, g can be written in the form in
equation (1.17). It follows that any h that divides every fi also divides g. Since fi ∈ I, g divides
fi.
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We write g = gcd(f1, · · · , fk). It can be found by the usual Euclidean algorithm by repeatedly
using Theorem 1.4.2. There is also a notion of least common multiple in F [x]. The following
theorem later allows us to construct finite fields of all possible sizes. The proof is omitted.

Theorem 1.4.10. If F is a finite field and d is a positive integer, then there is at least one
irreducible polynomial of degree d in F [x].

If F ⊆ E are fields and if a ∈ E is an element that is the root of some polynomial with
coefficients in F , then we say a is algebraic over F . A polynomial f ∈ F [x] is called a minimal
polynomial of a (over F ) if it is monic, if f(a) = 0 and if it is a polynomial of smallest degree with
these properties.

Theorem 1.4.11. Suppose a is algebraic over F . Then it has a unique minimal polynomial
f ∈ F [x]. The minimal polynomial f is also the unique monic irreducible polynomial in F [x]
having a as a root. If g ∈ F [x] is any other polynomial such that g(a) = 0 then f divides g in
F [x].

Proof. If two monic polynomials f, g ∈ F [x] have the same (minimal) degree and both have a as
a root then f − g has smaller degree, which is a contradiction. If f is a minimal polynomial of a
and f = gh, then 0 = f(a) = g(a)h(a) so g(a) = 0 or h(a) = 0. By the minimality of f , whichever
factor has a as a root must have the same degree as f , so f is irreducible.

Now suppose f is a monic irreducible polynomial such that f(a) = 0. The set

J = {h ∈ F [x] : h(a) = 0}

is an ideal, so it is principal. It contains f , but f is irreducible, so J = (f) is the ideal generated
by f , and f is the unique monic polynomial with this property. If g(a) = 0 then g ∈ J so g is a
multiple of f . In particular, f is the minimal polynomial of a.

More generally, we can think consider the “operator” on rings that takes a ring R to the
polynomial ring R[x]. Strictly speaking this is not a function since there is no set of all rings.
Rather, it is a (covariant) functor on the category of rings. We shall not, however pursue these
notions in this book.

1.5 Exercises

1. Prove that if G1 and G2 are groups, then the direct product G1 × G2 is a group. Prove that
G1 ×G2 is Abelian if G1 and G2 are Abelian.

2. Describe the set of all subgroups of the group Z/mZ.
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3. Let ϕ : G → H be a group homomorphism. Prove that Ker(ϕ) is a subgroup of G and Im(ϕ)
is a subgroup of H.

4. Let G be a group and let H be a subgroup of G. Prove that the relation defined by a ∼ b
if there is an h ∈ H such that b = ah is an equivalence relation. Find an example where the
definition aHbH = abH does not make the set of equivalence classes into a group.

5. Prove that a subgroup H of a group G is normal if and only if for every a ∈ G and h ∈ H, we
have aha−1 ∈ H.

6. Theorem 1.1.15: Let ϕ : G→ G′ be a homomorphism.

a. Prove that Ker(ϕ) is normal in G.
b. Prove that the quotient G/Ker(ϕ) is isomorphic to Im(ϕ).
c. Conversely, prove that if H is a normal subgroup of G, then the map a 7→ aH is a surjection

from G to G/H with kernel equal to H.

7. Show that the set of endomorphisms of an Abelian group is a ring.

8. Theorem 1.2.7:

a. Suppose ϕ : R → S is a ring homomorphism. Prove that Ker(ϕ) is an ideal of R and ϕ
induces an isomorphism between R/Ker(ϕ) and the image of f .

b. Prove that if I is an ideal of R, then the map a 7→ a + I is a homomorphism from R onto
R/I with kernel I.

9. Prove that a GCD ring with no infinite chain of proper ascending ideals is also a LCM (least
common multiple) ring.

10. Let {Rs : s ∈ S} be a family of rings. Prove that RS is the unique (up to isomorphism)
ring such that if T is any ring and ψs : T → Rs any set of homomorphisms, then there is a
homomorphism g : T → RS such that ψs = ϕs◦g for every s ∈ S.

11. Prove that if V is a vector space over a field F , then for every u ∈ V we have 0 · u = 0.

12. Theorem 1.2.21:

a. Prove that every vector space has a basis. (Hint: use Zorn’s Lemma.)
b. Prove that if S is a basis for a vector space V , then every vector can be written uniquely as

a linear combination of elements of S.

13. Prove by induction on the dimension that every discrete Z-module in Rn is a lattice.
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14. Let f(x) = a0 + a1x + · · · + adx
d ∈ C[x] be a polynomial and let F : Z → C be the function

F (i) = ai (and F (i) = 0 if i < 0 or i > d). Let g(x) = b0 + b1x + · · · + bex
e and let G : Z → C

be the corresponding function. Show that the product f(x)g(x) polynomial corresponds to the
convolution F ∗G.

15. Develop a theory of characters as functions with values in an arbitrary field F rather than C.
For certain parts you will need to assume that F contains the n-th roots of unity.

16. Let R = Z × Z. Let f(x) = (1, 0)x − (1, 0) ∈ R[x]. Show that f has infinitely many roots in
the ring R.

44



Chapter 2 Fields

Fields are rings where every nonzero element is a unit. Many sequence generators can be viewed
as implementing multiplication by a fixed element in a ring. Since finite fields have cyclic groups
of units, they provide a source of large period sequence generators. In Section 2.1 we describe the
Galois theory of field extensions. In Sections 2.2 and 2.4 we study in some detail two important
classes of fields – finite fields, which give us a way to make algebraic constructions with finite
alphabets, and algebraic number fields, which generalize the field of rational numbers. In Section
2.5 we describe local fields. These are fields that are complete with respect to a notion of convergent
sequences. Elements of these fields can sometimes be viewed as infinite sequences over some
alphabet. We also study quadratic forms, which are the source of several important constructions
of sequences with good correlation properties (see Section 2.3).

2.1 Field extensions

In this section we summarize (without proofs) some standard facts about field extensions.

2.1.a Galois group

If F is a field and E is a ring, then the kernel of any nonzero homomorphism F → E is the
zero ideal (the only proper ideal), so every homomorphism is an injection. We say that E is an
extension of F . Elements of E can then be added and multiplied by elements of F so E becomes
a vector space over F . The dimension of E as a vector space over F is called the degree or the
dimension of the extension.

A field R is algebraically closed if every polynomial p(x) ∈ F [x] factors completely, p(x) =
k(x− a1)(x− a2) · · · (x− an) where deg(p) = n and where k, ai ∈ F . Every field F is contained in
an algebraically closed field F of finite degree over F , called an algebraic closure of F .

If G is a subgroup of the group of automorphisms of a field E, then the set of elements in E
that are fixed by every automorphism in G (that is, σ(a) = a for every a ∈ E and every σ ∈ G) is
denoted EG. It is necessarily a field since it is closed under addition, multiplication, and inverse.
If F ⊂ E are fields then the group AutF (E) of automorphisms of E which fix each element of F is
the Galois group of E over F and it is denoted by Gal(E/F ). If G = Gal(E/F ), then F ⊆ EG. If
in fact F = EG, then we say that E is a Galois extension of F . The discovery of Galois extensions
by Evariste Galois was a turning point in the understanding of the nature of algebraic equations
and triggered a great transformation in the way mathematics was done.
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If F ⊂ E is a finite extension of fields and if F is an algebraic closure of F then there are finitely
many embeddings h1, · · · , hn : E → F . If E is a Galois extension of F then these embeddings all
have the same image. In this case, a choice of one embedding (say, h1) determines a one to one
correspondence hi ↔ σi with elements of the Galois group Gal(E/F ) by hi(x) = h1(σi(x)).

Proposition 2.1.1. Let F ⊂ E be a finite extension and let T : E → F be a nonzero F -linear
map. Then for any F -linear map f : E → F there exists a unique element a ∈ E such that
f(x) = T (ax) for all x ∈ E.

Proof. The field E has the structure of a vector space over F , of some finite dimension, say, n.
Then HomF(E,F) is the dual vector space and it also has dimension n. Each a ∈ E gives an
element fa ∈ HomF(E,F) by fa(x) = T (ax) which is also nonzero unless a = 0. So the association
a 7→ fa gives a mapping E → HomF(E,F) which is a homomorphism of n dimensional vector
spaces, whose kernel is 0. Therefore it is an isomorphism.

2.1.b Trace and norm

Let E be an extension of degree n <∞ of a field F . Choose a basis e1, e2, · · · , en of E as a vector
space over F . Each a ∈ E defines a mapping La : E → E by La(x) = ax. This mapping is
E-linear, hence also F -linear, so it can be expressed as an n × n matrix Ma with respect to the
chosen basis. If a 6= 0 then the matrix Ma is invertible. The trace, TrEF (a) and norm NEF (a) are
defined to be the trace and determinant (respectively) of the matrix Ma. It is common to write
Tr(a) = TrEF (a) and N(a) = NEF (a) if the fields E and F are understood.

Theorem 2.1.2. Let F ⊂ E be a finite extension of fields.

1. For all a, b ∈ E and c ∈ F we have Tr(a + b) = Tr(a) + Tr(b) and Tr(ca) = cTr(a). That is,
Tr is F -linear.

2. For all a, b ∈ E we have N(ab) = N(a)N(b) so NEF : E× → F× is a homomorphism of
multiplicative groups. It is surjective.

3. If F ⊂ L ⊂ E are finite extensions then for all a ∈ E,

TrLF (TrEL (a)) = TrEF (a) and NLF (NEL (a)) = NEF (a).

4. If E is a Galois extension of F then TrEF : E → F is nonzero and

TrEF (a) =
∑

σ∈Gal(E/F )

σ(a) and NEF =
∏

σ∈Gal(E/F )

σ(a).

Parts (1) and (2) are straightforward. We omit the proofs (see [20], [3]) of parts (3) and (4)
but we will return to the trace and norm in Section 2.2 and Section 2.4. There are situations in
which the trace TrEF : E → F is the zero map, but if E,F are finite fields or if char(E) = 0 or if
E is a Galois extension of F then the trace is not zero.
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2.2 Finite fields

In this section we analyze the structure of finite fields, or Galois fields. For a more complete
treatment see the excellent reference by Lidl and Niedereitter [21]. Our first task is to identify all
finite fields and all inclusion relations among them.

2.2.a Basic properties

Theorem 2.2.1. Let p be a prime number. For each d > 0 there is (up to isomorphism) a unique
field Fpd with pd elements. These account for all finite fields. If e > 0 is another integer, then there
is an inclusion Fpd ⊆ Fpe if and only if d divides e. That is, the (combinatorial) lattice of finite
fields with characteristic p under inclusion is isomorphic to the lattice of whole numbers under
divisibility. The subfield Fpd consists of those elements a of Fpe satisfying ap

d
= a.

The field Fpd is sometimes denoted GF (pd) (for “Galois field”). The proof of Theorem 2.2.1
will occupy the rest of Section 2.2.a.

Suppose d is a positive integer and F is a finite field with r elements. Let f(x) be an irreducible
polynomial over F with degree d. Then by Theorem 1.2.5.4, F [x]/(f(x)) is a field. It has rd

elements. In particular, if p is a prime integer and we take F = Z/(p), then this together with
Theorem 1.4.10 shows that there exists a finite field of order pd for every prime p and positive
integer d.

Next suppose F is a finite field with characteristic p > 0. Recall that we showed in Theorem
1.2.8 that p is prime. It follows that the mapping Z/(p) → F which takes an element n to
1 + 1 + · · ·+ 1 (n times) is a ring homomorphism. So we can view Z/(p) as a subfield of F . Hence
F has the structure of a finite dimensional vector space over Z/(p). By Theorem 1.2.22, F has pd

elements for some d.

Proposition 2.2.2. If F ⊆ E are two finite fields, then E and F have the same characteristic. If
p is the characteristic, then |F | = pd and |E| = pe for some integers d and e such that d divides e.

Proof. If F has characteristic p and E has characteristic r, then |F | = pd and |E| = re for some d
and e. But E is a vector space over F , so re = (pd)k for some k. Thus r = p and e = dk.

To complete the picture of the set of finite fields we want to show that there is, up to isomor-
phism, a unique finite field of a given cardinality. First we need a lemma.

Lemma 2.2.3. If F is a finite field, then every a ∈ F is a root of the polynomial x|F | − x and we
have

x|F | − x =
∏
a∈F

(x− a).

No other element of any extension field of F is a root of this polynomial.
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Proof. The multiplicative group of F has order |F | − 1, so by Theorem 1.1.3 any nonzero element
a ∈ F satisfies a|F |−1 = 1. Therefore any element a ∈ F satisfies a|F | = a. That is, every a is a
root of the polynomial x|F | − x. It follows that x− a divides x|F | − x. Furthermore, the degree of
x|F | − x equals |F |, so there are no other roots of this polynomial in E. The factorization follows
from Theorem 1.4.4.

Corollary 2.2.4. Suppose E is a field, p is a prime number, and d is a positive integer. Then E
contains at most one subfield of order pd.

Proof. Suppose F is a subfield of E of order pd. By Lemma 2.2.3 every a ∈ F is a root of xp
d − x,

and there are no other roots of this polynomial in E.
Now suppose F ′ is another subfield of E of order pd. The same reasoning applies to F ′. Thus

F = F ′.

Proposition 2.2.5. Let p be a prime number and let d > 0 be an integer. Any two finite fields
with pd elements are isomorphic.

Proof. Let E = (Z/(p))[x]/(f(x)), where f(x) is an irreducible polynomial with degree d and
coefficients in Z/(p). It is enough to show that any field F with pd elements is isomorphic to E.

By Lemma 2.2.3, every a ∈ E satisfies ap
d

= a. In particular, xp
d −x = 0 in E, so f(x) divides

xp
d − x as polynomials. That is, xp

d − x = f(x)g(x) for some g(x) ∈ (Z/(p))[x].
On the other hand, we can think of xp

d − x as a polynomial over F . By the same reasoning,
every element of F is a root of this polynomial, so

f(x)g(x) = xp
d − x =

∏
a∈F

(x− a).

In particular, f(x) factors into linear factors over F . Let a be a root of f(x) in F . If the elements
{1, a, a2, · · · , ad−1} were linearly dependent over (Z/(p))[x], a would be a root of a lower degree
polynomial, and this polynomial would divide f(x). That would contradict the irreducibility of
f(x). Thus they are linearly independent and hence a basis (F has dimension d over (Z/(p))[x]).
That is, every b in F can be written

b =
d−1∑
i=0

cia
i,

with ci ∈ (Z/(p))[x]. We define a function

L

(
d−1∑
i=0

cia
i

)
=

d−1∑
i=0

cix
i

from F to E. This function is one-to-one and it can be checked that it preserves multiplication
and addition. Hence it is an isomorphism.
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Thus for each prime power q = pd there is a unique field Fq with q elements.

Proposition 2.2.6. Let p be prime and let d, e be positive integers. Then the field F = Fpd may
be realized as a subfield of E = Fpe if and only if d divides e. In this case it is the set

F =
{
x ∈ E : xp

d

= x
}
.

Proof. If F is a subfield of E then E is a vector space over F , of some dimension k. Consequently
|E| = |F |k so e = dk. To prove the converse, assume e = dk for some positive integer k. Let
q = pd = |F |. Recall from Lemma 2.2.3 that E consists of the distinct roots of the polynomial
xp

e − x = xq
k − x. This polynomial is divisible by the polynomimal xq − x, for the quotient is

x(qk−1)−(q−1) + x(qk−1)−2(q−1) + · · ·+ xq−1 + 1.

Thus E contains a set S of q distinct roots of the polynomial (xq − x). By Lemma 1.2.9, both
addition and multiplication commute with raising to the qth power, so the subset S ⊂ E is a field.
Therefore it is isomorphic to the field F = Fq.

Suppose f ∈ F [x] is irreducible. Recall that in the terminology of Section 1.4.a, the order
of f is the smallest T such that f(x)|(xT − 1). This is the order of x in the group of units of
F [x]/(f), a group that has |F |deg(f) − 1 elements. Thus by Theorem 1.1.3 the order of f divides
|F |deg(f) − 1.This completes the proof of Theorem 2.2.1.

2.2.b Galois groups of finite fields

Some of the preceding notions can be understood in terms of Galois groups (see Section 2.1.a).
Let E = Fpe where p is prime. By Lemma 1.2.9 the mapping σ : E → E, σ(x) = xp is a field
automorphism, meaning that it is additive, multiplicative, and invertible. However σe(x) = xp

e
= x

so σe = I is the identity. Thus the various powers of σ (including σ0 = I) form a cyclic group of
automorphisms, of order e, which fix each element of Fp.

Proposition 2.2.7. The group {σ0 = I, σ, · · · , σe−1} is the Galois group Gal(E/Fp).

Proof. The Galois group Gal(E/F ) is the set of automorphisms of E that fix each element of F . So
it suffices to show that any automorphism τ : E → E is some power of σ. Let f be an irreducible
polynomial over Fp with degree e, and let a be a root of f . Then Fpd = Fp[a] and 1, a, a2, · · · , ae−1

is a basis for Fpe over Fp. Thus to show that two automorphisms are equal, it suffices to show that
they are equal on a. We have that σi(f) = f for every i, so σi(a) is a root of f . Similarly, τ(a)
is a root of f . The σi(a) are distinct – otherwise a and hence Fpe are in a proper subfield, which
is a contradiction. Thus there are e = deg(f) of them, and they account for all the roots of f . In
particular, τ(a) = σi(a) for some i. So τ = σi, proving the proposition.
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Theorem 2.2.8. Let F = Fpd ⊂ E = Fpe be finite fields. Then the Galois group Gal(E/F ) is
a cyclic subgroup group of Gal(E/Fp), of order e/d. It is generated by the automorphism σd :

x 7→ xp
d
. The field F ⊂ E consits of those elements of E that are fixed by every element of

Gal(E/F ) (which is the same as being fixed by the generator σd). Consequently the field E is a
Galois extension of the field F .

Proof. It follows from Proposition 2.2.6 that F is the subfield of E that is fixed by σd. So the
various powers of σd are contained in Gal(E/F ). By Proposition 2.2.7, every automorphism of F
is some power of σ. But d is the smallest power of σ that fixes F because the equation xp

k
= x has

at most pk solutions. Consequently Gal(E/F ) consists of all powers of σd. These elements form a
cyclic subgroup of Gal(E/Fp) of order e/d.

Thus we have an inclusion reversing correspondence between the lattice of subfields of Fpd and
the lattice of subgroups of Gal(Fpd/Fp). The main theorem of Galois theory describes the solutions
of a polynomial equation in terms of the Galois group.

Theorem 2.2.9. Let F be a finite field with q elements and let f(x) ∈ F [x] be a polynomial of
degree d with coefficients in F . Let E be an extension field of F and suppose α ∈ E is a root of f .
Then for any σ ∈ Gal(E/F ), the element σ(α) ∈ E is also a root of f . If f is irreducible in F [x]
and if E is the degree d extension of F then all the roots of f are contained in E. They consist
exactly of the Galois conjugates,

σi(α) = αq
i

,

where 0 ≤ i ≤ d− 1. That is, where σi ranges over all elements of Gal(E/F ).

Proof. Let q = |F |. The Galois group Gal(E/F ) is cyclic and it is generated by the mapping
σ : E → E given by σ(a) = aq. If f(x) =

∑d
i=0 aix

i and if α ∈ E is a root of f , then

0 = σ(f(α)) =

(
d∑
i=0

aiα
i

)q

=
d∑
i=0

aqiα
iq =

d∑
i=0

aiσ(α) = f(σ(α))

(by Lemma 1.2.9), so σ(α) is also a root of f .
Now suppose f is irreducible and, without loss of generality, monic. Then it is the minimal

polynomial of α by Theorem 1.4.11. But the polynomial

g(x) =
∏

τ∈Gal(E/F )

(x− τ(α)) ∈ E[x]

has the same degree as f , and it is fixed under each element of Gal(E/F ). So g ∈ F [x], and it has
α as a root. Therefore g = f , so the roots of f are all the Galois conjugates of α.
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2.2.c Primitive elements

To work within a particular finite field F , it is useful to have some structural information. An
element a ∈ F is called primitive if every nonzero element of F can be written as a power of a. A
polynomial f ∈ Fp[x] of degree d is primitive if it is irreducible and if one (and hence all) of its
roots in Fpd are primitive elements.

Lemma 2.2.10. Let F = Fq be the field with q elements. Let f ∈ F [x] be a polynomial. Then f
is primitive if and only if its order is qdeg(f) − 1.

Proof. In the ring F [x]/(f) the element x is a root of the polynomial f(x). If x is primitive then
the order of x is T = |F |−1 = qdeg(f)−1. Thus T is the smallest integer such that xT = 1 (mod f),
which is to say that T is the smallest integer such that f divides xT − 1. Thus the order of f is T .
The converse is similar.

We next show that every finite field has primitive elements. This implies that the multiplicative
group of a finite field is cyclic.

Proposition 2.2.11. The finite field Fpd has φ(pd − 1) primitive elements.

Proof. Suppose that a ∈ Fpd has order e. That is, ae = 1 and no smaller positive power of a equals
1. Then the elements 1, a, a2, · · · , ae−1 are distinct and are all roots of xe − 1. That is,

xe − 1 = (x− 1)(x− a)(x− a2) · · · (x− ae−1).

It follows that every element whose eth power equals 1 is a power of a, and an element b = ai has
order e if and only if gcd(i, e) = 1. Thus if there is at least one element of order e, then there are
exactly φ(e). That is, for every e there are either 0 or φ(e) elements of order e.

Furthermore, by Lemma 2.2.3 every nonzero a ∈ F is a root of the polynomial xp
d−1− 1. Thus

if there is an element in F with order e, then e divides pd − 1. By Lemma 1.2.10, for any positive
integer k ∑

e|k

φ(e) = k.

Thus we have

pd − 1 =
∑
e|pd−1

|{a ∈ F : the order of a = e}|

≤
∑
e|pd−1

φ(e) = pd − 1.

Therefore the two sums are equal. Since each term in the first sum is less than or equal to the
corresponding term in the second sum, each pair of corresponding terms must be equal.

In particular, the number elements with order pd − 1 equals φ(pd − 1) > 0.
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In fact, it can be shown that every finite field Fpd has a primitive normal basis over a subfield

Fpc . This is a basis of the form a, ap
c
, · · · , apd−c

with a primitive. The interested reader can find
the details in [21, Section 2.3].

2.2.d Roots of unity

Let N ∈ Z be a positive integer. Over the complex numbers the polynomial xN − 1 factors
completely into distinct linear factors

xN − 1 =
N−1∏
j=0

(x− ζj)

where ζ ∈ C is a primitive N -th root of unity, for example, ζ = e2πi/N . These N -th roots of unity
form an Abelian group under multiplication, denoted µN , that is isomorphic to Z/(N). The field
Q(ζ) is called a cyclotomic field. It is a Galois extension of Q of degree [Q(ζ) : Q] = φ(n). The
Galois group is Abelian and is isomorphic to Z/(N)×. If s ∈ Z/(N)× is relatively prime to N then
the corresponding element σs ∈ Gal(Q(ζ)/Q) acts on Q(ζ) by σs(ζ

k) = ζks.

Lemma 2.2.12. Let ζ ∈ C be a primitive N th root of unity and let p(x) ∈ Q[x] be a polynomial
with rational coefficients. Suppose |p(ζ)|2 ∈ Q is a rational number. Then |p(ζs)|2 = |p(ζ)|2 for
any integer s relatively prime to N with 1 ≤ s ≤ N − 1.

Proof. Let p(x) = a0 +a1x+ · · ·+adxd with ai ∈ Q. Then |p(ζ)|2 = p(ζ)p(ζ) ∈ Q is fixed under the
action of the element σs ∈ Gal(Q(ζ)/Q), where ζ = ζ−1 denotes complex conjugation. Therefore

p(ζ)p(ζ) = σs

(
p(ζ)p(ζ)

)
= (a0 + a1ζ

s + · · ·+ akζ
ks)(a0 + a1ζ

−s + · · ·+ akζ
−ks)

= p(ζs)p(ζs)

The situation is more complicated over a finite field. Let F = Fq be a finite field of characteristic
p. Let N ∈ Z be a positive integer. Define d as follows. Write N = pen where p does not divide
n. Let d = ordn(q). (In the group theoretic sense: the image of q in Z/(n) is invertible, and d is
the least integer such that qd ≡ 1 (mod n), cf. Section 1.2.d.) The following theorem says that
xN − 1 factors completely in the extension field Fqd of Fq, but the roots are not distinct if pe > 1.

Theorem 2.2.13. Given N, q as above, there exists β ∈ Fqd such that

xN − 1 =
n−1∏
i=0

(x− βi)pe . (2.1)

Moreover, Fqd is the smallest extension of Fq over which xN − 1 splits into linear factors.
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Proof. Let α ∈ Fqd be a primitive element and let β = α(qd−1)/n. Since qd ≡ 1 (mod n) the
exponent (qd − 1)/n is an integer. The powers β0, β1, · · · , βn−1 ∈ Fqd are distinct, and βn = 1.

Thus β is a primitive n-th root of unity, and xn − 1 =
∏n−1

i=1 (x− βi). Equation (2.1) follows. The
minimality of Fqd is left as an exercise.

The factors in equation (2.1) can be grouped together to give the factorization of xN − 1 over
the field Fq. Let γ = βk ∈ Fqd be any root of xn − 1. Then the remaining roots of the minimal

polynomial of γ over Fq are {γqi = βkq
i

: i ≥ 0}. The set of exponents

Ck(q) = Ck = {k, qk (mod n), q2k (mod n), · · ·}

is called the kth cyclotomic coset modulo n relative to q (the terms “modulo n” and “relative to q”
may be omitted if n and/or q are understood). The minimal polynomial of γ is then the product

fk(x) =
∏
i∈Ck

(x− βi).

If Cj1 , · · · , Cjm are the distinct cyclotomic cosets in {0, 1, · · · , n− 1}, then they form a partition of
{0, 1, · · · , n− 1} and the desired factorizations are

xn − 1 =
m∏
i=1

fk(x) and xN − 1 =
m∏
i=1

fk(x)p
e

.

2.2.e Trace and norm on finite fields

Theorem 2.2.14. Let F = Fq ⊂ E = Fqn be finite fields of characteristic p. Then the following
statements holds.

1. The trace function TrEF : E → F is given by

TrFE(a) = a+ aq + aq
2

+ · · ·+ aq
n−1

=
∑

σ∈Gal(E/F)

σ(a). (2.2)

2. The norm is given by

NEF (a) =
∏

σ∈Gal(E/F )

σ(a) = a(qn−1)/(q−1) ∈ F.

3. The trace is nonzero and for all c ∈ F , we have |{a ∈ E : Tr(a) = c}| = pe−d.
4. For all 0 6= c ∈ F we have | {a ∈ E : N(a) = c} | = (|E| − 1)/(|F | − 1).
5. For all a ∈ E we have TrEF (ap) = TrEF (a)p.
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6. TrEF (1) ∈ Fp and TrEF (1) ≡ n (mod p).
7. If L : E → F is an F -linear function, then there is an element a ∈ E such that L(b) = Tr(ab)

for all b ∈ E.

Proof. 1. Verification of the second equality in equation (2.2) is left as an exercise. It follows
that the quantity on the right side of equation (2.2), which we denote by T (a), is fixed by each
σ ∈ Gal(E/F ) so it is indeed an element of F . Both maps T and Tr are F -linear, hence are equal if
and only if they are equal on a basis. Let a ∈ E be a root of an irreducible polynomial of degree n
over F . Then the set {1, α, α2, · · · , αn−1} forms a basis for E (over F ). If the minimal polynomial
for a is

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

then the matrix

Ma =


0 1 · · · 0 0

...
0 0 · · · 1 0
0 0 · · · 0 1
−a0 −a1 · · · −am−2 −am−1

 (2.3)

is the corresponding companion matrix: it has 1 in each entry of the superdiagonal, −a0, · · · ,−ad−1

in the last row, and 0s elsewhere. The characteristic polynomial of the matrix Ma is exactly the
polynomial f(x), so the eigenvalues of Ma (i.e. the roots of its characteristic polynomial) are the
Galois conjugates of a. So the trace of Ma is −an−1. On the other hand,

f(x) =
∏

σ∈Gal(E/F )

(x− σ(a)),

so −an−1 =
∑

σ∈Gal(E/F ) σ(a).

2. The same argument applies to the determinant of the matrix Ma, which is

(−1)na0 = (−1)2n
∏

σ∈Gal(E/F )

σ(a).

3. Thinking of E as an n-dimensional vector space over F , the mapping Tr : E → F is linear, so
its rank is either zero or 1. If the rank is zero then Tr(x) = 0 for all x ∈ E, however this equation
is a polynomial of degree qn−1 so it has at most qn−1 < qn solutions. Therefore Tr : E → F is
surjective so its kernel K = Tr−1(0) ⊂ E is a vector subspace of dimension n− 1 which therefore
contains qn−1 elements. For any 0 6= a ∈ F the set Tr−1(a) is a translate of K, that is, an affine
subspace of the same dimension, which therefore contains the same number of elements.
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4. The norm is a homomorphism NEF : E× → F×. If α is a primitive element in E, then

NEF (α) =
n−1∏
i=0

αq
i

= α
∑n−1

i=0 q
i

= α(qn−1)/(q−1),

which is primitive in F . Thus NEF surjective so its kernel is a subgroup of order (|E|−1)/(|F |−1).

5. All the operations used to define Tr commute with raising to the pth power.

6. We have Tr(1) = 1 + 1q + · · ·+ 1q
n−1

= 1 + 1 + · · ·+ 1, with n terms.

7. This is a special case of Proposition 2.1.1.

2.2.f Quadratic equations in characteristic 2

Let F = F2r be a finite field of characteristic 2 and let a, b, c ∈ F with a 6= 0. The trace function
is a necessary ingredient for determining when the quadratic equation

ax2 + bx+ c = 0 (2.4)

has a solution x ∈ F .

Theorem 2.2.15. If a, b 6= 0 then the quadratic equation (2.4) has a solution x ∈ F if and only
if TrFF2

(ac/b2) = 0, in which case it has two distinct solutions. If b = 0 (and a 6= 0) then it has a
unique solution.

Proof. First consider the case a = b = 1. To solve the equation x2 + x = c, consider the following
sequence, where φ : F → F is the linear map, φ(x) = x2 − x = x2 + x,

0 −−−→ F2 −−−→ F
φ−−−→ F

TrFF2−−−→ F2 −−−→ 0

Then this sequence is exact (see Definition 1.1.10): exactness at the first term is immediate and
exactness at the fourth terms follows from Theorem 2.2.14. The kernel Ker(φ) = {0, 1} = F2 is
1-dimensional. It follows that the sequence is exact at the second term, and in particular, the
mapping φ is two-to-one. Therefore the mapping φ has rank r − 1. But Tr : F → F2 is surjective
so its kernel also has dimension r− 1. Since Im(φ) ⊂ Ker(Tr), and they have the same dimension,
they must coincide. In other words, c ∈ Ker(Tr) if and only if c = x2 − x for some x, and in this
case there are two such values of x.
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Q(x, y) conditions Nv, v = 0 Nv, v 6= 0

Type I xy b 6= 0, TrFF2
(ac/b2) = 0 2q − 1 q − 1

Type II x2 b = 0 q q

Type III h(x2 + y2) + xy b 6= 0, TrFF2
(ac/b2) = 1 1 q

Table 2.1: Quadratic forms in characteristic 2.

For the general case, the transformation

x =
b

a
y

converts equation (2.4) into the equation

b2

a
(y2 + y) = c

which therefore has a solution if and only if

TrFF2
(ac/b2) = 0,

in which case it has two solutions. Finally, if b = 0 then the equation x2 = c/a has one solution
because 2 is relatively prime to 2r − 1 so the mapping F → F given by x→ x2 is invertible (and
in fact it is an isomorphism of F2-vector spaces).

Corollary 2.2.16. Let a, b, c ∈ F = F2r . Fix h ∈ F with TrFF2
(h) = 1. Then the quadratic form

Q(x, y) = ax2 + bxy + cy2

can be transformed, using a linear transformation of variables, into one of the three quadratic
forms in Table 2.1. The number Nv of solutions to the equation Q(x, y) = v is also given.

Proof. The transformation x→ αx+ βy changes Q into the quadratic form

aα2x2 + bαxy + (aβ2 + bβ + c)y2.

By Theorem 2.2.15 if TrFF2
(ac/b2) = 0 then β ∈ F can be chosen so that the coefficient of y2

vanishes. Taking α = 1/b leaves

Q =
a

b2
x2 + xy.

56



Now the transformation

y → a

b2
x+ y

changes Q to xy. This is Type I.
If TrFF2

(ac/b2) 6= 0 then choose β so that aβ2 + bβ + c = b2h2/a (which is possible, by Theorem
2.2.15) and choose α = bh/a. Then the transformation x→ αx+ βy converts the quadratic form
Q into the form

b2h

a
(hx2 + xy + hy2).

The further transformation

x→
√
a

b
√
h
x and y →

√
a

b
√
h
y

transforms Q into hx2 + xy + hy2. This is Type II. Finally, if b = 0 (and a, c 6= 0), use

x→ x+
√
cy√

a

to convert Q(x, y) into x2. This is Type III.
Counting the number Nv of solutions to Q(x, y) = v is trivial for Types I and II. For Type III,

if v = 0 then for any nonzero choice of y we need to solve for x in the equation hx2 +xy+hy2 = 0.
Since TrFFq

(h) = 1 this has no solutions. Thus (0, 0) is the unique solution. If v 6= 0, imagine

choosing y and solving for x, which will be possible if and only if TrFF2
(h2y2 − hv) = 0. As y varies

in F the quantity inside the trace varies among all elements of F , and q/2 of these have trace zero.
For each such choice of y there are two distinct choices for x, for a total of q solutions.

2.2.g Characters and exponential sums

Let F be a finite field, say, |F | = q = pr where p is a prime number. Let F× be the group of all
nonzero elements of F under multiplication and let F+ be the group of all elements of F under
addition. A character χ : F+ → C× is called an additive character. If χ is a nontrivial additive
character then every additive character is of the form ψ(x) = χ(Ax) for some element A ∈ F .
(Different values of A give distinct characters, and there are |F | of them, which therefore account
for all additive characters.)

A character ψ : F× → C× is called a multiplicative character of F . It is common to extend
each multiplicative character ψ : F× → C to all of F by setting ψ(0) = 0. If q is odd then the
quadratic character

η(x) =

{
1 if x is a square
−1 otherwise

(2.5)
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is a multiplicative character. If p is an odd prime and 0 6= x ∈ Fp then the Legendre symbol is(
x

q

)
= η(x).

Since the prime field Fp = Z/(p) is cyclic, the additive group F+ is isomorphic to the additive

group (Z/(p))r, so we obtain from Section 1.3.b the notion of a Fourier transform f̂ of any function
f : F → C, with respect to this additive group structure. Since the multiplicative group F× is
cyclic, we obtain a second notion of Fourier transform of any function f : F× → C. Equation
(1.16) gives explicit formulae for these Fourier transforms. In this case they are sometimes called
the Hadamard and Walsh transforms (respectively).

If ψ is a multiplicative character one can take its Fourier transform ψ̂ with respect to the
additive structure to obtain the Gauss sum

ψ̂(χ) = G(ψ, χ) =
∑
g∈F

χ(g)ψ(g) =
∑
g∈F×

χ(g)ψ(g) (2.6)

for any additive character χ. Conversely, equation (2.6) may be interpreted as the Fourier trans-
form χ̂ of the additive character χ evaluated on the multiplicative character ψ. The results in
Section 1.3.b therefore give a number of simple facts concerning Gauss sums. In particular, the
Fourier expansion of a multiplicative character ψ in terms of additive characters as in equation
(1.13) gives

ψ(g) =
1

|F |
∑
χ

G(ψ, χ)χ(g) =
1

|F |
∑
χ

G(ψ, χ)χ(g).

We state without proof the following classical Gauss bound and Weil bound (cf. [21] Section 5.2,
Section 5.4) and its improvement by Carlitz and Uchiyama [4].

Theorem 2.2.17. If χ, ψ are nontrivial additive and multiplicative C-valued characters (respec-
tively) of a finite field F then

|G(ψ, χ)| =
√
|F |.

Theorem 2.2.18. Let F = Fpr with p prime. Let f ∈ F [x] be a polynomial of degree n ≥ 1. Let
χ be a nontrivial additive character of F . Suppose either (a) gcd(n, p) = 1 or (b) f is not of the
form gp − g + b where g ∈ F [x] and b ∈ F . Then∣∣∣∣∣∑

x∈F

χ(f(x))

∣∣∣∣∣ ≤ (n− 1)
√
|F |. (2.7)

Let ψ be a nontrivial multiplicative character of F of order m > 1 and let d be the number of
distinct roots of f in its splitting field over F . Instead of assumptions (a) or (b) above, assume
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that the monic polynomial a−1f (where a is the leading coefficient of f) is not the m-th power of
a polynomial g(x) ∈ F [x]. Then ∣∣∣∣∣∑

x∈F

ψ(f(x))

∣∣∣∣∣ ≤ (d− 1)
√
|F |. (2.8)

The following theorem of A. Weil [31], [29] combines all of the above.

Theorem 2.2.19. Let F = Fq be a finite field. Let ψ be a nontrivial multiplicative character
of order d. Let χ be a nontrivial additive character. Let f(x), g(x) ∈ F [x] be polynomials with
n = deg(g). Assume that f(x) has m distinct roots in F , and further assume that gcd(d, deg(f)) =
gcd(q, deg(g)) = 1. Then ∣∣∣∣∣∑

x∈F

ψ(f(x))χ(g(x))

∣∣∣∣∣ ≤ (m+ n− 1)
√
|F |.

For polynomials in several variables there is the following bound of Deligne [6] (Theorem 8.4):

Theorem 2.2.20. Let F be a finite field and let χ be a nontrivial additive character. Let
f(x1, x2, · · · , xn) be a polynomial of degree m. Assume m is relatively prime to |F |. Assume
also that the homogeneous part of f of maximal degree (= m) is nonsingular, when it is considered
as a form over the algebraic closure of F . Then∣∣∣∣∣∑

x∈Fn

χ(f(x))

∣∣∣∣∣ ≤ ((m− 1)
√
|F |
)n
.

2.2.h The Discrete Fourier transform

While the (usual) Fourier transform involves complex valued functions, the discrete Fourier trans-
form involves functions with values in a finite field F . It is defined in a manner completely
analogous to equation (1.16), provided the field F contains all the required roots of unity. (For
cyclic groups G = Z/(N), this assumption may be relaxed.)

Let G be a finite Abelian group and let N ∈ Z be its characteristic, that is, the smallest integer
such that 0 = x + x + · · · + x (N times) for all x ∈ G. (Then N divides |G| and it is the order
of the largest cyclic subgroup of G.) Let F = Fq be a finite field and suppose that N and q are
relatively prime. Let d = ordN(q) and let E = Fqd . By Theorem 2.2.13 the field E is the smallest
field extension of F that contains all the N -th roots of unity. (In what follows, the field E may be
replaced by any larger field.)
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Continue to assume that N = char(G) and char(E) are relatively prime. The group of discrete

characters Ĝ is the set of (group) homomorphisms ψ : G→ E×. It forms a group under multipli-

cation of characters, (χψ)(g) = χ(g)ψ(g). If G = Z/(N) then Ĝ is also cyclic of order N and is
generated by the primitive character χ(x) = bx where b ∈ E is a primitive N -th root of unity. If

G = G1×G2 then Ĝ = Ĝ1× Ĝ2. It follows that the group of characters Ĝ is a finite Abelian group
that is abstractly isomorphic to G and in particular that |Ĝ| = |G|. The proof of Proposition 1.3.2
works here too and we obtain the following.

Lemma 2.2.21. Let G be a finite Abelian group characteristic N , F = Fq, and E =qd where
d = ordN(q). Then the following hold.

1. If χ : G→ E× is a nontrivial character then
∑

g∈G χ(g) = 0.
2. If 0 6= g ∈ G then

∑
χ∈Ĝ χ(g) = 0.

3. If g 6= h ∈ G then there exists χ ∈ Ĝ such that χ(g) 6= χ(h).

4. If ψ 6= χ ∈ Ĝ then
∑

g∈G ψ(g)χ−1(g) = 0.

5. If g 6= h ∈ G then
∑

χ∈Ĝ χ(g)χ−1(h) = 0.

With G,F,E, Ĝ as above, for any f : G→ E define its Fourier transform f̂ : Ĝ→ E by

f̂(χ) =
∑
g∈G

χ(g)f(g).

Then the convolution formula (1.14) and the Fourier inversion formula (1.13) hold:

f̂ · ĝ = f̂ ∗G and f(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ−1(g)

with the same proof as in Section 1.3.b. The proof in Section 1.3.b gives a weak analog to Parseval’s
equation, ∑

χ∈Ĝ

f̂(χ)f̂(χ−1) =
∑
g∈G

f(g)2 and
∑
χ∈Ĝ

f̂(χ)2 =
∑
g∈G

f(g)f(−g).

Although the discrete Fourier transform and the complex Fourier transform are entirely parallel
in their definition and properties, there is no apparent relation between them.

If G = Z/(N), then a choice of primitive N -th root of unity b ∈ E determines an isomorphism

G ∼= Ĝ which takes 1 ∈ Z/(N) to the character χ1 with χ1(k) = bk. The other characters are
powers of this one: χm(k) = bmk. If f : Z/(N) → E is a function, then its discrete Fourier

transform may be considered as a function f̂ : Z/(N) → E by writing f̂(m) rather than f̂(χm).
In other words,

f̂(m) =
N−1∑
k=0

bmkf(k) and f(g) =
1

N

N−1∑
m=1

f̂(m)b−mg.
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2.3 Quadratic forms over a finite field

2.3.a Quadratic forms and their classification

The standard reference for this section is Lidl and Niederreiter’s book on finite fields [21]. Let
F = Fq be a finite field with q elements. A quadratic form in n variables over F is a polynomial
Q(x1, x2, · · · , xn) in n variables such that each term has degree two, that is,

Q(x1, · · · , xn) =
n∑
i=1

n∑
j=1

aijxixj.

It follows that Q(cx) = c2Q(x) for any c ∈ F . If q is odd then the function Q(x) may be expressed
as Q(x) = xtAx where A is the symmetric matrix Aij = 1

2
(aij + aji) for i 6= j and Aii = aii.

Consequently there is an associated bilinear form B(x, y) = xtA (here we are thinking of the
vectors x and y as column vectors).

If q is even then every quadratic form Q may be expressed as Q(x) = xtAx where the matrix
A is not necessarily symmetric, and where the transpose matrix At gives the same quadratic form.
If M : F n → F n is an invertible n × n matrix representing a linear change of coordinates, then
the matrix of the quadratic form with respect to the new coordinates is M tAM . In particular, the
determinant of A changes by the factor det(M)2.

The rank of a quadratic form Q is the smallest integer m such that there exists a linear change of
variables (x1, · · · , xn)→ (y1, · · · , yn) so that the resulting quadratic form involves only the variables
y1, y2, · · · , ym. A quadratic form in n variables is nondegenerate if its rank is n. If Q : F n → F is
a quadratic form then there exists a maximal nondegenerate subspace that is, a subspace V ⊂ F n

such that dim(V ) = rank(Q) and so that Q restricted to V is nondegenerate. A vector w ∈ F n

is in the kernel of Q if Q(w + x) = Q(x) for all x ∈ F n. The kernel of Q is a vector subspace
of F n and it is complementary to any maximal nondegenerate subspace V ⊂ F n, meaning that
V ∩W = {0} and V +W = F n.

If F is a field of characteristic 2 then every element is a square. But if the characteristic of F is
odd then half the elements are squares, and the quadratic character η : F× → {0, 1} is defined by
η(x) = 1 if x = a2 for some a ∈ F and η(x) = −1 otherwise. (It is customary to define η(0) = 0 as
this convention can often be used to simplify various formulae.) Denote by ∆(Q) the determinant
of the restriction of Q to a maximal nondegenerate subspace; it is well defined up to multiplication
by a square in F. If rank(Q) = m define

∆′(Q) =

{
(−1)m/2∆(Q) if m is even,
(−1)(m−1)/2∆(Q) if m is odd.

(2.9)

If the characteristic of F is odd, the properties of the quadratic form Q depend on whether or not
the element ∆′(Q) ∈ F is a square, that is, whether η(∆′(Q)) is +1 or −1.
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The following theorem gives the classification of quadratic forms over the finite field F = Fq
of arbitrary characteristic. Although the proofs are not difficult, they are tedious and they can be
found in [21]. (See Theorem 2.2.15 for the case m = 2 and characteristic 2.) In this classification,
the symbol Bm denotes the quadratic form

Bm(x1, · · · , xn) = x1x2 + x3x4 + · · ·+ xm−1xm. (2.10)

Theorem 2.3.1. ([21] Thm 6.30) Suppose Q is a quadratic form of rank m in n ≥ m variables
over a field F = Fq. If q is even, fix an element h ∈ F such that TrFF2

(h) = 1. Then there is a
linear change of variables so that Q is one of the quadratic forms listed in Table 2.2.

q even

Type I (m even) Q(x) = Bm(x)

Type II (m odd) Q(x) = Bm−1(x) + x2
m

Type III (m even) Q(x) = Bm−2(x) + xm−1xm + h(x2
m−1 + x2

m)

q odd

Q(x) = a1x
2
1 + a2x

2
2 + · · ·+ amx

2
m, ai 6= 0

Table 2.2: Classification of quadratic forms over Fq

(If q is odd and if b ∈ F is a fixed non-square then Q(x) can even be reduced to one of the two
quadratic forms Q(x) = x2

1 + · · · + x2
m−1 + ax2

m where a = 1 or a = b, but for most purposes the
above diagonal form suffices.)

2.3.b Solutions to Q(x) + L(x) = u

Let F be a finite field. In this section we wish to count the number of solutions to the equation
Q(x) + L(x) = u where Q : F n → F is a quadratic form and L : F n → F is a linear mapping.
This calculation is the central step in determining the cross-correlation of m-sequences, geometric
sequences, GMW sequences, and Gold sequences. In order to simplify the presentation we define
the following function ν : F → {−1, q − 1} by

ν(x) =

{
−1 if x 6= 0

q − 1 if x = 0

With ∆′(Q) = ±∆(Q) as defined in equation (2.9), the following theorem counts the number of
solutions to the equation Q(x) = u. The proof is not difficult but it is tedious and it will be
omitted. We use the convention that η(0) = 0.
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Theorem 2.3.2. ([21] Thm. 6.26, 6.27, 6.31) Let Q be a quadratic form of rank m in n variables
over a field F = Fq. Let u ∈ F . Then the number N of solutions to the equation Q(x1, x2, · · · , xn) =
u is given in Table 2.3.

q even

Type I (m even) N = qn−1 + ν(u)qn−1−m/2

Type II (m odd) N = qn−1

Type III (m even) N = qn−1 − ν(u)qn−1−m/2

q odd

(m odd) N = qn−1 + η(u)η(∆′)qn−(m+1)/2

(m even) N = qn−1 + ν(u)η(∆′)qn−1−m/2

Table 2.3: Number of solutions to Q(x) = u

We now use this result to describe the number of solutions x ∈ F n of the equation

Q(x) + L(x) = u (2.11)

where Q is a quadratic form and L is a linear function. We first show that the case rank(Q) < n
can be reduced to the case when Q has maximal rank, then we count the number of solutions to
(2.11) assuming Q has maximal rank. The answer shows, in particular, that if Q 6= 0 then the
function Q(x) + L(x) cannot be identically zero.

Proposition 2.3.3. Let F = Fq be a finite field, let Q : F n → F be a quadratic form with
m = rank(Q) < n and let L : F n → F be a nonzero (hence, surjective) linear mapping. Let
V ⊂ F n be a maximal subspace on which Q is nondegenerate. Then the number Nu of solutions
to the equation Q(x) + L(x) = u is

Nu =

{
qn−1 if Ker(Q) 6⊂ Ker(L)
qn−mN ′u if Ker(Q) ⊂ Ker(L)

where N ′u is the number of solutions x to equation (2.11) with x ∈ V .

Proof. This follows immediately from the direct sum decomposition F n ∼= Ker(Q) ⊕ V and the
fact that L can be written as the sum of a linear function L1 on Ker(Q) and a linear function L2

on V .
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Theorem 2.3.4. Let u ∈ Fq. Let Q : Fmq → Fq be one of the standard quadratic forms of (maximal)
rank m listed in the classification, Theorem 2.3.1. Let L(x) =

∑m
i=1 cixi be a linear function. Let

N = Nu denote the number of elements x ∈ Fmq so that Q(x) + L(x) = u. Then Nu is given in
Table 2.4, where τ(c, u) = 0 if cm = 0, otherwise

τ(c, u) = (−1)
TrFF2

(
u+Bm−1(c)

c2m

)
= ±1; (2.12)

and where R = R(Q, c) is given in equation (2.13).

q even

Type I (m even) N = qm−1 + ν(u+Q(c))qm/2−1

Type II (m odd) N = qm−1 + τ(c, u)q(m−1)/2

Type III (m even) N = qm−1 − ν(u+Q(c))qm/2−1

q odd

(m odd) N = qm−1 + η(u+R)η(∆′)q(m−1)/2

(m even) N = qm−1 + ν(u+R)η(∆′)qm/2−1

Table 2.4: Number of solutions to Q(x) + L(x) = u

Proof. When q is even, the results for Type I and III follow from Theorem 2.3.2 after an affine
change of coordinates which replaces x1 by x1 + c2, and x2 by x2 + c1, etc. This eliminates the
linear terms and replaces u with u + Q(c). In the case of Type II (Q(x) = Bm−1(x) + x2

m), the
same trick eliminates the first m− 1 linear terms and replaces u with u+Bm−1(c). If cm = 0 then
we are done: there are qn−1 solutions as in Theorem 2.3.2. But if cm 6= 0 we are left with the
equation

Bm−1(x) = x2
m + cmxm + u+Bm−1(c).

The number of solutions (x1, · · · , xm−1) to this equation depends on whether or not the right side
vanishes. By Theorem 2.2.15, this in turn depends on

t = TrFF2

(
u+Bm−1(c)

c2
m

)
.

If t = 0 then there are two values of xm for which the right side vanishes, and q − 2 values for
which the right side is nonzero. This gives

N = 2
(
qm−2 + (q − 1)q(m−1)/2−1

)
+ (q − 2)

(
qm−2 − q(m−1)/2−1

)
= qm−1 + q(m−1)/2.
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If t 6= 0 then the right side never vanishes, so choosing xm arbitrarily and then choosing the other
variables x1, · · · , xm−1 gives

N = q
(
qm−2 − q(m−1)/2−1

)
= qm−1 − q(m−1)/2.

If q is odd we may assume Q(x) =
∑m

i=1 aix
2
i with ai 6= 0 for all i. The substitution xi →

yi − bi/2ai converts the equation Q(x) + L(x) = u into the equation Q(y) = u+R where

R = “Q
( c

2a

)
” = a1

(
c1

2a1

)2

+ a2

(
c2

2a2

)2

+ · · ·+ am

(
cm

2am

)2

. (2.13)

By Theorem 2.3.2 the number of solutions to this equation is

N = qm−1 +

{
η(u+R)η(∆′)q(m−1)/2 if m is odd
ν(u+R)η(∆′)qm/2−1 if m is even.

This completes the proof of Theorem 2.3.4.

2.3.c The Quadratic form Tr(cxd) for d = qi + qj

One important source of quadratic forms is the following. Let F = Fq ⊂ L = Fqn be finite fields.
Let c ∈ L. Let d = 1 + qi. Then, as shown below, the function Q : L→ F defined by

Q(x) = TrLF (cxd) (2.14)

is a quadratic form. We may assume that i < n because xq
n

= x for all x ∈ L. We remark that
the function TrLF (cxd

′
) where d′ = qj + qi is no more general than (2.14), because the change of

variable y = xq
j

converts this form into TrLF (cxe) where e = 1 + qi−j.

Theorem 2.3.5. If d = 1 + qi then the function Q(x) = TrLF (cxd) is a quadratic form over F . Let
g = gcd(i, n). The rank of this quadratic form is given in Table 2.5, where g = gcd(n, i), e = 1+qg,
η = η(∆′) as in equation (2.9), and c = sd means that c is a d-th power of some element s ∈ L.

The following lemma is used in the proof of Theorem 2.3.5.

Lemma 2.3.6. Let n, j ≥ 1 and b ≥ 2. The greatest common divisor g = gcd(n, j) is given in
Table 2.6.

Proof. The first statement follows from a simple calculation. It is possible to use the identity
b2k − 1 = (bk − 1)(bk + 1) (with k = j and k = n respectively) to deduce the second and third
statements from the first statement.
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q even
Conditions Type Rank

n/g even n/2g odd c = sd I n− 2g

c 6= sd III n

n/2g even c = sd III n− 2g

c 6= sd I n

n/g odd II n− g + 1

q odd
Conditions Type Rank

n/g even n/2g odd
c2 = se

c 6= se
η = −1 n− 2g

otherwise η = 1 n

n/2g even c = se η = 1 n− 2g

c 6= se η = −1 n

n/g odd n odd n

n even n

Table 2.5: The quadratic form Tr(cxd), d = 1 + qi

gcd(bn − 1, bj − 1) = bg − 1

gcd(bn − 1, bj + 1) =


1 + bg if n/g is even
2 if n/g is odd and b is odd
1 if n/g is odd and b is even

gcd(bn + 1, bj + 1) =


1 + bg if n/g is odd and j/g is odd
2 if n/g is even or j/g is even, and b is odd
1 if n/g is even or j/g is even, and b is even

Table 2.6: gcd(bn ± 1, bj ± 1)

Proof of Theorem 2.3.5 Let e1, e2, · · · , er be a basis for L as a vector space over F . Let
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x = a1e1 + · · ·+ arer ∈ L. Then

TrLF (cx1+qi) = TrLF

c( r∑
h=1

aheh

)(
r∑

h=1

aheh

)qi


= TrLF

[
c

(
r∑

h=1

aheh

)(
r∑

h=1

ahe
qi
h

)]

=
r∑

h=1

r∑
k=1

bhkahak

where
bhk = TrLF

(
cehe

qi

k

)
.

This is a quadratic form. In order to determine its rank we start by determining its kernel
W = Ker(Q). Equating

TrLF (c(y + w)1+qi) = TrLF (cy1+qi)

gives
TrLF (cw1+qi + cywq

i

+ cyq
i

w) = 0.

Hence w ∈ W if and only if
TrLF (cw1+qi) = 0 (2.15)

and
TrLF (cwyq

i

) = −TrLF (cwq
i

y) for every y ∈ L.
Since TrLF (xq) = TrLF (x) the right side of this equation is unchanged if we raise its argument to the
power qi, which gives

TrLF ((cw + cq
i

wq
2i

)yq
i

) = 0

for all y ∈ L, so
cw = −cqiwq2i

or, assuming w 6= 0,
cq

i−1wq
2i−1 = −1. (2.16)

Let
z = cw1+qi .

Then equation (2.16) is equivalent to:

zq
i−1 = −1. (2.17)

At this point we must separate the cases, when q is even or odd. From here on we let g = gcd(n, i).
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q even: Here,
zq

i−1 = −1 = 1

so an element w ∈ L is in Ker(Q) if and only if:

z = cw1+qi ∈ Fqi ∩ Fqn = Fqg and TrLF (z) = 0. (2.18)

The set
Fqg ∩Ker(TrLF)

is either all of Fqg , which is a vector space of dimension g, or it is a hyperplane in Fqg , which
therefore has dimension g− 1. It remains to determine the number of elements w ∈ L that satisfy
equation (2.17) with

z ∈ Fqg ∩Ker(TrLF).

We claim that W = Ker(Q) is nonzero if and only if there exists s ∈ L so that sd = c. That is,
so that

s1+qi = c. (2.19)

First, suppose such an s exists. Then every element

z′ ∈ Fqg ∩Ker
(
TrLK
)

gives rise to an element w′ ∈ Ker(Q) as follows. Since 1 + qi is relatively prime to qi− 1 and hence
also to qg − 1 there exists h′ ∈ Fqg such that

(h′)1+qi = z′.

Set w′ = h′/s ∈ L. It follows that

z′ = c(w′)1+qi

so w′ satisfies equations (2.15) and (2.16).
We remark that if n/g is odd then 1 + qi is relatively prime to qn − 1 so such an element s

satisfying equation (2.19) exists, hence the dimension of W = Ker(Q) is g − 1. If n/g is even and
if such an element s exists, then

Fqg ∩Ker(TrLK) = Fqg ;

for if z′ ∈ Fqg and n/g is even then (writing E = Fqg to ease notation),

TrLF (z′) = TrEFTr
L
E(z′) = (n/g)TrEF (z′) = 0. (2.20)

Thus, in this case, the dimension of W = Ker(Q) is g.
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Next, we prove the converse: suppose there exists w 6= 0 ∈ W ; we claim there exists s ∈ L
satisfying equation (2.19). We may suppose that n/g is even (since the odd case was handled
above). We find an element u 6= 0 ∈ L so that uq

i+1 is a primitive element of Fqg . This will suffice

because z = cwq
i+1 ∈ Fqg so there exists m with z = u(qi+1)m, hence c = (um/w)q

i+1.
The element u ∈ L = Fqn should be taken to be a primitive element of the sub-field Fq2g (which

is contained in L since n/g is even). Then

uq
2g−1 = u(qg−1)(qg+1) = 1.

Moreover, uq
i+1 ∈ Fqg for the following reason: i/g is odd so by Lemma 2.3.6, qg + 1 divides qi + 1.

Therefore
u(qg−1)(qi+1) = 1.

Finally, uq
i+1 is primitive in Fqg because qi + 1 and qg − 1 are relatively prime. We remark that as

u varies within the field Fq2g the element uw varies within Ker(Q) because

c(uw)1+qi ∈ Fqi ∩ Fqn

and the trace condition is satisfied by equation (2.20). So in this case, dim(Ker(Q)) = 2g.

q odd: In this case
zq

i−1 = −1

so z2 ∈ Fqi . Hence
z ∈ Fq2i ∩ Fqn = Fqgcd(n,2i) .

If n/g is odd then gcd(n, 2i) = gcd(n, i) = g, so z ∈ Fqg ⊂ Fqi . Hence

zq
i−1 = 1, (2.21)

which is a contradiction. Therefore w = 0, so the quadratic form Q has maximal rank, n.
Now suppose n/g is even, so gcd(n, 2i) = 2g. Equation (2.21) holds, so

z2 ∈ Fqi ∩ Fqn = Fqg ,

so
zq

g−1 = ±1.

The +1 is not possible, so
zq

g−1 = −1. (2.22)

We claim that
if x ∈ L = Fqn and xq

g−1 = −1 then TrLF (x) = 0.
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For xq
g

= −x, let T = x+ xq + · · ·+ xq
g−1

. Then

TrLF (x) = TrEFTr
L
E(x) = T − T + T − T · · · ± T

(where E = Fqg) and there are n/g terms (an even number), so this last sum vanishes.
It follows that (when n/g is even), w ∈ Ker(Q) if and only if

z = cw1+qi

satisfies equation (2.22). Thus, if a ∈ Fq2g and w ∈ Ker(Q) then aw ∈ Ker(Q). If v, w 6= 0 ∈
Ker(Q) then

(v/w)(1+qi)(qi−1) = 1

so
v/w ∈ Fq2i ∩ Fqn = Fq2g .

In summary, either Ker(Q) = {0} or Ker(Q) has dimension 2g.
It remains to determine when Ker(Q) has a nonzero element. Let α ∈ Fqn be a primitive

element and set c = α`. Equation (2.22) becomes

α`w(1+qi) = α(qn−1)/2(qg−1).

So we search for w = αr such that α`+r(1+qi) = α(qn−1)/2(qg−1) or

` ≡ qn − 1

2(qg − 1)
(mod qg + 1)

since gcd(qi+1, qn−1) = qg +1 in this case. If n/(2g) is even then qg +1 divides (qn−1)/2(qg−1)
hence w 6= 0 exists if and only if ` ≡ 0 (mod qg + 1), which is to say that c = se for some s ∈ L,
where e = qg + 1. If n/(2g) is odd then

qn − 1

2(qg − 1)
≡ qg + 1

2
(mod qg + 1)

so w 6= 0 exists if and only if ` ≡ (qg + 1)/2 (mod qg + 1).

Determining η(∆′) We do not know η(∆′) when q is odd and n/g is odd. But if q is odd and
n/g is even, it is possible to determine when ∆′(Q) is a square because this is detected (according
to Theorem 2.3.2) by the number |Z| of nonzero solutions Z to the equation Q(x) = 0. If x ∈ Z
and 0 6= a ∈ L and if a1+qi ∈ F then a1+qix ∈ Z. Hence the group

G = {a ∈ L : a1+qi ∈ F} = {a ∈ L : a(1+qi)(q−1) = 1}
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acts freely on Z so |G| = (1 + qg)(q − 1) divides |Z|. If n/g is even this says,

|G|
q − 1

= (qg + 1) divides
|Z|
q − 1

=
qn − 1

q − 1
− qn−1

qrank(Q)/2

(
qrank(Q)/2 − η(∆′(Q))

)
with η(∆′(Q)) = ±1. Together with the rank of Q determined above and the divisibility properties
in Lemma 2.3.6, this gives the values of η(∆′(Q)) listed in Theorem 2.3.5. 2

Corollary 2.3.7. Let F = Fq ⊂ L = Fqn be finite fields, let d = 1 + qi, let A,B ∈ L with B 6= 0,
and let F : L→ F be the function

F (x) = TrLF (Ax+Bxd).

Then F is identically zero if and only if the following conditions hold.

1. A = 0.
2. n is even and gcd(i, n) = n/2.
3. TrLE(B) = 0 where E = Fqn/2 (so that F ⊂ E ⊂ L.)

Proof. We may assume that i < n (since xq
n

= x for all x ∈ L), so the second condition is
equivalent to i = n/2. If the three conditions hold then d = (|L| − 1)/(|E| − 1) so xd ∈ E for any
x ∈ L. Therefore

TrEF
(
TrLE(Bxd)

)
= TrEF

(
xdTrLE(B)

)
= 0.

To prove the converse, let L(x) = TrLF (Ax) and Q(x) = TrLF (Bxd). Suppose F (x) = L(x) + Q(x)
is identically zero. If A 6= 0 then Proposition 2.3.3 implies that Ker(Q) ⊂ Ker(L) so Q is a
non-vanishing quadratic form of some rank m > 0. So there exists a subspace V ⊂ E whose
F -dimension is m, such that the restriction of Q to V is non-degenerate. But N0 = qn since
F is identically zero, so in the notation of Proposition 2.3.3, N ′0 = qm, which is to say that the
restriction of Q to V is zero. This is a contradiction. Therefore A = 0 which proves (1). Therefore
the quadratic form Q has rank zero. By theorem 2.3.5 (and Table 2.5) it follows that n = 2g where
g = gcd(i, n), which proves (2). Thus g = i = n/2. To prove (3) we must consider two cases,
depending on the parity of q. Let E = Fqg .

First suppose q is even. From Table 2.5 we see that B = sd for some s ∈ E. Therefore

TrLE(B) = sd + sdq
g

= s1+qg + s(1+qg)qg = s1+qg + sq
g+1 = 0.

Now suppose q is odd. From Table 2.5 we see (since n/2g = 1 is odd) that

B2 = s1+qg
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(for some s ∈ L) but B cannot be so expressed. Therefore

Bqg−1 = −1

since its square is
s(1+qg)(qg−1) = 1.

In summary,
TrLE(B) = B +Bqg−1+1 = B −B = 0.

2.4 Algebraic number fields

2.4.a Basic properties

So far our examples of fields have consisted of finite fields and the familiar fields Q, the rational
numbers, R, the real numbers, and C, the complex numbers. Recall that we we obtain the various
finite fields of characteristic p > 0 from the prime field Fp by constructing the quotient Fp[x]/(f(x))
where f(x) is an irreducible polynomial. We can think of this construction as adjoining a root
(the variable x) of f(x) to the field Fp. Similarly, we obtain the complex numbers from the real
numbers by adjoining a root of the polynomial x2 + 1.

In this section we study a class of fields, called algebraic number fields that are obtained in the
same way from the rational numbers. For the most part we omit proofs and leave the interested
reader to find them in other references.

Definition 2.4.1. An algebraic number field E is a finite extension of the rational numbers Q.

This means that E is a field that contains Q and that as a vector space over Q it is finite
dimensional.

A complex number a ∈ C is algebraic over Q, or simply algebraic, if it is a root of some
polynomial f(x) ∈ Q[x] with coefficients in Q. As in Theorem 1.4.11, there exists a unique monic
minimal polynomial f(x) ∈ Q[x], irreducible in Q[x], such that f(a) = 0. If Q(a) ⊂ C denotes
the smallest field that contains both Q and a, then the mapping Q[x]→ Q(a) which takes x to a
induces an isomorphism

Q[x]/(f)→ Q(a),

where f is the minimal polynomial of a. The proof is left as an exercise. An important result is
the following:

Theorem 2.4.2. Suppose that E and F are algebraic number fields with F ⊆ E. Then there is
an element a ∈ E such that E = F (a). In particular, every algebraic number field is of the form
Q(a) for some algebraic number a.
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A field F is algebraically closed if every polynomial with coefficients in F splits as a product
of linear factors. Every field is contained in an algebraically closed field, and any two minimal
algebraically closed fields containing a given field F are isomorphic. Thus in general we may speak
of the algebraic closure of a field F .

For example, C is algebraically closed. The set Q of all algebraic numbers over Q is an
algebraically closed subfield of C, and we shall refer to this particular field as the algebraic closure
of Q. It is not a finite extension of Q, so it is not a number field. However, this observation allows
us to embed any algebraic number field in the complex numbers. For any prime number p, the set

Fp∞ = ∪dFpd

is a field. It is the algebraic closure of every Fpd .

Theorem 2.4.3. Let F be a number field. Then there are exactly [F : Q] embeddings of F in C.
If K ⊂ F is a subfield then every embedding τ : K → C extends to [F : K] distinct embeddings
σ : F → C such that σ(b) = τ(b) for all b ∈ K.

Proof. Let F = Q(a). An embedding σ of F in C is completely determined by its value on a.
The image σ(a) is a root of the minimal polynomial f ∈ Q[x] of a over Q (thinking of f as a
polynomial over C). It is straightforward to check that every root of f determines an embedding.
The number of roots of f is exactly its degree, since C is algebraically closed. Thus the number
of embeddings of F in C is exactly the degree of f , which equals [F : Q]. The proof of the second
statement is similar, and is left as an exercise.

Theorem 2.4.4. Let F be a number field and let σ1, · · · , σd be the distinct embeddings of F in C.
Let b ∈ F and let e = [Q(b) : Q]. Then

1. TrFQ(b) = σ1(b) + σ2(b) + · · ·+ σd(b) = eTr
Q(b)
Q (b).

2. NFQ(b) = σ1(b)σ2(b) · · ·σd(b) =
(
N

Q(b)
Q (b)

)e
.

3. If F is a Galois extension of Q then

TrFQ(b) =
∑

σ∈Gal(F/Q)

σ(b) and NFQ(b) =
∏

σ∈Gal(F/Q)

σ(b).

4. The trace map TrFQ : F → Q is surjective.

Proof. (See also Theorem 2.2.14.) Let f(x) = a0 +a1x+ · · ·+aex
e be the minimum polynomial of

b. By definition, the roots of f (in C) are distinct (although they are not necessarily all contained
in Q(b) or even in F ). The set {1, b, b2, · · · , be−1} forms a basis for Q(b) as a vector space over Q.
With respect to this basis, the matrix Mb for the mapping `b : Q(b) → Q(b) (`b(a) = ba) is the
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companion matrix of f(x),that is, it has ones on the superdiagonal, −a0,−a1, · · · ,−ae−1 in the last
rown, and zeroes elsewhere. See equation (2.3). The characteristic polynomial of Mb is exactly the
polynomial f(x) and the eigenvalues of Mb are the distinct roots of f(x). So the trace and norm
of b are the sum and product of the roots of f(x) which are

Tr
Q(b)
Q (b) = −ae−1 and N

Q(b)
Q (b) = (−1)eae.

Let τ1, · · · , τe denote the distinct embeddings of Q(b) into C. The elements τ1(b), τ2(b), · · · , τe(b)
are exactly the roots of the polynomial f . Consequently

Tr
Q(b)
Q (b) = τ1(b) + · · ·+ τe(b) and N

Q(b)
Q (b) = τ1(b)τ2(b) · · · τe(b).

Let u1, · · · , ut be a basis for F over Q(b) (hence te = d). Then the set {uibj} (1 ≤ i ≤ t,
0 ≤ j ≤ e − 1) forms a basis for F over Q. With respect to this basis the mapping Lb : F → F
(Lb(a) = ba) is a “block matrix” with t diagonal blocks, each of which is a copy of the matrix
Mb. It follows that the characteristic polynomial of Lb is (f(x))t, that Tr(Lb) = tTr(Mb) and that
det(Lb) = (det(Mb))

t. By Theorem 2.4.3, each embedding τi : Q(b) → C extends to t distinct
embeddings F → C but these embeddings all take b ∈ F to the same element, τi(b). Therefore

d∑
i=1

σi(b) = t
e∑
i=1

τi(b) = tTr(Mb) = Tr(Lb) = TrFQ(b)

and
d∏
i=1

σi(b) =
e∏
i=1

τi(b)
t = (det(Mb))

t = det(Lb) = NFQ(b).

If F is a Galois extension of Q then the embeddings σi : F → C have the same image, and the
Galois group Gal(F/Q) permutes these embeddings. Consequently,

TrFQ(b) =
∑

σ∈Gal(F/Q)

σ(b) and NFQ(b) =
∏

σ∈Gal(F/Q)

σ(b).

Finally, the trace TrFQ is surjective if and only if it is nonzero, but TrFQ(1) = d 6= 0.

2.4.b Algebraic integers

Just as algebraic number fields are generalizations of the rational numbers, there is a generalization
of the rational integers Z.

Definition 2.4.5. An algebraic number a is an algebraic integer or is integral if its minimal
polynomial f ∈ Q[x] over Q has all its coefficients in Z.
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Theorem 2.4.6. The following are equivalent

1. a is an algebraic integer.
2. Z[a] is a finitely generated Z-module.
3. a ∈ R for some ring R ⊆ C that is a finitely generated Z-module.
4. aM ⊆M for some finitely generated Z-module M ⊆ C.

Proof. If a is an algebraic integer, then ad is a linear combination of 1, a, · · · , ad−1 with integer
coefficients, and it follows that Z[a] is generated as a Z-module by 1, a, · · · , ad−1. The implications
(2) =⇒ (3) =⇒ (4) are straightforward.

To prove that (4) implies (1), suppose thatM is generated bym1, · · · ,mk. Thus for j = 1, · · · , k,
we have

amj =
k∑
i=1

bi,jmj (2.23)

with bi,j ∈ Z. Let ci,j = bi,j if i 6= j, and ci,i = bi,i − x. It follows from equation (2.23) that the
determinant of the matrix [cij] is zero at x = a. But the determinant of this matrix is a monic
polynomial with integer coefficients, so a is algebraic.

2.4.c Orders

Let F be an algebraic number field and let m = [F : Q]. If R ⊂ F is a subring, then it is
automatically an integral domain. An order R ⊂ F is a subring of F that is finitely generated as
a Z-module with rank m. In this case, Corollary 1.1.18 implies that R+ is isomorphic to Zm. A
standard result is the following.

Theorem 2.4.7. A subring R in a number field F is an order in F if and only if it satisfies the
following three conditions,

1. R ∩Q = Z
2. The fraction field (Section 1.2.h) of R is F .
3. The Abelian group (R,+) is finitely generated.

Except when F = Q, there are infinitely many orders in F . Every order R ⊂ F consists entirely
of algebraic integers and in fact the intersection ZF = F ∩ FA (where FA denotes the set of all
algebraic integers) is an order which contains all the other orders in F . This maximal order ZF
is called the ring of integers of F . It is integrally closed in F , meaning that if α ∈ F is a root of
a monic polynomial with coefficients in ZF then α ∈ ZF also. In fact, ZF is the integral closure
of Z in F , that is, it consists of all elements α ∈ F which are roots of monic polynomials with
coefficients in Z. So a subset R ⊂ F is an order if and only if it is a subring and it is contained in
ZF as a subgroup of finite index.
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The ring of integers of Q is Z; the ring of integers of Q[i] is Z[i]. However the ring of integers of
Q[
√

5] is larger than Z[
√

5] (which is an order). Rather, the ring of integers consists of all integer
linear combinations of (1 +

√
5)/2 and (1−

√
5)/2. For any number field F the maximal order ZF

has several particularly nice properties (it is a Dedekind ring, for example).

Lemma 2.4.8. Let R be an order in a number field F . Let a ∈ R. Then the number of elements
in the quotient ring is |R/(a)| = |N(a)|.

Proof. (See also Exercise 5.) Let {u1, · · · , un} be an integer basis for the Z-module R. Then
the set {au1, · · · , aun} is an integer basis for the Z-module (a). Each aui is some integer linear
combination, say, aui = Ai1u1 + · · ·+Ainun. On the one hand, the matrix A = (Aij) describes the
action of multiplication by a on M so N(a) = det(A). On the other hand, according to Theorem
1.2.28, |R/(a)| = | det(A)|.

In particular, the theorem says that the norm of any algebraic integer is an ordinary integer.
The absolute value of the norm gives a candidate function for defining division with remainder, see
Definition 1.2.13. If F = Q(

√
d) is a quadratic number field then its ring of integers is a Euclidean

domain with respect to this function if and only if d =2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57, 73, −1, −2, −3, −7, −11, see [3] Section 3.2. A number field has class number one if and
only if its ring of integers is a unique factorization domain. The Stark-Heegner Theorem states
that the only quadratic imaginary number fields with class number one are Q(

√
d) for d = −1,

−2, −3, −7, −11, −19, −43, −67, −163. However the ring of integers of any number field is a
Dedekind domain, and as such it admits unique prime decomposition of ideals, i.e., for any ideal
I there are uniquely determined prime ideals P1, P2, · · · , Pk and integers m1,m2, · · · ,mk so that
I = Pm1

1 Pm2
2 · · ·Pmk

k . Moreover, we next show that every element in an order can be written in at
least one way as a product of irreducible elements, so it is a factorization ring.

Theorem 2.4.9. Let R be an order in a number field F and let a ∈ R. Then there is a unit u and
irreducible elements f1, · · · , fk ∈ R so that a = uf1f2 · · · fk. (If a is not a unit then the element u
can be absorbed into one of the irreducible factors.)

Proof. Use induction on |N(a)|. If |N(a)| = 1, then a is a unit so we are done. Likewise, if
a is irreducible we are done. Otherwise we can write a = bc where neither b nor c is a unit.
Then |N(a)| = |N(b)||N(c)| and neither |N(b)| nor |N(c)| is equal to 1. Thus |N(b)| < |N(a)| and
|N(c)| < |N(a)|. By induction both b and c can be written as units times a product of irreducible
elements, and we can combine these expressions into such an expression for a.
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2.5 Local and global fields

2.5.a Local fields

There are two types of local fields: local function fields, and p-adic fields. They are discussed in
more detail in Section 4.6.c (where local fields are defined) but here are the basic definitions. If F is
a field, then the (local) function field F ((x)) consists of all formal Laurent series

∑∞
i=−k aix

i, with
ai ∈ F . Such a series has finitely many terms of negative degree and possibly infinitely many terms
of positive degree. Its ring of “integers” is the subring F [[x]] of formal power series, that is, sums
with no terms of negative degree. The ring F [[x]] is a local ring with unique maximal ideal (x).
The field F ((x)) is the fraction field of F [[x]]. That is, every formal Laurent series a(x) ∈ F ((x))
may be expressed as a quotient a(x) = f(x)/g(x) of two formal power series f, g ∈ F [[x]] (and
in fact the denominator g(x) may be chosen to be a power of x). Addition and multiplication in
F ((x)) are performed in a way that is analogous to the addition and multiplication of polynomials.
One must check that only finitely many terms contribute to any term in a product.

Let p be a prime number. The p-adic field Qp consists of all formal Laurent series
∑∞

i=−k aip
i

(with finitely many terms of negative degree and possibly infinitely many terms of positive degree),
where 0 ≤ ai ≤ p − 1, and where addition and multiplication are performed “with carry”. It
contains a ring Zp of “integers” consisting of formal power series with no terms of negative degree,
which is a local ring with maximal ideal (p). The field Qp is the fraction field of Zp: every a ∈ Qp

can be expressed as a fraction f/g with f, g ∈ Zp and in fact the denominator g may be chosen to
be a power of p. A p-adic field is a finite degree extension of Qp.

2.5.b Global fields

There are also two types of global fields: function fields and algebraic number fields. The algebraic
number fields (= finite degree extensions of Q) have been previously discussed in Section 2.4. Let
F be a field. A global function field over F is any finite degree extension of the field F (x) of
rational functions. The field F (x) is the fraction field of the ring F [x] of polynomials, that is,
every element of F (x) is of the form f/g where f and g are polynomials. If K is a finite degree
extension of F (x) then there exists n so that K ∼= F [x1, x2, · · · , xn]/I where I is an appropriate
maximal ideal in the ring F [x1, x2, · · · , xn] of polynomials in n variables. One normally assumes
that K has transcendance degree one over F , in other words, the set

V (I) = {(x1, x2, · · · , xn) ∈ F n : h(x) = 0 for all h ∈ I}

is a one dimensional algebraic variety, or an algebraic curve. Then K is called the field of rational
functions on the algebraic curve V (I).
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2.6 Exercises

1. Lemma 2.2.14: Let d and e be positive integers with d dividing e. Prove that if a ∈ Fpe , then

a+ ap
d

+ ap
2d

+ · · ·+ ap
e−d ∈ Fpa .

2. Suppose p is prime and c, d, and e are integers with c|d|e. Prove that Trp
d

pc ◦Tr
pe

pd
= Trp

e

pc .

3. Develop an alternate definition of the trace function for a finite field F in terms of embeddings
of F in its algebraic closure. Prove that your definition agrees with the previous one.

4. Let F = Q[
√

5]. Show that the full ring of integers of F is K = Z[(1 ±
√

5)/2] and that the
norm of an element a+ b

√
5 is a2 + 5b2.

5. (continued) Let L = Z[
√

5]. It is an order in K. Let a = 2 ∈ L. The inclusion L ⊂ K
induces a homomorphism of quotient rings L/aL → K/aK. According to Lemma 2.4.8, both
rings have 4 elements. Show that L/aL ∼= F2[x]/(x2), that K/aK ∼= F4, and that the mapping
L/aL→ K/KaK is neither injective nor surjective. (Hint: The elements of L/aL are represented
by 0, 1,

√
5, 1 +

√
5, from which multiplication and addition tables can be constructed. The ring

K/aK can be similarly analyzed.)
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Chapter 3 Finite Local Rings and Galois Rings

Local rings have a single maximal ideal. In algebraic geometry they are used to understand the
local geometry at a single point on an algebraic variety. These rings, and especially the special
case of Galois rings (see Section 3.5), generalize finite fields. They have recently been used in
several constructions of error correcting codes and families of sequences with interesting correlation
properties. They are useful models of multiphase signals.

3.1 Finite local rings

In this section we examine the structure of a commutative ring (with identity) which has finitely
many elements. The standard reference for this section is [24]. During the last decade a consider-
able amount of effort has been directed towards developing linear feedback shift register sequences
based on a finite local ring R. The analysis of these sequences depends on an understanding of
the units in R.

Let R be a commutative ring. Recall from Definition 1.2.13 that R is a local ring if it contains
a unique maximal ideal m. In this case (see Section 1.2.a), the maximal ideal m consists precisely
of the non-units of R. The quotient F = R/m is a field and is called the residue field of R. For
each i ≥ 0 the quotient mi−1/mi is naturally a vector space over F , because R acts on this quotient
by multiplication, and m acts trivially. The following are examples of finite local rings.

• any finite (Galois) field.
• Z/(pn) for any prime number p, with maximal ideal (p) and residue field Z/(p).
• F[x]/(fn), where F is a finite field and f is an irreducible polynomial, with maximal ideal

(f) and residue field F[x]/(f).
• R[x]/(fn) where R is a finite local ring and f is a basic irreducible polynomial (see below).

Any commutative finite ring may be expressed as a direct sum of finite local rings. For the
remainder of this section we assume that R is a finite local ring.

Basic irreducible polynomials: Let R be a finite local ring with maximal ideal m. Let µ :
R→ F = R/m be the projection. Applying µ to each coefficient of a polynomial gives a mapping
which we also denote by µ : R[x] → F [x]. A polynomial f(x) ∈ R[x] is regular if it is not a zero
divisor, which holds if and only if µ(f) 6= 0. Let f(x) ∈ R[x]. If µ(f) is nonzero and is irreducible
in F [x] then f is irreducible in R[x], and we refer to f as a basic irreducible polynomial. In this case
R[x]/(fn) is again a local ring for any n > 0 (see ([24], XIV.10). Its maximal ideal is m[x] + (f)
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and its residue field is F [x]/(µ(f)), where m[x] is the collection of those polynomials f ∈ R[x] all
of whose coefficients are in m.

If the leading term of a basic irreducible polynomial f(x) ∈ R[x] is in the maximal ideal m then
the degree of the reduction µ(f) ∈ F [x] will be less than deg(f). If f(x) is a monic polynomial
then deg(f) = deg(µ(f)) since the leading term is 1. For this reason we will often consider monic
basic irreducible polynomials.

Lemma 3.1.1. Let f ∈ R[x] be a regular polynomial and suppose ᾱ ∈ F is a simple zero of
µ(f) ∈ F [x]. Then f has one and only one root α ∈ R such that µ(α) = ᾱ.

Proof. This is proven in Lemma (XV.1) of [24].

Further properties of polynomials over R are described in Section 3.3. The following is a
powerful tool for studying local rings.

Theorem 3.1.2. (Nakayama’s Lemma for local rings [24], [23, p. 11]) Let R be a finite local ring
with maximal ideal m. Let M be a module over R.

1. If M is finite and mM = M , then M = 0.
2. If N is a submodule of M and M = N + mM , then N = M .

3.1.a Units in a finite local ring

Let R be a finite local ring with maximal ideal m and residue field F . Let R× be the set of
invertible elements in R. Let 1 + m = {1 + a : a ∈ m}. By [24], Theorem (V.1) and Proposition
(IV.7),

• the ideal m consists precisely of the non-units of R,
• for every a ∈ R, at least one of a and 1 + a is a unit, and
• there is a positive integer n such that mn = 0.

The details are left as an exercise.
An element a is nilpotent if for some natural number k we have ak = 0. It follows from the

above that every element a of R is either a unit or is nilpotent. In fact we can take the same k for
all a.

Proposition 3.1.3. There exists an isomorphism of Abelian groups

R× ∼= F× × (1 + m) (3.1)
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Proof. Let n be the smallest integer such that mn = 0. It is called the degree of nilpotency of m.
As in [24] Exercise (V.9), we have a sequence of surjective ring homomorphisms

R = R/mn σn−−−→ R/mn−1 σn−1−−−→ · · · σ2−−−→ R/m = F.

For 2 ≤ i ≤ n, the kernel Ker(σi) = mi−1/mi is a vector space over F . If |F | = q it follows by
induction that there exists an integer j such that

|m| = qj and |R| = qj+1. (3.2)

The natural ring homomorphism µ : R → F = R/m gives an exact sequence of (multiplicative)
Abelian groups,

1→ 1 + m→ R× → F× → 1.

The Abelian group F× is cyclic of order q − 1, and 1 + m has order qj, which is relatively prime
to q − 1. It follows (from the structure theorem for finite Abelian groups, Theorem 1.1.16) that
there is a splitting ι : F× → R× and this gives the isomorphism (3.1).

The structure of 1 + m is often very complicated. However it is possible to identify the cyclic
group F× as a subgroup of R×.

Lemma 3.1.4. There is a unique (group homomorphism) splitting ι : F× → R× of the projection
µ, and its image consists of all elements α ∈ R such that αq−1 = 1.

Proof. Every element a ∈ F× satisfies aq−1 = 1 so if ι exists, the same must be true of ι(a). Let
g(x) = xq−1 − 1. Then every element of F× is a (simple) root of µ(g) ∈ F [x]. Therefore g is a
regular polynomial, and Lemma 3.1.1 implies that every element a ∈ F× has a unique lift ι(a) ∈ R
such that ι(a)q−1 = 1. Hence the splitting ι exists, and there is only one such.

3.2 Examples

3.2.a Z/(pm)

Fix a prime number p ∈ Z and let R = Z/(pm). This is a finite local ring with maximal ideal
m = (p) and residue field F = Z/(p). The multiplicative group F× is cyclic, of order p − 1. By
Proposition 3.1.3 the group of units R× is the product F× × (1 + m).

Proposition 3.2.1. If p > 2 then 1 + m is a cyclic group of order pm−1 so R× ∼= Z/(p − 1) ×
Z/(pm−1) ∼= Z/(pm−1(p− 1)). If p = 2 and if m ≥ 3 then 1 + m is a product of two cyclic groups,
one of order 2 (generated by the element −1), the other of order 2m−2 (generated by the element
5).
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Proof. The order of the group of units is easy to calculate: since every pth integer is a multiple
of p, there are pm/p = pm−1 non-invertible elements in R. So there are pm − pm−1 = (p− 1)pm−1

units. It follows that 1 + m contains pm−1 elements.
Now consider the case p ≥ 3. Define E : Z→ R = Z/(pm) by E(a) = exp(pa) (mod pm). That

is,

E(a) = 1 + pa+
p2a2

2!
+
p3a3

3!
+ · · · (mod pm) (3.3)

Consider the nth term, anpn/n!. The number n! is not necessarily invertible in Z/(pm) but the
number pn/n! does make sense in Z/(pn) if we interpret it to mean that the factor pe which occurs
in the prime decomposition of n! should be canceled with the same factor pe which occurs in the
numerator. In fact, the prime p occurs in the prime decomposition of n! fewer than n/p+ n/p2 +
n/p3 · · · = n/(p − 1) times. Since it occurs in the numerator n times, it is possible to cancel all
occurrences of p from the denominator. This leaves a denominator which is relatively prime to p
and hence is invertible in Z/(pm). It follows, moreover, that after this cancellation the numerator
still has at least n(p− 2)/(p− 1) factors of p. So if n ≥ m(p− 1)/(p− 2) the term anpn/n! is 0 in
Z/(pm). Therefore the sum (3.3) is finite.

Since E(a + b) = E(a)E(b), the mapping E is a group homomorphism. Moreover E(a) = 1 if
and only if a is a multiple of pm−1. So E induces to an injective homomorphism

E : Z/(pm−1)→ 1 + m.

This mapping is also surjective because both sides have pm−1 elements.
Now consider the case R = Z/(2m) with m ≥ 3. The element {−1} generates a cyclic subgroup

of order 2. The element 5 generates a cyclic subgroup of order 2m−2. To show this, first verify by
induction that

52m−3

= (1 + 22)2m−3 ≡ 1 + 2m−1 (mod 2m)

so this number is not equal to 1 in Z/(2m). However

52m−2 ≡ (1 + 2m−1)2 ≡ 1 (mod 2m).

So 5 has order 2m−2 in R. Since −1 is not a power of 5 (mod 4) it is also not a power of 5 (mod 2m).
Therefore the product of cyclic groups 〈−1〉〈5〉 has order 2m−1, and it consequently exhausts all
the units.

3.2.b F [x]/(xm)

Let F be a finite field and let R = F [x]/(xm). Then R is a finite local ring with maximal ideal
m = (x) and with residue field F . The mapping µ : R→ F (which associates to each polynomial its
constant term) takes R× surjectively to F×. This mapping has a splitting F× → R× which assigns
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to any nonzero a ∈ F the polynomial a+0x. This gives an isomorphism R× ∼= F××(1+m), where
1 + m is the (multiplicative) group of all polynomials of the form 1 + xh(x), h(x) a polynomial of
degree ≤ m − 2. (So we have recovered Proposition 3.1.3.) It is fairly difficult to determine the
exact structure of the group 1 + m but the following proposition describes its general form. Let
q = |F | = pd with p prime.

Proposition 3.2.2. The (multiplicative) group 1 + m is isomorphic to a product of (additive)
cyclic groups,

1 + m ∼= Z/(pr1)× · · · × Z/(prk) (3.4)

where each ri ≤
⌈
logp(m)

⌉
and where

k∑
i=1

ri = d(m− 1).

Proof. The Abelian group 1+m is finite. It is thus isomorphic to a product of cyclic groups whose
orders divide |1 + m| = qm−1 which is a power of p. This gives an abstract isomorphism (3.4).
Counting the number of elements on each side of this equation gives

qm−1 = pr1+···+rk

so

d(m− 1) =
k∑
i=1

ri.

Let r be the smallest integer such that pr ≥ m. Then yp
r

= 1 for any y ∈ 1+m, because expressing
y = 1 + xh(x) and computing in F [x] we find that

yp
r

= 1 + xp
r

hp
r ≡ 1 (mod xm).

Thus the cyclic groups occurring in (3.4) each have ri ≤ r =
⌈
logp(m)

⌉
.

3.2.c F [x]/(fm)

Let F be a finite field and let f ∈ F [x] be an irreducible polynomial. Fix m ≥ 1. The ring
R = F [x]/(fm) is a finite local ring with maximal ideal (f) and with quotient field K = F [x]/(f).
The next result identifies the ring R with that of Section 3.2.b. Let

µ : R = F [x]/(fm)→ K = F [x]/(f)

be reduction modulo f . It is a surjective ring homomorphism.
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Proposition 3.2.3. There is a unique splitting of µ. That is, there is a unique injective ring
homomorphism ϕ : K → R so that µ(ϕ(a)) = a for all a ∈ K. Moreover the mapping ϕ extends
to a mapping ϕ : K[y]→ R by setting ϕ(y) = f . The resulting mapping

ϕ̄ : K[y]/(ym)→ R

is an isomorphism of rings.

Proof. Let q denote the number of elements in F and let Q = qd denote the number of elements
in K, where d = deg(f). First we show that the set

Zm =
{
g ∈ F [x]/(fm) : gQ = g

}
is a lift1 of the field K to R. It is therefore a candidate for the image of ϕ.

The set Zm is closed under addition and multiplication, because if g1, g2 ∈ Zm then

(g1 + g2)Q = gQ1 + gQ2 = g1 + g2.

Moreover the restriction µ : Zm → K is an injection, for if g ∈ Zm lies in the kernel of µ and if
ġ ∈ F [x] is any lift of g, then f divides ġ. However fm divides ġQ− ġ = (ġQ−1− 1)(ġ). Since these
two factors are relatively prime, it follows that fm divides ġ, which says that g = 0 in R. Now let
us show that the restriction µ : Zm → K is surjective. Fix a ∈ K. We need to find g ∈ Zm so that
µ(g) = a. We use induction on m, and the case m = 1 holds trivially. So let m be arbitrary and
consider the mapping

µm : F [x]/(fm)→ F [x]/(fm−1).

By induction, there exists g′ ∈ F [x]/(fm−1) so that (g′)Q = g′ and so that g′ maps to the given
element a ∈ K, that is, g′ (mod f) = a. Let ġ′ ∈ F [x] be any lift of g′ to F [x]. Then fm−1 divides
(ġ′)Q − ġ′, or

(ġ′)Q − ġ′ = fm−1h

for some polynomial h ∈ F [x]. Set g = ġ′ + hfm−1. Then

(g)Q − g = (ġ′)Q − ġ′ + hQf (m−1)Q − hfm−1 = hQf (m−1)Q

which is divisible by fm. This says that the class [g] ∈ F [x]/(fm) lies in the set Zm and that
g (mod f) = a as needed.

The splitting ϕ is unique because every element g in the image of a splitting must satisfy
gQ = g. This function ϕ : K → R. extends to a function ϕ : K[y] → R by mapping y to f . We

1If τ : A → B is a set function, then a lift of a subset C ⊂ B is a subset of D ⊂ A that is mapped by τ one to
one and onto C. A lift of an element y ∈ B is an element x ∈ A so that τ(x) = y.
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claim that the kernel of ϕ is (ym) and that ϕ is onto. The kernel contains (ym) since fm = 0 in R.
Let

g(y) =
m−1∑
i=0

giy
i

with ϕ(g) = 0. Thus
m−1∑
i=0

gif
i = 0. (3.5)

As a vector space over K the ring R has dimension m since |R| = Qm = |K|m. R is spanned over
K by {1, f, f 2, · · · , fm−1} (this can be proved by induction on m). Therefore these elements form a
basis. As we have seen in the preceding paragraph, the projection µm : F [x]/(fm)→ F [x]/(fm−1)
takes Zm to Zm−1 (both of which are lifts of the field K). Applying the projection µm to equation
(3.5) gives

m−2∑
j=0

gjf
j = 0

and by induction we conclude that g0 = g1 = . . . = gm−2 = 0. This leaves gm−1f
m−1 = 0 in

the ring R, which means that fm divides gm−1f
m−1 in the polynomial ring F [x]. But F [x] is an

integral domain, so we conclude that f divides gm−1, hence gm−1 = 0 as an element of K.
In conclusion, we obtain a well defined surjective ring homomorphism K[y]→ R by sending y to

f . The kernel of this homomorphism is the ideal (ym) so we obtain an isomorphism K[y]/(ym)→
R.

3.2.d Equal characteristics

Suppose that R is a finite local ring with maximal ideal m and quotient field F = R/m. Recall
that there is a unique homomorphism Z→ R (taking m to 1 + · · ·+ 1, m times). Its kernel is an
ideal (t) ⊂ Z where t = char(R) is the characteristic of R. Since R is finite, its characteristic is
nonzero. If the characteristic of R were divisible by two distinct primes, say p and q, then neither
p nor q would be a unit, hence both would be in m. It would follow that 1 is in m, since 1 is an
integer linear combination of p and q. Hence char(R) = pe is a power of a prime p. Moreover, the
image of Z in F is a quotient of its image Z/(pe) in R. Thus char(F ) = p.

Let µ : R→ F be the quotient mapping. Set q = |F |. Let ι : F× → R× be the homomorphism
described in Lemma 3.1.4. Extend ι to F by mapping 0 to 0.

Proposition 3.2.4. The function ι : F → R is a ring homomorphism if and only if R and F have
the same characteristic (so t = p and e = 1).
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Proof. Whenever f : A→ B is a ring homomorphism, char(B) divides char(A) because the kernel
of the homomorphism from Z to B contains the kernel of the homomorphism from Z to A. If ι is
a ring homomorphism then char(R)|char(F ) so e = 1.

For the convese, suppose that R and F have the same characteristic, p. Since ι is multiplicative,
to show that ι is a ring homomorphism we need only show that for every a, b ∈ F we have
ι(a) + ι(b) = ι(a + b). The polynomial xq − x is regular over F and has only simple roots. Thus
ι(a) can be defined to be the unique element of R so that µ(ι(a)) = a and that is a root of xq − x.
This element exists by Lemma 3.1.1. We have

µ(ι(a) + ι(b)) = µ(ι(a)) + µ(ι(b)) = a+ b = µ(ι(a+ b)),

so that ι(a) + ι(b) and ι(a+ b) are congruent modulo m. Also,

(ι(a) + ι(b))q = ι(a)q + ι(b)q = ι(a) + ι(b),

because (x + y)p = xp + yp in any ring of prime characteristic p. Thus ι(a) + ι(b) is in the image
of ι and must equal ι(a+ b).

Proposition 3.2.5. Let R be a finite local ring with quotient field F = R/m. Then char(R) =
char(F ) if and only if there exists r, k so that R is isomorphic to the quotient F [x1, x2, · · · , xr]/I
where I is an ideal that contains every monomial of degree ≥ k.

Proof. Suppose char(R) = char(F ). Use ι to identify F as a subring of R. Let M be a set of
variables in one to one correspondence with the elements of m. Then R ∼= F [M ]/I, where I is the
set of all polynomials in M that vanish when the elements of M are replaced by the corresponding
elements of m. Since mk = (0) for some k, every monomial of degree ≥ k is contained in I.
Conversely, if F is a finite field, M is a finite set of variables, and I is an ideal in F [M ] containing
every monomial of degree ≥ k, then R = F [M ]/I is a finite local ring with maximal ideal generated
by M whose characteristic equals that of its quotient field.

3.3 Divisibility in R[x]

Throughout this subsection, R denotes a finite local ring with µ : R → F = R/m the projection
to its residue field. Let f, g ∈ R[x].

1. f is nilpotent if fn = 0 for some n ≥ 0.
2. f is a unit if there exists h ∈ R[x] so that fh = 1.
3. f is regular if f is not a zero divisor.
4. f is prime if the ideal (f) is a proper prime ideal.
5. f is irreducible element if f is not a unit and, whenever f = gh then g or h is a unit.
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6. f and g are coprime if R[x] = (f) + (g).

In [24] the following results are proven.

Theorem 3.3.1. Let f = a0 + a1x+ · · ·+ adX
d ∈ R[x]. Then

1. The following are equivalent:

(a) f is a unit.
(b) µ(f) ∈ F [x] is a unit.
(c) a0 is a unit and the remaining coefficients a1, · · · , ad are nilpotent.

2. The following are equivalent:

(a) f is nilpotent.
(b) µ(f) = 0.
(c) All the ai are nilpotent.
(d) f is a zero divisor.
(e) there exists a 6= 0 in R such that af = 0.

3. The following are equivalent:

(a) f is regular.
(b) µ(f) 6= 0.
(c) ai is a unit for some i (0 ≤ i ≤ d).

4. f and g are coprime if and only if µ(f) and µ(g) are coprime. In this case, f i and gj are
coprime for all i, j ≥ 1.

5. If µ(f) is irreducible then f is irreducible. If f is irreducible then µ(f) = agn where a ∈ F
and g ∈ F [x] is a monic irreducible polynomial.

6. (Euclidean algorithm) If f 6= 0 and if g ∈ R[x] is regular then there exist (not necessarily
unique) elements q, r ∈ R[x] such that deg r < deg g and f = gq + r.

7. If f and g are monic and regular and if (f) = (g) then f = g.

Recall that an ideal I ⊂ R[x] is primary if I 6= R[x] and whenever ab ∈ I, then either a ∈ I or
bn ∈ I for some n ≥ 1. An element g ∈ R[x] is primary if (g) is primary.

Proposition 3.3.2. An element f ∈ R[x] is a primary regular non-unit if and only if f = ugn+h
where u ∈ R[x] is a unit, g ∈ R[x] is a basic irreducible, n ≥ 1, and h ∈ m[x] (that is, all the
coefficients of h lie in m).

Although R[x] is not necessarily a unique factorization domain, the following theorem ([24]
Thm. XIII.11) states that regular polynomials have unique factorization.

Theorem 3.3.3. Let f ∈ R[x] be a regular polynomial. Then there exist unique (up to reordering
and multiplication by units) regular coprime primary polynomials g1, g2, · · · , gn ∈ R[x] so that
f = g1g2 · · · gn.
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3.4 Tools for local rings

In this section we develop several tools for the analysis of finite local rings – Galois theory, the
trace and norm, and primitive elements. These are all generalizations of the similarly named tools
for analyzing finite fields, and in most cases we use the finite field versions to help construct the
finite local ring version.

3.4.a Galois theory of local rings

In the next few paragraphs we see that a finite local ring R has a distinguished collection of Galois
extensions GR(R, n), one for each positive integer n, which are themselves local rings and for which
many of the familiar properties of Galois fields continue to hold.

Extensions. Let R be a finite local ring. An extension ring is a finite local ring S which contains
R. Any extension S of R is an R-algebra. A ring homomorphism ϕ : S → S is said to be an R-
algebra automorphism of S provided it is both surjective and injective, and provided ϕ(ac) = aϕ(c)
for all a ∈ R and c ∈ S. Define the Galois group

G = Gal(S/R) = AutR(S)

to be the set of R-algebra automorphisms of S. The Galois group G acts on S. Let SG denote the
set of elements which are fixed under the action of G (hence R ⊂ SG). Then SG is an R-algebra.
If M is the maximal ideal of S, then SG is a finite local ring with maximal ideal SG ∩M, hence
is an extension of R. An extension S of R is unramified if the maximal ideal m of R generates
the maximal ideal of S; otherwise it is said to be ramified If S is an unramified extension of R
then mi generates Mi so the degree of nilpotency of m equals the degree of nilpotency of M. An
unramified extension R ⊂ S is said to be a Galois extension if R = SG.

Example Let R be a finite local ring with maximal ideal m. Let f ∈ R[x] be a monic basic
irreducible polynomial. The extension S = R[x]/(fm) is again a finite local ring (see Section 3.1).
Its maximal ideal is M = m + (f). If m > 1 then S is a ramified extension of R. If m = 1 then S
is an unramified extension and M = mS is generated by m.

The following result is the main theorem in the Galois theory of finite local rings. The proof
may be found in [24].

Theorem 3.4.1. Let R be a finite local ring. Then every unramified extension R ⊂ S is a Galois
extension. Suppose R ⊂ S is such an extension, with corresponding maximal ideals m ⊂M. Then
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the following diagram

S
ν−−−→ K = S/M⋃ ⋃

R
µ−−−→ F = R/m

(3.6)

induces an isomorphism Gal(S/R) ∼= Gal(K/F ) which is therefore a cyclic group. There exists
h ∈ S so that S = R[h]. The mapping determined by h 7→ h|F | generates Gal(S/R). Let h =
h1, h2, . . . , hd be the distinct images of h under Gal(S/R). Then the following polynomial

f(x) = (x− h1)(x− h2) · · · (x− hd) (3.7)

actually lies in R[x]. It is a (monic) basic irreducible polynomial of degree d = |Gal(S/R)|. The
mapping R[x]/(f) → S which takes x ∈ R[x] to h ∈ S is an isomorphism of rings (and of R-
algebras). The ring S is a free module of rank d over the ring R, hence |S| = |R|d and we say
that S is an extension of degree d. The above diagram induces a (combinatorial) lattice preserving
bijection between the Galois extensions of R which are contained in S and the field extensions of
F which are contained in K. The ring S is a field if and only if the ring R is a field. If f ′ ∈ R[x]
is another monic basic irreducible polynomial of the same degree d then there exists an R-algebra
isomorphism S ∼= R[x]/(f ′). In particular, f ′ also splits into linear factors over S.

Corollary 3.4.2. Let R be a finite local ring, let S be an unramified degree d extension of R, and
let f ∈ R[x] be a monic basic irreducible polynomial of degree d. Let α ∈ S be a root of f . Then
the collection {

1, α, α2, · · · , αd−1
}

is a basis of S over R. The element α is invertible in S.

Proof. According to Theorem 3.4.1, we may replace S with R[x]/(f) and we may replace α with
x. By the division theorem for polynomials, the set{

1, x, x2, · · · , xd−1
}

is a basis of R[x]/(f) over R. If f(x) = a0+a1x+· · ·+adxd then µ(a0) 6= 0 since µ(f) is irreducible.
Therefore a0 is invertible in S and

x−1 =
−1

a0

(a1 + a2x
2 + · · ·+ adx

d−1)

in R[x]/(f).
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3.4.b The Trace and the norm

Let R,m, F = R/m be a finite local ring with µ : R→ F the reduction map. Let S,M, K = S/M
be a Galois extension of degree d with ν : S → K the reduction map. Let a ∈ S. The trace
TrS/R(a) ∈ R and norm NS/R(a) ∈ R of a are defined to be

TrS/R(a) =
∑

σ∈Gal(S/R)

σ(a)

and
NS/R(a) =

∏
σ∈Gal(S/R)

σ(a).

Consider the mapping κa : S → S which is given by multiplication by a. Since S is a free
module over R it has a basis consisting of d elements, and the mapping κa may be expressed as a
d× d matrix Ma. Then the trace and norm of a equal the trace and determinant (respectively) of
this matrix (which are thus independent of the choice of basis).

Lemma 3.4.3. TrS/R(a) equals the trace of Ma and NS/R(a) equals the determinant of Ma. Also,
we have µ ◦ TrS/R = TrK/F ◦ ν and µ ◦NS/R = NK/F ◦ ν.

Proof. The last statement of the theorem follows from Theorem 3.4.1. We know the first statement
concerning the trace is true for the fields K and F by Proposition 2.2.14. Let N be the set of
elements a of S such that the trace of a equals the trace of Ma. Then N is an R-submodule of S
since the mapping from a to the trace of Ma is R-linear. Moreover S = N + MS = N + mS. By
Nakayama’s lemma (Theorem 3.1.2) we have S = N , which proves the claim.

Next we consider the norm. Let us denote the determinant of Ma by D(a). We want to show
that D(a) = NS/R(a) for every a ∈ S. Since both NS/R and D are multiplicative, it suffices to
show this for a set V such that every element of S is a product of elements of V .

If a ∈ R, then Ma = aI so D(a) = ad, and NS/R(a) = ad.
Suppose that a ∈ S reduces to a primitive element of K modulo M. If N is the R-submodule

of S spanned by 1, a, · · · , ad−1, then S = N + M, so by Nakayama’s lemma S = N . That is,
1, a, · · · , ad−1 is an R-basis for S. With respect to this basis Ma has the form described in the
proof of Proposition 2.2.14. If

f(x) = xd +

e/d−1∑
i=0

aix
i

is the minimal polynomial of a over R, then D(a) = a0 = NS/R(a). Thus D(ai) = NS/R(ai) for
every i. If n is the degree of nilpotency of S and R, then |S| = |K|n. We have thus far accounted
for the (|K| − 2)|K|n−1 elements of S that are congruent to some ai, i = 1, · · · , |K| − 2. We also
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have D((a + b)/a) = NS/R((a + b)/a) if b ∈ M. This accounts for the |M| = |K|n−1 elements in
1 + M, and hence for all the units. Finally, since M = mS, every element of M can be written
in the form cb with c ∈ mi for some i and b a unit. Using multiplicativity again completes the
proof.

Corollary 3.4.4. The trace TrS/R : S → R is surjective.

Proof. First we show there exists an element s ∈ S so that Tr(s) is invertible in R. If this were
false, then we would have Tr(s) ∈ m for all s ∈ S which would imply that the induced mapping
S/M→ R/m is 0. This would contradict the above lemma which states that this induced mapping
is the trace, TrK/F , which is surjective. So choose c ∈ S so that TrS/R(c) is invertible and let a ∈ R
denote its inverse. Then for any b ∈ R we have TrS/R(bac) = baTrS/R(c) = b.

Theorem 3.4.5. Let σ ∈ Gal(S/R) be a generator of the Galois group. Then TrS/R(a) = 0 if and
only if there exists c ∈ S such that a = c − σ(c), and NS/R(a) = 1 if and only if there is a unit
b ∈ S so that a = bσ(b)−1.

Proof. The ring S is a free module over R of rank d. First we prove the statement about the trace.
Let φ : S → S be defined by φ(x) = x−σ(x). The kernel of φ is R since S is a Galois extension of
R. As a homomorphism of R modules the rank of φ is d − 1 because its kernel is 1-dimensional.
Therefore the image of φ contains |R|d−1 elements. The image of φ is contained in Ker(Tr) which
by Corollary 3.4.4 also contains |R|d−1 elements, so they coincide. Thus Tr(a) = 0 if and only if
a = b− σ(b) for some b ∈ S.

The statement concerning the norm is similar, but it uses the function ψ : S× → S× defined
by ψ(x) = xσ(x)−1.

Suppose L : S → R is any R-linear mapping. Then for any i ≥ 1 we have L(Mi) ⊂ mi. (Since
M = mS, any element in Mi may be expressed as ac with a ∈ mi and c ∈ S, in which case
L(ac) = aL(c) ∈ mi.) In particular, L induces an F -linear mapping L̄ : K = S/M → F = R/m
and the diagram

S
ν−−−→ K = S/M

L

y yL̄
R

µ−−−→ F = R/m

(3.8)

commutes. Let us say that L is nonsingular if this mapping L̄ is surjective. This is equivalent to
saying that L̄ is not the zero map.

Theorem 3.4.6. Let L : S → R be an R linear mapping. Then

1. The mapping L : S → R is surjective if and only if L is nonsingular. (In particular, the
trace TrS/R is nonsingular.)
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2. If L is nonsingular, then L(Mi) = mi for any i ≥ 1.
3. If L is nonsingular, b ∈ S and L(ab) = 0 for all a ∈ S, then b = 0.
4. There exists b ∈ S so that L(a) = Tr(ba) for all a ∈ S. The element b is invertible if and

only if L is nonsingular.

Proof. If L is surjective then it is nonsingular by diagram (3.8). On the other hand, if L is
nonsingular then (as above) there exists b ∈ S such that L(b) is invertible in R. If a = L(b)−1

then, for any c ∈ R, L(cab) = c so L is surjective. This proves (1). We already know that
L(Mi) ⊂ mi so let c ∈ mi and, by part (1), let a0 ∈ S be an element such that L(a0) = 1. Then
ca0 ∈Mi and L(ca0) = c, which proves (2).

To prove (3), let n be the degree of nilpotency of m. That is, mn = 0 but mn−1 6= 0. Then n is
also the degree of nilpotency of M. Let b 6= 0 ∈ S and suppose that L(ab) = 0 for all a ∈ S. Let
m < n be the largest integer so that b ∈Mm. Then b = db1 with d ∈ mm −mm+1 and b1 a unit in
S. Therefore for all a ∈ S we have 0 = L(da) = dL(a). But m < n so we must have L(a) ∈ M
which contradicts the nonsingularity of L, proving (3).

To prove (4), consider the mapping S → HomR(S,R) which assigns to any b ∈ S the R linear
mapping a 7→ TrS/R(ab). This mapping is injective, for if b′ ∈ S and TrS/R(ab) = TrS/R(ab′) for all
a ∈ S, then by part (3) this implies b = b′. Since S is a free module over R of some rank d, there
are |R|d elements in HomR(S,R). But this is the same as the number of elements in S. Therefore
every R-linear mapping L : S → R is of the form a 7→ TrS/R(ab) for some b ∈ S. If b is invertible,
then the mapping L is nonsingular, whereas if b ∈ M then L(ab) ∈ m so the resulting mapping
L̄ : S/M→ R/m is zero.

3.4.c Primitive polynomials

Let R be a finite local ring with maximal ideal m and residue field µ : R→ F = R/m. Let S be a
degree d Galois extension of R, with maximal ideal M and residue field ν : S → K = S/M as in
(3.6). Let f ∈ R[x] be a basic irreducible polynomial of degree d. Then f is said to be primitive if
the polynomial f̄ = µ(f) ∈ F [x] is primitive. That is, if for some (and hence for any) root ā ∈ K
of f̄ , the distinct powers of ā exactly account for all the nonzero elements in K. Unfortunately
this is not enough to guarantee that each root a ∈ S of f generates the cyclic group ι(K×) ⊂ S.

Lemma 3.4.7. Let f ∈ R[x] be a basic irreducible polynomial of degree d and let S be a degree d
Galois extension of R, so that f splits into linear factors over S. Let a ∈ S be a root of f . If µ(f)
is primitive (in F [x]) then the elements

{
1, a, a2, · · · , aQ−2

}
are distinct, where Q = |K| = |F |d.

The roots of f lie in ι(K×) ⊂ S× if and only if f divides xQ− 1. Thus, if µ(f) is primitive and f
divides xQ − 1, then ι(K×) ⊂ S× consists of the Q− 1 distinct powers

{
1, a, a2, · · · , aQ−2

}
of a.

Proof. The element µ(a) ∈ K is a root of µ(f) ∈ F [x]. If µ(f) is primitive, then µ(a) is a primitive
element in K and the elements µ(a)i (0 ≤ i ≤ Q−2) are distinct, so the same is true of the elements
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ai (0 ≤ i ≤ Q− 2). By 3.1.4 the polynomial g(x) = xQ−1 − 1 factors completely in S as

g(x) =
∏
b∈K×

(x− ι(b)).

Since f also factors completely over S, we see that the roots of f lie in ι(K×) if and only if f
divides g(x).

3.5 Galois rings

Let p ∈ Z be a prime number. According to Theorem 3.4.1, for each n, d ≥ 1 the ring Z/(pn) has
a unique Galois extension of degree d. This extension S = GR(pn, d) is called the Galois ring of
degree d over Z/(pn). For n = 1 it is the Galois field Fpd . For d = 1 it is the ring Z/(pn). Let us
review the general facts from Section 3.4 for the case of a Galois ring S.

The Galois ring S = GR(pn, d) is isomorphic to the quotient ring Z/(pn)[x]/(f) where f ∈
Z/(pn)[x] is a monic basic irreducible polynomial. That is, it is a monic polynomial such that its
reduction f (mod p) ∈ Z/(p)[x] is irreducible. The ring S contains pnd elements. For each divisor
e of d the Galois ring S contains the ring GR(pn, e) and this accounts for all the subrings of S. For
any m ≤ n there is a projection S → GR(pm, d) whose kernel is the ideal (pm), and this accounts
for all the nontrivial ideals in S. In particular the maximal ideal M = (p) = pS consists of all
multiples of p. The quotient S/M ∼= Fpd is isomorphic to the Galois field with pd elements. If µ
denotes the projection to this quotient, then it is compatible with the trace mapping in the sense
that the following diagram commutes,

S = GR(pn, d)
µ−−−→ K = Fq

Tr
y yTr

Z/(pn) −−−→
µ

Fp

where q = pd. There is a natural (multiplication-preserving) splitting ι : K → S of the mapping µ
whose image is the set all elements x ∈ S such that xq = x. The group of units of S is the product

S× = ι(K×)× (1 + M).

If p ≥ 3 then
1 + M ∼= Z/(pn−1)× · · · × Z/(pn−1) (d times).

If p = 2 and n ≥ 3 then

1 + M ∼=
(
Z/(2n−1)

)d−1 × Z/(2n−2)× Z/(2)

93



If p = 2 and n = 1, 2 then in this equation, each factor Z/(2m) should be dropped whenever m ≤ 0.
It follows that, in general, S× contains cyclic subgroups of order (pd − 1)pn−1 and that |S×| =

(pd − 1)pd(n−1).

Lemma 3.5.1. For any x ∈ S there are unique elements a0, a1, · · · , an−1 ∈ ι(K) such that

x = a0 + a1p+ · · ·+ an−1p
n−1. (3.9)

The coefficients a0, a1, · · · an−1 in (3.9) are called the coordinates of x, and the expansion (3.9) is
called the p-adic expansion of x.

Proof. First note that if t ∈ ι(K) and if 1 − t is not a unit, then t = 1. Next, according to the
comments in the first paragraph of this section, |Mi/Mi+1| = q for 1 ≤ i ≤ n− 1. We claim that
every element of Mi/Mi+1 has a unique representative of the form api where a ∈ ι(K). Certainly
api ∈ Mi and there are no more than q such elements, so we need to show these elements are
distinct modulo Mi+1. Suppose api ≡ bpi (mod Mi+1) with a, b ∈ ι(K). Then pi(1−ba−1) ∈Mi+1

from which it follows that 1− ba−1 ∈M. But ba−1 ∈ ι(K) so the above note implies that a = b.
It now follows by induction that every x ∈Mi has a unique expression x = pi(a0 + a1p+ · · ·+

an−i−1p
n−i−1) with ai ∈ ι(K). The coefficient a0 is the unique representative of x (mod Mi+1),

while the inductive step applies to x− pia0 ∈Mi+1.

The advantage of Lemma 3.5.1 is that multiplication by elements in ι(K) is described coordin-
atewise. That is, if b ∈ ι(K) and if x is given by 3.9, then ba0 + ba1p+ · · ·+ ban−1p

n−1 is the p-adic
expansion of bx. Multiplication by p is given by a “shift” of the coefficients ai. However addition is
described using a generalized “carry” procedure: if a, b ∈ ι(K) and if a+b = c0+c1p+· · ·+cn−1p

n−1

is the p-adic expansion of a + b then we may think of the coefficient c0 as the “sum” and the
coefficients ci (for i ≥ 1) as being higher “carries”.

3.6 Exercises

1. Let R be a finite local ring with maximal ideal m. Show that

a.the ideal m consists precisely of the non-units of R,
b.for every a ∈ R, at least one of a and 1 + a is a unit, and
c.there is a positive integer n such that mn = 0.

2. Let R be a finite local ring with maximal ideal m and residue field F = R/m. Show that
mi−1/mi naturally admits the structure of a vector space over F .

3. If R is a local ring and g ∈ R[x] is regular, then use Nakayama’s Lemma to show that for every
f ∈ R[x] there exist q, r ∈ R[x] with f = gq + r and deg(r) < deg(g).
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4. Show that for p = 3 and m = 3, the mapping E : Z/(32)→ Z/(33) of Section 3.2.a is given by

E(a) = 1 + 3a+ 18a2 + 18a3.

5. Let S/R be a Galois extension of finite local rings σ ∈ Gal(S/R) be a generator of the Galois
group. Prove that NS/R(a) = 1 if and only if there is a unit b ∈ S so that a = bσ(b)−1.
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Chapter 4 Sequences, Power Series and Adic Rings

The central theme of this work is the design and analysis of sequences by identifying them with
algebraic structures. The most common example associates to a sequence a its generating function,
the formal power series whose coefficients are the elements of the sequence. This idea has been
extremely fruitful, with applications to many disparate areas including probability theory, cryp-
tography, combinatorics, random number generation, and algebraic topology. However, an infinite
sequence may also be associated to a p-adic number, a π-adic number, or a reciprocal power series.
Despite their differences, these algebraic structures can all be described in terms of a single general
construction known as “completion”. In this chapter these structures are individually described
and an outline of the general theory is given.

4.1 Sequences

In this section we describe basic combinatorial notions concerning sequences.

4.1.a Periodicity

Let A be a set and let a = (a0, a1, a2, · · ·) be a sequence of elements ai ∈ A, also called a sequence
over A. If the set A is discrete (meaning that it is finite or countable) then we refer to A as the
alphabet from which the symbols ai are drawn. If N is a natural number and A = {0, 1, · · · , N−1},
then we refer to a as an N-ary sequence. The sequence a is periodic if there exists an integer T > 0
so that

ai = ai+T (4.1)

for all i = 0, 1, 2, · · ·. Such a T is called a period of the sequence a and the least such T is called
the period, or sometimes the least period of a. The sequence a is eventually periodic if there exists
N > 0 and T > 0 so that equation (4.1) holds for all i ≥ N . To emphasize the difference, we
sometimes refer to a periodic sequence as being purely periodic or strictly periodic. A period (resp.
the least period) of an eventually periodic sequence refers to a period (resp. least period) of the
periodic part of a.

Lemma 4.1.1. Suppose a is a periodic (or eventually periodic) sequence with least period T . Then
every period of a is a multiple of T .

Proof. If T ′ is a period of a, then dividing by T gives T ′ = qT + r for some quotient q ≥ 1 and
remainder r with 0 ≤ r ≤ T − 1. Since both T and T ′ are periods, ai+T ′ = ai+qT+r = ai+r for all
i ≥ 0. Therefore r is a period also. Since r < T , the minimality of T implies r = 0.
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4.1.b Distinct sequences

Let A be an alphabet and let a = (a0, a1, · · ·) and b = (b0, b1, · · ·) be sequences of elements of A.
We say that b is a shift of a if there exists τ ≥ 0 so that bi = ai+τ for all i ≥ 0. We write b = aτ .
If no such shift τ exists then we say that a and b are shift distinct. If a and b are periodic with
the same period and b is a shift of a, then we say that b is a left shift of a. If no such shift exists
then a and b are shift distinct. More generally, if a is a sequence over an alphabet A and b is a
sequence over an alphabet B, we say that a and b are isomorphic if there exists an isomorphism
of sets σ : A→ B so that bi = σ(ai) for all i ≥ 0. (If A = B are the same alphabet then σ is just a
permutation of the symbols in the alphabet.) We say the sequences a and b are isomorphic up to
a shift if there exists an isomorphism σ : A→ B and a shift τ such that bi = σ(ai+τ ) for all i ≥ 0.
If no such pair σ, τ exists then we say that a and b are non-isomorphic, even after a shift.

4.1.c Sequence generators and models

The sequences described in this book are generated by algebraic methods involving rings. We
formalize constructions of this type by defining a sequence generator. In the models we encounter,
the state space of the sequence generator usually corresponds to a cyclic subgroup of the group of
units in a ring.

Definition 4.1.2. A sequence generator, or discrete state machine with output

F = (U,Σ, f, g)

consists of a set U of states, an alphabet Σ of output values, a state transition function f : U → U
and an output function g : U → Σ.

Such a generator is depicted as follows:

f
��- U -

g
Σ.

The set U of states is assumed to be discrete, meaning that it is either finite or countably infinite.
We also assume the alphabet Σ of possible output values is discrete. Given an initial state s ∈ U ,
such a sequence generator outputs an infinite sequence

F (s) = g(s), g(f(s)), g(f 2(s)), · · ·

with elements in Σ. A state s ∈ U is aperiodic if, starting from s, the generator never returns
to this state. The state s is periodic of period L if starting from s, after L steps, the generator
returns to the state s. That is, if fL(s) = s. The least period of such a periodic state is the least
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such L ≥ 1. A state s is eventually periodic if, starting from s, after a finite number of steps,
the generator arrives at a periodic state. If U is finite then every state is eventually periodic. We
say a set of states is closed if it is closed under state change. It is complete if it consists of all the
periodic states. If a state s is periodic (resp., eventually periodic), then the output sequence F (s)
is periodic (resp., eventually periodic) as well. The converse is false, however. For example, let
F = (N, {0, 1}, f, g) with f(n) = n + 1 and g(n) = 0 for all n. Then the output sequence from
every state is periodic but no state is even eventually periodic.

Definition 4.1.3. Let F = (U,Σ, f, g) and G = (V,Σ, f ′, g′) be sequence generators. A homomor-
phism from F to G is a partial function ψ from U to V so that

1. for all s ∈ U , if a is in the domain of ψ, then f(a) is also in the domain of ψ, and
2. the following diagram commutes:

U V-
ψ

��
?

f ��
?

f ′

HH
HHHHj

g

��
�����

g’

Σ

That is, g′(ψ(a)) = g(a) and ψ(f(a)) = f ′(ψ(a)) for all a in the domain of ψ.

If R is a ring and b ∈ R, then let hb : R→ R denote multiplication by b. That is, hb(x) = bx.
Then for any function T : R→ Σ, the 4-tuple Rb,T = (R,Σ, hb, T ) is a sequence generator.

Definition 4.1.4. Let F = (U,Σ, f, g) be a sequence generator. An algebraic model or simply a
model for F is a homomorphism ψ of sequence generators between F and Rb,T for some ring R,
b ∈ R, and T : R → Σ. The model is injective if ψ : Rb,T → F and the model is projective if
ψ : F → Rb,T .

In the case of an injective model, if a is in the domain of ψ, then the output sequence generated
from ψ(a) is described by the exponential representation,

T (a), T (ba), T (b2a), · · · .

In the case of a projective model, if s is in the domain of ψ, then the output sequence generated
from b is described by the exponential representation,

T (ψ(s)), T (bψ(s)), T (b2ψ(s)), · · · .
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If the ring R is a finite field, then every such sequence is strictly periodic (because bka = bk+ra
implies that a = bra). We say that the model is complete if every periodic state s ∈ Σ is in the
range (in the injective case) or domain (in the projective case) of ψ. A complete model, if one
exists, allows us to analyze the behavior of the sequence generator using the algebraic structure
of the ring R. In this book we encounter many different types of sequence generators and their
models.

If ψ is a one to one mapping on its domain, then it can be inverted (possibly resulting in a
partial function), allowing us to replace a projective model with an injective model, or vice versa.
In practice, however it may require a nontrivial amount of computation to describe the inverse
mapping, particularly when attempting to describe the initial state of the generator. Thus one or
the other version may be a more natural way to describe a model.

4.2 Power series

4.2.a Definitions

Throughout this section we fix a commutative ring R (with identity 1).

Definition 4.2.1. A (formal) power series over R is an infinite expression

a(x) = a0 + a1x+ a2x
2 + · · · ,

where x is an indeterminate and a0, a1, · · · ∈ R. As with polynomials, the ais are called coefficients.
The sequence (a0, a1, · · ·) of coefficients of a power series a(x) is denoted seq(a). If b(x) = b0 +
b1x+ b2x

2 + · · · is a second power series over R, then define

(a+ b)(x) = a(x) + b(x) =
∞∑
i=0

(ai + bi)x
i

and

(ab)(x) = a(x)b(x) =
∞∑
i=0

(
i∑

j=0

ajbi−j)x
i.

The set of power series over R is denoted R[[x]]. The least degree of a nonzero power series
a(x) =

∑∞
i=0 aix

i is the least index i such that ai 6= 0. The least degree of 0 is ∞.

These operations make R[[x]] into a ring with identity given by the power series 1 = 1 + 0x+
0x2 + · · ·. The following lemma concerns a remarkable property of the ring of power series: most
elements have inverses in R[[x]] and it is easy to determine when an element is invertible.
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Lemma 4.2.2. Let b(x) =
∑∞

i=0 bix
i ∈ R[[x]] be a power series. Then (1) b is invertible in R[[x]]

if and only if (2) the constant term b0 ∈ R is invertible in R.

Proof. The constant term of a product is the product of the constant terms, so (1) ⇒ (2). We
claim that (2) ⇒ (1). If b0 is invertible then the equation b(x)c(x) = 1 may be solved inductively
for c(x) =

∑∞
i=0 cix

i because c0 = b−1
0 and

ci = −b−1
0 (b1ci−1 + b2ci−1 + · · ·+ bic0) .

The set of polynomials over R is the subring of R[[x]] consisting of those power series with
finitely many nonzero coefficients. In fact there is a chain of subrings,

R ⊂ R[x] ⊂ E ⊂ R0(x) ⊂ R[[x]] ⊂ R((x))
∩

R(x)

which is described in the next few sections. The ring R((x)) of formal Laurent series consists of
infinite sums

a(x) = a−mx
−m + a−m+1x

−m+1 + · · ·+ a0 + a1x+ · · ·

with coefficients ai ∈ R and at most finitely many nonzero terms of negative degree. Addition
and multiplication are defined as with power series. The ring of rational functions R(x) consists
of all fractions f(x)/g(x) where f, g ∈ R[x] and g is not a zero divisor. So R(x) = S−1

1 R[x] is
the full ring of fractions, obtained by inverting the set S1 ⊂ R[x] consisting of all nonzero-divisors,
cf. Section 1.2.h. (The ring R(x) is usually of interest only when R is a field, in which case
S1 = R[x] − {0} consists of the nonzero polynomials, cf. Section 4.2.d.) The rings R0(x) and E
merit special attention.

4.2.b Recurrent sequences and the ring R0(x) of fractions

Let S0 ⊂ R[x] denote the multiplicative subset consisting of all polynomials b(x) such that the
constant term b0 = b(0) ∈ R is invertible in R and define (cf. Section 1.2.h)

R0(x) = S−1
0 R[x]

to be the ring of fractions a(x)/b(x) with b(x) ∈ S0. We obtain an injective homomorphism
ψ : R0(x)→ R[[x]] by mapping a(x)/b(x) to the product a(x)c(x) where c(x) ∈ R[[x]] is the power
series inverse of b(x) which was constructed in Lemma 4.2.2. The series

ψ(a(x)/b(x)) = a0 + a1x+ a2x
2 + · · · ∈ R[[x]]
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is referred to as the power series expansion of the fraction a(x)/b(x), and we write

a = seq(a(x)/b(x)).

Henceforth we identify R0(x) with its image in R[[x]].
A sequence a = a0, a1, · · · of elements of R is linearly recurrent (of degree d) if there exist

q1, · · · , qd ∈ R (with q1 6= 0, qd 6= 0) such that for all n ≥ d we have

an = q1an−1 + · · ·+ qdan−d. (4.2)

More generally, we say that a satisfies a recurrence of degree d for n ≥ N if equation (4.2) holds
for all n ≥ N . The following theorem characterizes the ring R0(x) as consisting of those power
series a(x) having linearly recurrent coefficient sequences.

Theorem 4.2.3. Let a = a0 + a1x + · · · ∈ R[[x]] be a formal power series. Fix N ≥ d > 1. The
following statements are equivalent.

1. There exist polynomials f(x), g(x) ∈ R[x] such that g(0) is invertible, deg(g) = d, deg(f) <
N , and a(x) = f(x)/g(x).

2. For all n ≥ N the sequence of coefficients an, an+1, an+2, · · · = seq(f/g) satisfies a linear
recurrence, of degree d.

Proof. First suppose that statement (1) holds, say a(x) = f(x)/g(x) with g(x) = g0+g1x+· · ·+gdxd
and gd 6= 0. Then f(x) = a(x)g(x) which gives

fn =
d∑
i=0

gian−i

for n ≥ d. Since f(x) is a polynomial, these coefficients vanish for n > deg(f). Consequently, if
n ≥ N ≥ max(d, deg(f) + 1) we have,

an = −g−1
0 (g1an−1 + g2an−2 + · · ·+ gdan−d)

which is a linear recurrence (of degree d). Conversely, suppose the coefficients of f satisfy a linear
recurrence an = g1an−1 + · · ·+gdan−d (with gd 6= 0) for all n ≥ N . Let g(x) = −1+g1x+ · · ·+gdx

d

and set g0 = −1. Then the product f(x) = g(x)a(x) is a polynomial of degree less than N , because
for n ≥ N its term of degree n is

d∑
i=0

gian−i = 0.

Consequently a(x) = f(x)/g(x), g0 is invertible, and deg(f) < N .
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4.2.c Eventually periodic sequences and the ring E

Definition 4.2.4. The ring E ⊂ R[[x]] is the collection of all power series a(x) =
∑∞

i=0 aix
i such

that the sequence of coefficients seq(a) = (a0, a1, · · ·) is eventually periodic.

Theorem 4.2.5. Let a(x) =
∑∞

i=0 aix
i be a power series over a ring R and let n ≥ 1. Then the

following are equivalent. (See also Lemma 1.4.6.)

1. The sequence seq(a) = (a0, a1, · · ·) is eventually periodic and n is a period of seq(a).
2. a(x) = h(x)/(xn − 1) for some h(x) ∈ R[x].
3. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(x) is monic and g(x)|(xn − 1).
4. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(x)|(xn − 1).

These statements imply

5. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(0) is invertible in R.

Hence E ⊆ R0(x). The eventual period is the least n for which (2), (3), or (4) holds. If R is finite
then statement (5) implies the others (for some n ≥ 1), so E = R0(x). (In other words, if R is
finite then a sequence over R satisfies a linear recurrence if and only if it is eventually periodic.)

The sequence seq(a) is purely periodic if and only if (2) holds with deg(h(x)) < n or equiva-
lently, if (3) or (4) holds with deg(f(x)) < deg(g(x)).

Proof. To see that condition (1) implies condition (2), suppose a(x) is eventually periodic with
ai = ai+n for all i ≥ N . Then we have

a(x) =
N−1∑
i=0

aix
i + xN

∞∑
j=0

(
n−1∑
k=0

anj+i+Nx
i

)
xnj

=
(xn − 1)(

∑N−1
i=0 aix

i)− xN
∑n−1

k=0 anj+i+Nx
i

xn − 1
.

This can be written as a rational function with denominator xn − 1.
That conditions (2), (3) and (4) are equivalent is left to the reader. In case (3) or (4), if

b(x)g(x) = xn − 1, then deg(b(x)f(x)) < n if and only if deg(f(x)) < deg(g(x)), which reduces
the statements about purely periodic power series to the statement about purely periodic power
series in case (2).

To see that condition (2) implies condition (1), suppose a(x) = h(x)/(xn−1) with h(x) ∈ R[x].
By the division theorem we can write h(x) = (xn − 1)u(x) + v(x) with u(x), v(x) ∈ R[x] and
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deg(v(x)) < n. Thus

a(x) = u(x) +
v(x)

xn − 1

= u(x) + (v(x) + xnv(x) + x2nv(x) + · · ·).

The power series v(x) + xnv(x) + x2nv(x) + · · · is strictly periodic since there is no overlap among
the degrees of the monomials in any two terms xinv(x) and xjnv(x). The addition of u(x) only
affects finitely many terms, so the result is eventually periodic. Also, the sequence is periodic if
and only if u(x) = 0, which is equivalent to deg(h(x)) < n.

It follows immediately that the eventual period is the least n for which (2), (3), or (4) holds.
Lemma 1.4.6 says that (4) implies (5), and if R is finite, then (5) implies (4) (for some n).

It is not always true that E = R0(x) : take R = Z, g(x) = 1 − 2x, and f(x) = 1. Then
a(x) = 1 + 2x+ 4x2 + · · · which is not eventually periodic.

4.2.d When R is a field

Theorem 4.2.6. If R is a field, then R(x) ⊂ R((x)) and both of these are fields. (The former
is called the field of rational functions over R; it is a global field). They are the fraction fields of
R[x] and R[[x]] respectively. The only non-trivial ideals in R[[x]] are the principal ideals (xm) for
m ≥ 1.

Proof. The only nontrivial statement in this theorem concerns the ideal structure of R[[x]]. Sup-
pose that I is a nonzero ideal in R[[x]]. Let a(x) be an element of I whose least degree nonzero
term has the smallest possible degree, n. Then we have a(x) = xnb(x) for some b(x) ∈ R[[x]],
and the constant term of b(x) is nonzero. By Lemma 4.2.2, b(x) is invertible in R[[x]]. Hence
xn ∈ I. Moreover, every element of I has least degree ≥ n, so can be written as xnc(x) for some
c(x) ∈ R[[x]]. Hence I = (xn).

4.2.e R[[x]] as an inverse limit

The quotient ring R[x]/(xi) may be (additively, but not multiplicatively) identified with the col-
lection of all polynomials of degree ≤ i− 1. Let

ψi : R[[x]]→ R[x]/(xi)

be the homomorphism that associates to each a =
∑∞

i=0 aix
i the partial sum (that is, the polyno-

mial)
ψi(a) = a0 + a1x+ · · ·+ ai−1x

i−1.
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These homomorphisms are compatible in the sense that if k ≤ i then

ψi,k(ψi(a)) = ψk(a)

where
ψi,k : R[x]/(xi)→ R[x]/(xk)

is reduction modulo xk. The next lemma says that every element of R[[x]] can be described in
terms of such a sequence of partial sums.

Lemma 4.2.7. Suppose s1, s2, · · · is a sequence with si ∈ R[x]/(xi). Assume these elements are
compatible in the sense that ψi,k(si) = sk for every pair k ≤ i. Then there is a unique element
a ∈ R[[x]] such that ψi(a) = si for all i ≥ 1.

Proof. The element a =
∑∞

i=0 aix
i is given by ai = (ψi+1(a)− ψi(a)) /xi.

This lemma implies that R[[x]] = lim
←−
{R[x]/(xi)}, is the inverse limit of the system of rings

R[x]/(xi). See Section 1.2.l to recall the definition of inverse limits. Specifically, the set of rings
{R[x]/(xi)} is a directed system indexed by the positive integers, with the reduction functions ψi,k.
Thus there is a homomorphism ψ from R[[x]] to lim

←−
{R[x]/(xi)} so that if

ϕi : lim
←−
{R[x]/(xi)} → R[x]/(xi)

is the projection function, then ψi = ϕi◦τ . This is shown in Figure 4.1.
We claim that ψ is an isomorphism. Lemma 4.2.7 says that ψ is surjective. If a(x) =∑∞
i=0 aix

i ∈ R[[x]] is nonzero, then ai 6= 0 for some i. Then ψi(a) 6= 0, so also ψ(a) 6= 0.
Thus ψ is also injective, and thus an isomorphism.

Corollary 4.2.8. Let M be an Abelian group. For i = 1, 2, · · · let τi : M → R[x]/(xi) be group
homomorphisms satisfying τi = ψj,i◦τj whenever i ≤ j. Then there is a unique homomorphism
τ : M → R[[x]] so that τi = ψi◦τ for i = 1, 2, · · ·. If M is also a module over R (respectively, an
algebra) and the τi are R-module homomorphisms (resp., ring homomorphisms), then so is τ .

4.3 Reciprocal Laurent series

Let K be a field, let g(x) ∈ K[x] be a polynomial of degree d. The reciprocal polynomial is the
polynomial g∗(y) = ydg(1/y).

It is straightforward to check that (gh)∗ = g∗h∗ for any h ∈ K[x], and that (g∗)∗ = g if and only
if g(0) 6= 0. If the polynomial g has nonzero constant term, then it is irreducible (resp. primitive)
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Figure 4.1: R[[x]] as an inverse limit

if and only if the same is true of g∗. If α 6= 0 is a root of g (possibly in some extension field of K)
then α−1 is a root of g∗. Let

F = K((x−1)) =

{
∞∑
i=k

aix
−i : k ∈ Z, ai ∈ K

}
be the ring of formal Laurent series in x−1. According to Theorem 4.2.6, F is a field. Every
polynomial f(x) ∈ K[x] is in F . Therefore F also contains every rational function f(x)/g(x)
(where f, g ∈ K[x]). Such a function can therefore be expanded as a Laurent series in x−1. Some
of these will be a power series in x−1. It is sometimes helpful, by analogy with the real numbers,
to think of

∑0
i=k aix

−i as the integer part of a =
∑∞

i=k aix
−i, and to think of

∑∞
i=1 aix

−i as the
fractional part. The degree of a is −k if ak 6= 0.

Proposition 4.3.1. Let f, g ∈ K[x] be polynomials. Then deg(f) ≤ deg(g) if and only if the
rational function f(x)/g(x) is actually a power series in x−1, that is,

f(x)

g(x)
= a0 + a1x

−1 + a2x
−2 + · · · ∈ K[[x−1]], (4.3)

and deg(f) < deg(g) if and only if a0 = 0. The sequence a = a0, a1, a2, · · · satisfies a linear
recurrence with connection polynomial g∗. Conversely, any element of K[[x−1]] whose coefficients
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satisfy a linear recurrence with connection polynomial g∗ may be expressed as a rational function
as in equation (4.3). The sequence a is eventually periodic if and only if there exists N so that
g(x)|(xN − 1) (which always holds if K is a finite field). The sequence a is strictly periodic if and
only if it is eventually periodic and f(0) = 0 (meaning that f(x) is divisible by x).

Proof. Let a(x) = a0 +a1x
−1 + · · ·, let f(x) = f0 +f1x+ · · ·+frx

r and g(x) = g0 +g1x+ · · ·+gdx
d.

If equation (4.3) holds then g(x)a(x) = f(x) is a polynomial of degree r = deg(g) + deg(a) ≤ d,
whose degree d term is fd = gda0, which vanishes when a0 = 0. The absence of negative powers of x
in f(x) exactly says that the sequence a satisfies a linear recurrence with connection polynomial g∗.
Next, suppose the sequence a is eventually periodic. Then there exists N such that g∗(y)|(yN −1),

from which it follows that g(x)|(xN − 1) (and vice versa). Finally, let f̂(y) = ydf(1/y) = f0y
d +

f1y
d−1 + · · ·+ fry

d−r so that

f̂(y)

g∗(y)
=
f(1/y)

g(1/y)
= a0 + a1y + a2y

2 + · · · .

The sequence a is strictly periodic when deg(f̂) < deg(g∗) = d, i.e., when f0 = 0.

4.4 N-Adic numbers

4.4.a Definitions

The p-adic numbers were discovered by K. Hensel around 1900. He was pursuing the idea that
numbers were like functions – the p-ary expansion of an integer is like a polynomial, so what
number corresponds to a power series? His ideas led to many far-reaching discoveries that have
shaped much of the modern approach to number theory. Fix an integer N ≥ 2.

Definition 4.4.1. An N -adic integer is an infinite expression

a = a0 + a1N + a2N
2 + · · · , (4.4)

where a0, a1, · · · ∈ {0, 1, · · · , N−1}. The set of N-adic integers is denoted by ZN . The least degree
of a nonzero N-adic integer a =

∑∞
i=0 aiN

i is the least index i such that ai 6= 0. The least degree
of 0 is ∞.

The ai are called coefficients.When writing N -adic integers we may omit terms whose coeffi-
cients are zero. We may also write the terms in a different order. A series such as equation (4.4)
does not converge in the usual sense. Nevertheless it can be manipulated as a formal object, just
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as with power series, but with slightly different algebraic rules. Addition and multiplication are
defined so as to take into account the “carry” operation. To be precise, the statement

∞∑
i=0

aiN
i +

∞∑
i=0

biN
i =

∞∑
i=0

ciN
i (4.5)

with ai, bi, ci ∈ {0, 1, · · · , N − 1} means that there exist integers t0, t1, · · · ∈ {0, 1} so that

a0 + b0 = c0 +Nt0 (4.6)

and for all i ≥ 1,
ai + bi + ti−1 = ci +Nti. (4.7)

The quantity ti is called the carry and it is 0 or 1 since (by induction) ai+bi+ti−1 ≤ 2(N−1)+1 <
2N . Also by induction the numbers ti, ci are determined by the ak, bk. In fact,

cn = (an + bn + tn−1) (mod N) and tn = b(an + bn + tn−1)/Nc

(with t−1 = 0). The product ab = c is defined similarly with

n∑
i=0

aibn−i + tn−1 = cn +Ntn, (4.8)

although in this case the carry ti may be greater than 1. (Some readers may find it easier to
think in terms of power series in some indeterminate, say, Y , and to use the rule that NY i =
Y i + Y i + · · ·+ Y i = Y i+1. But this notation quickly becomes cumbersome. The use of N instead
of Y facilitates many computations.)

It is easy to see that these operations make ZN into a ring (the ring axioms hold in ZN because
they hold modulo Nk for every k). As with power series, we refer to the sequence (a0, a1, · · ·) of
coefficients as seqN(a). It is an N -ary sequence (that is, a sequence over the alphabet {0, 1, · · · , N−
1}). We say that a is periodic (resp. eventually periodic) if the sequence seqN(a) of coefficients
is periodic (resp. eventually periodic).

If a =
∑∞

i=0 aiN
i is an N -adic integer, then the coefficient a0 is called the reduction of a modulo

N and it is denoted a0 = a (mod N). This gives a ring homomorphism ZN → Z/(N). We also
define the integral quotient of a by N to be

a (div N) =
∞∑
i=0

ai+1N
i =

a− a0

N
.

Thus a = a (mod N) +N(a (div N)).
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In the ring ZN we have an identity, −1 = (N − 1) + (N − 1)N + (N − 1)N2 + · · ·, which can
be verified by adding 1 to both sides. Similarly, there is an explicit formula for multiplication by
−1. If a =

∑∞
i=d aiN

i with 1 ≤ ad ≤ N − 1, then

−a = (N − ad)Nd +
∞∑
i=1

(N − ai − 1)N i. (4.9)

It follows that ZN contains the integers as a subring, and in fact there is a chain of rings, similar
to that of Section 4.2.a,

Z ⊂ ZN,0 ⊂ ZN ⊂ QN

∩
Q

The following analog to Lemma 4.2.2 characterizes the invertible elements of ZN .

Lemma 4.4.2. Let a =
∑∞

i=0 aiN
i ∈ ZN . Then a is invertible in ZN if and only if a0 is relatively

prime to N .

Proof. The proof is essentially the same as that of Lemma 4.2.2. Recall from Section 1.2.d that
a0 ∈ Z is relatively prime to N if and only if a0 is invertible in Z/(N). We want to find b =∑∞

i=0 biN
i so that ab = 1, and 0 ≤ bi ≤ N − 1. By equation (4.8) this means a0b0 = 1 + Nt0

(which has the unique solution b0 = a−1
0 (mod N) and t0 = a0b0 − 1 (div N)) and

n∑
i=0

aibn−i + tn−1 = cn +Ntn,

which has the unique solution recursively given by

bn = a−1
0

(
cn − tn−1 −

n∑
i=1

aibn−i

)
(mod N)

tn =

(
n∑
i=0

aibn−i − cn

)
(div N).

4.4.b The ring QN

The ring QN of N-adic numbers is the analog of formal Laurent series; it consists of infinite sums

a(x) = a−mN
−m + a−m+1N

−m+1 + · · ·+ a0 + a1N + · · ·
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with coefficients 0 ≤ ai ≤ N − 1 and at most finitely many nonzero terms of negative degree.
Addition and multiplication are defined as with N -adic integers. We have QN = S−1ZN where
S = {N,N2, N3 · · ·}.

It follows from Lemma 4.4.2 that if N = p is a prime number, then Zp is an integral domain
and Qp is its fraction field, that is, Qp = S−1Zp where S = Z×p consists of all nonzero elements
(cf. Section 1.2.h). For composite N , the ring ZN has zero divisors and the ring QN is not a field.
However in Corollary 4.4.9 we show that QN = S−1ZN is the “full” ring of fractions, meaning that
the set S consists of all nonzero-divisors in ZN . In Theorem 4.4.8 we show that ZN and QN can
be described in terms of Zp and Qp as p ranges over the prime divisors of N . For these reasons,
the rings ZN and QN (with N composite) are seldom encountered in the mathematical literature.
However we make use of them when studying sequences generated by an FCSR.

4.4.c The ring ZN,0
Definition 4.4.3. The ring ZN,0 consists of the set of all rational numbers a/b ∈ Q (in lowest
terms) such that b is relatively prime to N . That is, ZN,0 = S−1Z, where S is the multiplicative
set {b ∈ Z : gcd(b,N) = 1}.

Lemma 4.4.2 says that ZN,0 is naturally contained in the N -adic integers ZN and it is a subring.
The next theorem identifies ZN,0 as the collection of N -adic integers a ∈ ZN such that seqN(a) is
eventually periodic.

Theorem 4.4.4. Let a =
∑∞

i=0 aiN
i ∈ ZN and let n ≥ 1. Then the following statements are

equivalent.

1. a = f/g for some f, g ∈ Z such that g > 0 is relatively prime to N and ordg(N) divides n.
2. a = f/g for some f, g ∈ Z such that g > 0 and g|(Nn − 1).
3. a = h/(Nn − 1) for some h ∈ Z.
4. seqN(a) is eventually periodic and n is a period of a.

The eventual period is the least n for which (1), (2) or (3) holds. The N-adic integer a is purely
periodic if and only if −(Nn − 1) ≤ h ≤ 0 in case (3) or −g ≤ f ≤ 0 in cases (1) and (2).

Proof. Recall from Section 1.2.d that the integer g is relatively prime to N if and only if there
exists n ≥ 0 so that g|(Nn − 1), and the smallest such is n = ordg(N). (See also Lemma 1.4.6.)
Hence (1) and (2) are equivalent. That (2) and (3) are equivalent is left to the reader.

To see that (4) implies (3) let us first consider the special case when a is strictly periodic with
period n. Set h = a0 + a1N + · · ·+ an−1N

n−1. Then 0 ≤ h ≤ Nn − 1 and

a = h(1 +Nn +N2n + · · ·) = h/(1−Nn) = −h/(Nn − 1) (4.10)
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as claimed. (Notice that no carries occur in the above product.) If a is eventually periodic, suppose
it becomes periodic after the mth term. Then we can write a = H +Nmb for some integer H ≥ 0,
where b ∈ ZN is strictly periodic. Applying the special case to b and taking a common denominator
gives a = h′/(Nn − 1) for some h′ ∈ Z.

To see that (3) implies (4), let us first consider the special case when 1 − Nn ≤ h ≤ 0. Then
0 ≤ −h ≤ Nn − 1 so −h can be uniquely expressed as a sum, −h = a0 + a1N + · · · + an−1N

n−1

with 0 ≤ ai < N . Consequently equation (4.10) holds and since there are no carries in the product
that occurs there, the sequence seqN(a) is strictly periodic.

Now we show how to reduce to the case that 1 − Nn < h ≤ 0. If h > 0 then −h < 0 and
according to equation (4.9), multiplication by −1 does not affect the eventual periodicity (nor
the eventual period) of an N -adic number. So we may assume h ≤ 0. If h ≤ 1 − Nn < 0 then
we can write a = H + h′/(Nn − 1) where H ∈ Z, H < 0, and 1 − Nn < h′ ≤ 0. Therefore
−a = (−H) + (−h′)/(Nn − 1) is eventually periodic because the addition of the positive integer
−H to the eventually periodic expansion of (−h′)/(Nn−1) still leaves an eventually periodic series.
Using equation (4.9) again, it follows that the N -adic expansion of a is also eventually periodic.

It follows immediately that the eventual period is the least n for which (1), (2) or (3) holds.

Corollary 4.4.5. Let f, g,∈ Z with gcd(g,N) = 1. If gcd(f, g) = 1, then the period of the N-adic
expansion seqN(f/g) is the multiplicative order of N modulo g.

4.4.d ZN as an inverse limit

Let ψ` : ZN → Z/(N `) be the homomorphism that associates to each a =
∑∞

i=0 aiN
i the partial

sum

ψ`(a) =
`−1∑
i=0

aiN
i.

These homomorphisms are compatible in the sense that if k ≤ ` then

ψ`,k(ψ`(a)) = ψk(a)

where

ψ`,k : Z/(N `)→ Z/(Nk)

is reduction modulo Nk. In the language of Section 1.2.l, the family of rings Z/(N `) is a directed
system indexed by the positive integers with the maps ψ`,k. The next lemma says that every N -
adic integer can be described as such a sequence of partial sums. It is an exact parallel of Lemma
4.2.7.
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Lemma 4.4.6. For all N > 1, the mappings ψ`,k induce an isomorphism of rings,

ZN ∼= lim
←−
{Z/(N i)}.

In other words, there is a one to one correspondence between ZN and the set of all sequences
(s0, s1, · · ·) with si ∈ Z/(N i) such that for all pairs i ≤ j we have ψj,i(sj) = si.

Proof. By Theorem 1.2.33 there is a unique induced map ψ : ZN → lim
←−
{Z/(N i)}. It suffices

to construct an inverse for this function. Suppose s = (s1, s2, · · ·) ∈ lim
←−
{Z/(N i)}. That is,

si ∈ Z/(N i) and for all pairs i ≤ j we have ψj,i(sj) = si. Let ai be the coefficient of N i in the
N -adic expansion of si+1. By the commutativity assumptions, this is also the coefficient of N i in
sj for all j > i. Define τ(s) =

∑∞
i=0 aiN

i ∈ ZN . Then ψ(τ(s)) = s, so τ is the desired inverse.
This is illustrated in Figure 4.2.
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Figure 4.2: ZN as an inverse limit

Corollary 4.4.7. Let M be an Abelian group. For i = 1, 2, · · · let τi : M → Z/(N i) be group
homomorphisms satisfying τi = ψj,i◦τj whenever i ≤ j. Then there is a unique homomorphism
τ : M → ZN so that τi = ψi◦τ for i = 1, 2, · · ·. If M is also a ring and the τi are homomorphisms,
then so is τ .
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4.4.e Structure of ZN
In this section we suppose the prime factorization of N is N = pn1

1 p
n2
2 · · · p

nk
k , with distinct primes

pi. The ring ZN can be expressed in terms of the p-adic integers Zpi .

Theorem 4.4.8. With N as above, the ring ZN is isomorphic to the ring Zp1 × Zp2 × · · · × Zpk .
Similarly, QN

∼= Qp1 × · · · ×Qpk .

Proof. To simplify the notation slightly set qi = pni
i . For each j and `, we have a homomorphism

from Z/(N `) to Z/(q`i ). This induces a homomorphism from ZN to Z/(q`i ), and all the appropriate
functions commute. Thus by the universal property of inverse limits, there are homomorphisms

γi : ZN → Zqi
with appropriate commutativity. This gives us a homomorphism

γ : ZN →
k∏
i=1

Zqi ,

which we now show to be an isomorphism by constructing an inverse. For every positive ` there
is a reduction homomorphism

δ` :
k∏
i=1

Zqi →
k∏
i=1

Z/(q`i ).

By the Chinese Remainder Theorem (Theorem 1.2.18), the latter ring is isomorphic to Z/(N `).
Everything commutes appropriately, so there is an induced map

δ :
k∏
i=1

Zqi → ZN .

It is straightforward to see that γ and δ are inverses (it follows, for example, from the uniqueness
of the induced map into the universal object ZN).

This reduces the theorem to the case where N = pn for some prime p. Let

a =
∞∑
i=0

aip
ni ∈ Zpn , (4.11)

with 0 ≤ ai < pn. Each coefficient can be uniquely expressed as ai =
∑n−1

j=0 ai,jp
j with 0 ≤ ai,j < p.

Substituting this into (4.11) gives a p-adic integer. It is straightforward to verify that the resulting
mapping Zpn → Zp is a ring isomorphism.

The ring QN is obtained from ZN by inverting N , which is equivalent to inverting p1, p2, · · · , pk
simultaneously. It follows that QN

∼=
∏k

i=1 Qpi .
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Corollary 4.4.9. The ring QN = S−1ZN is obtained by inverting the set S consisting of all
non-zero-divisors in ZN . The ring ZN has no zero divisors if and only if N is prime.

Proof. Use the isomorphism ZN ∼=
∏k

i=1 Zpi of Theorem 4.4.8. Then an element a = (a1, a2, · · · , ak)
in this product is a zero divisor if and only if at least one of the coordinates aj = 0 (since then, if b
has a 1 in the jth position and zeroes elsewhere, we have ab = 0). So the set S of non-zero-divisors
consists of all such k-tuples where all of the aj are nonzero. Hence, S = S1 × S2 × · · · × Sk is the

product of the sets Si = Z×pi of nonzero elements in Zpi . So inverting this set gives
∏k

i=1 Qpi
∼=

QN .

There are many irrational algebraic numbers in ZN . For example, suppose that u(x) is a
polynomial with integer coefficients that has a root modulo N . Then u(x) has a root in ZN . This
is proved in the next section using Hensel’s Lemma.

4.5 π-Adic numbers

In this section we put the constructions from Subsections 4.2 and 4.4 into a larger context that
enables us to build very general algebraic sequence generators. Let R be an integral domain. Let
π ∈ R.

In the case of power series, we took coefficients from the underlying ring. In the case of N -
adic integers we took coefficients from {0, 1, · · · , N − 1}. When we construct π-adic numbers, the
generalizations of power series and N -adic integers, there may be no such natural set to use for
coefficients so we take a slightly different approach.

4.5.a Construction of Rπ

Definition 4.5.1. A pre-π-adic number over R is an infinite expression

a = a0 + a1π + a2π
2 + · · · ,

with a0, a1, · · · ∈ R. Let R̂π denote the set of pre-π-adic numbers.

The ai are the coefficients, and the sequence (a0, a1, · · ·) is referred to as seq(a) or seqπ(a).
When writing pre-π-adic numbers we may omit terms whose coefficient is zero. We may also write
the terms in a different order. The coefficients are arbitrary and may even be multiples of π. In
fact a pre-π-adic number is just a power series over R, so R̂π is a commutative ring.

We want to think of certain pre-π-adic numbers as representing the same element. For example,
π · 1 + 0 · π + 0 · π2 · · · and 0 · 1 + 1 · π + 0 · π2 · · · should be equal. We accomplish this by taking a
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quotient by an appropriate ideal. For each positive integer n we have a function ϕ̂n : R̂π → R/(πn)
defined by discarding terms of degree ≥ n and mapping the resulting element of R to R/(πn),

ϕ̂n(
∞∑
i=0

aiπ
i) =

n−1∑
i=0

aiπ
i (mod πn).

Let I =
⋂∞
n=1 Ker(ϕ̂n). (This ideal contains many nonzero elements; see Exercise 9.)

Definition 4.5.2. The ring of π-adic integers over R is the quotient ring Rπ = R̂π/I.

If the context is clear we may simply refer to a π-adic integer. The homomorphism h : R→ Rπ

(given by a 7→ aπ0 + 0 + 0 · · ·) is injective if and only if

∞⋂
i=0

(πi) = (0). (4.12)

because its kernel is the set of a ∈ R such that πn|a for all n. In studying sequences we often focus
on rings that satisfy equation (4.12) since we can replace R by R/∩∞i=0 (πi) without changing Rπ.

The element π generates an ideal in Rπ, and the homomorphism h : R → Rπ induces an
isomorphism R/(πn) ∼= Rπ/(π

n) for all n. (First check that h induces an injection from R/(πn)
to Rπ/(π

n). But any a =
∑∞

i=0 aiπ
i ∈ Rπ/(π

n) is the image of
∑n−1

i=0 aiπ
i ∈ R/(πn), so it is also a

surjection.)
A more convenient way of representing π-adic integers is the following. By a complete set of

representatives for R modulo π we mean a set S such that for all a ∈ R there is a unique b ∈ S so
that a ≡ b (mod π). The set S is not necessarily closed under addition or multiplication, however
it often happens that additively or multiplicatively closed sets S can be found.

Theorem 4.5.3. Let R be an integral domain, let π ∈ R and let S be a complete set of rep-
resentatives for R modulo π. Then every π-adic integer a ∈ Rπ has a unique π-adic expansion
a =

∑∞
i=0 biπ

i with all bi ∈ S.

Proof. Let a =
∑∞

i=0 aiπ
i ∈ Rπ. We need to construct a sequence b0, b1, · · · ∈ S so that for all n

πn|
n−1∑
i=0

(ai − bi)πi, (4.13)

for then equation (4.12) will imply that a =
∑
biπ

i. Let b0 ∈ S be the unique element so that
a0 ≡ b0 (mod π). Inductively assume that we have found b0, · · · , bn−1 so that equation (4.13)
holds. Then

n−1∑
i=0

(ai − bi)πi = πnc
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for some c ∈ R. Let bn be the unique element of S such that π divides an − bn + c. There is a
d ∈ R such that an + c = bn + πd. Then

n∑
i=0

(ai − bi)πi = (an − bn)πn +
n−1∑
i=0

(ai − bi)πi

= (an − bn)πn + cπn

= dπn+1.

This proves the existence part of the theorem.
Suppose c0, c1, · · · ∈ S is a second set of coefficients such that

πn

∣∣∣∣∣
n−1∑
i=0

(ai − ci)πi

for all n. Then also

πn

∣∣∣∣∣
n−1∑
i=0

(bi − ci)πi

for all n. Then π|(b0− c0) which implies b0 = c0. Inductively suppose that bi = ci for i < n. Then

πn+1 |(bn − cn)πn.

But R is an integral domain, so π|(bn − cn), so bn = cn.

For example, the power series ring A[[x]] over a ring A is the ring Rπ where R = A[x] and
π = x, so it is the ring of x-adic integers over A[x], in the terminology of this section. Also, the ring
ZN of N -adic integers (in the terminology of the preceding section) is the ring Rπ where R = Z
and π = N , so it is the ring of N -adic integers over Z.

4.5.b Divisibility in Rπ

Relative to a fixed complete set of representatives S for R modulo π, there is a well defined notion
of the reduction of an element of Rπ modulo π in R, and of the integral quotient of an element of
Rπ by π. If

a =
∞∑
i=0

aiπ
i,

is a π-adic integer with a0, a1 · · · ∈ S, then we write a0 = a (mod π) and refer to it as the reduction
of a modulo π. The integral quotient of a by π is

a (divS π) =
∞∑
i=0

ai+1π
i = (a− a0)/π.
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If a ∈ R, then a (divS π) ∈ R also. If the set S is understood, we simply write a (div π). Thus in
general a = a (mod π) + π(a (div π)).

Recall from Section 1.2.e that q, π ∈ R are relatively prime if the following equivalent conditions
hold.

• (q) + (π) = R
• The image of q in R/(π) is invertible.
• The image of π in R/(q) is invertible.

Proposition 4.5.4. Let R be an integral domain with fraction field F . Let π ∈ R and assume
equation (4.12) holds. Then an element q ∈ R is invertible in Rπ if and only if q and π are
coprime. Thus Rπ ∩ F consists of all fractions u/q such that q, π are coprime.

Proof. If q is invertible in Rπ then there exists u ∈ Rπ so that qu = 1. Reducing this equation
modulo π implies that q is invertible in Rπ/(π) ∼= R/(π) so q and π are coprime. To verify the
converse, let S ⊂ R be a complete set of representatives for R/(π) and let q =

∑∞
i=0 qiπ

i with
qi ∈ S. By hypothesis, q0 is invertible in R/(π). We seek u =

∑∞
i=0 with ui ∈ S such that qu = 1,

which is to say that q0u0 ≡ 1 (mod π) and, for all n ≥ 1,

q0un + q1un−1 + · · ·+ qnu0 ≡ 0 (mod π).

These equations may be solved recursively for un, using the fact that q0 is invertible in R/(π).

4.5.c The example of πd = N

Fix integers N, d > 0 such that the polynomial xd − N is irreducible over the rational numbers
Q. This occurs precisely when (1) for any prime number k dividing d, the integer N is not a kth
power of an integer, and (2) if 4 divides d, then N is not of the form −4x2 where x is an integer;
see [20, p. 221]. Let π ∈ C be a fixed root of this polynomial; it can be chosen to be a positive
real number. The ring R = Z[π] consists of all polynomials in π, with integer coefficients. It is an
integral domain in which every prime ideal is maximal.

We claim that the set S = {0, 1, · · · , N − 1} ⊂ R = Z[π] is a complete set of representatives
for the quotient R/(π). The mapping Z[π] → Z[π]/(π) throws away all the terms of degree ≥ 1
in any polynomial u ∈ Z[π]. Consequently the composition Z→ R = Z[π]→ R/(π) is surjective.
So it suffices to show that R/(π) contains N elements. In fact the ring Z[π] is an order (but not
necessarily the maximal order) in its fraction field F = Q(π) so Lemma 2.4.8 gives:

|R/(π)| =
∣∣NFQ(π)

∣∣ ,
which we now compute.
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The field F is a degree d extension of the rational numbers Q and it is the smallest field extension
of Q containing π. Having fixed π ∈ C, we obtain an embedding F ⊂ C. However it actually
admits d different embeddings into the complex numbers, σi : F → C which are determined by
setting σi(π) = ζ iπ (for 0 ≤ i ≤ d − 1) where ζ ∈ C is a primitive d-th root of unity. The norm
N(u) of an element u ∈ F is the product of the images of u under these embeddings. (These facts
use the irreducibility of the polynomial xd −N .) Hence, N(π) = πdζd(d−1)/2 = ±N , which proves
the claim. (We remark in passing that 1/π = πd−1/N so the field F = Q(π) = Q[π] consists of
polynomials in π with rational coefficients.)

Having found a complete set of representatives for R/(π) we can now describe the completion
Rπ. Each a ∈ Rπ can be uniquely represented as a power series a = a0 +a1π+ · · · with coefficients
ai ∈ S = {0, 1, 2, · · · , N − 1}, however we must remember that N = πd. Consequently, addition
of π-adic integers may be described as termwise addition with a “delayed carry”: each carried
quantity is delayed d steps before adding it back in. In other words, if b = b0 + b1π + · · · then

a+ b =
∞∑
i=0

eiπ
i,

with 0 ≤ ei ≤ N − 1, means that there exist cd, cd+1, · · · ∈ {0, 1} with

ai + bi + ci = ei +Nci+d.

That is, ci is the carry to the ith position. Similarly the difference a − b =
∑∞

i=0 fiπ
i is obtained

by subtracting the coefficients symbol by symbol, using a “borrow” operation which is delayed
d steps. The “borrow” operation is actually the same as the “carry” operation, but the carried
quantity is negative. That is,

ai − bi + ci = ei +Nci+d

from which it also follows immediately that the amount ci to be carried to the ith place is either
0 or −1. In this case it is possible to improve on Proposition 4.5.4.

Proposition 4.5.5. As a subset of F , the intersection Rπ ∩ F consists of all elements u/q such
that u, q ∈ F and q, π are coprime. As a subset of Rπ the intersection Rπ ∩ F consists of all
elements a = a0 + a1π + · · · whose coefficient sequence seqπ(a) = a0, a1, · · · is eventually periodic.

Proof. The first statement is Proposition 4.5.4. If a ∈ Rπ is an element whose coefficient sequence is
eventually periodic with period m, then using the geometric series, it follows that a = h/(1−πm) ∈
F (for some h ∈ R). On the other hand, suppose that u/q ∈ F (and q is relatively prime to π).
The ring Z[π]/(q) is finite by Lemma 2.4.8. Therefore the elements {1, N,N2, · · ·} are not all
distinct (mod q) which implies that N r ≡ 1 (mod q) for some r ≥ 1. Hence there exists a ∈ Z[π]
such that aq = 1 − N r so u/q = ua/(1 − N r). Set ua = v0 + v1π + · · · + vd−1π

d−1 with vi ∈ Z.
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Each vi/(1 − N r) ∈ ZN is an N -adic integer whose coefficient sequence is eventually periodic, of
period (a divisor of) r. These series exactly interleave in the sum

u

q
=

d−1∑
i=0

vi(1 + πdr + π2dr + · · ·)πi ∈ Rπ

giving a π-adic number whose coefficient sequence is eventually periodic of period rd.

Even if the coefficient sequences of a, b ∈ Rπ are strictly periodic of the same period, say T ,
the same is not necessarily true for the coefficient sequences of a± b. Since the carries are delayed
for d steps, the periodic part of a± b might begin only after d symbols have passed.

Lemma 4.5.6. Let

a =
∞∑
i=0

aiπ
i and b =

∞∑
i=0

biπ
i

be π-adic integers whose coefficient sequences are eventually periodic with period (a divisor of) n.
Then the coefficient sequence of a± b is eventually periodic with period (a divisor of) n.

Proof. (We consider the case of a − b; the case of the sum is similar.) It suffices to show that
the sequence of carries c0, c1, . . . is eventually periodic with period dividing n. Suppose a carry
occurs in the ith place, i.e. ci = −1. This occurs if and only if for some positive k ≤ i/d we have
ai−jd = bi−jd for 1 ≤ j ≤ k − 1, ai−kd = 0, and bi−kd = 1. But if this occurs then the same is true
with i replaced by i+ rn for every positive integer r.

Thus there are two possibilities for any i. Either for all r there is no carry to position i + rn,
or for r large enough there is a carry to position i+ sn for every s ≥ r. Therefore the sequence of
carries has eventual period dividing n, and the lemma follows.

4.6 Other constructions

In this section we describe other ways to define the π-adic integers over an integral domain R. We
include this material for completeness but the results in this section will not be used in the sequel.

4.6.a Rπ as an inverse limit

The collection of rings {Ri = R/(πi) : 1 ≤ i < ∞} forms a directed system with (the reduction
moduli πi) homomorphisms ψj,i : Rj → Ri for i ≤ j. So the limit lim

←−
{Ri} exists (see Section 1.2.l),

and there are projections ϕi : lim
←−
{Ri} → Ri such that φi = ψj,i ◦φj whenever i ≤ j. Similarly, the

ring Rπ comes with (reduction modulo πi) homomorphisms ψi : Rπ → Ri such that ψi = ψj,i ◦ ψj.
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Figure 4.3: Rπ as an inverse limit

Consequently there exists a homomorphism ψ : Rπ → lim
←−
{Ri} such that ψi = ϕi ◦ ψ, see Figure

4.3.

Proposition 4.6.1. The function ψ : Rπ → lim
←−
{R/(πi)} is an isomorphism of rings.

Proof. If a =
∑∞

i=0 aiπ
i ∈ Rπ is nonzero, then πn does not divide

∑n−1
i=0 aiπ

i for some n. Thus
ψn(a) 6= 0, and therefore ψ(a) 6= 0. This implies ψ is injective. Let b = (b0, b1, · · ·) ∈ lim

←−
{R/(πi)}.

For each i let ci ∈ R reduce to bi modulo πi. Thus πi|(ci − ci−1). Let ai = (ci − ci−1)/πi. Then
a =

∑∞
i=0 aiπ

i reduces to bi modulo πi+1 for every i. That is, ψ(a) = b and ψ is a surjection and
thus an isomorphism.

Corollary 4.6.2. Let M be an Abelian group. For i = 1, 2, · · · let τi : M → R/(πi) be group
homomorphisms satisfying τi = ψj,i◦τj whenever i ≤ j. Then there is a unique homomorphism
τ : M → Rπ so that τi = ψi◦τ for i = 1, 2, · · ·. If M is also a module over R (respectively, a ring)
and the τi are R-module homomorphisms (resp., ring homomorphisms), then so is τ .

Corollary 4.6.3. Let R and S be commutative rings with nonunits π ∈ R and ρ ∈ S. Suppose
that µ : R → S is a ring homomorphism such that µ(π) is divisible by ρ. Then µ extends to a
homomorphism µ : Rπ → Sρ.

Proof. By hypothesis, for each i there is a series of homomorhisms

Rπ → Rπ/(π
i) = R/(πi)→ S/(ρi)
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so that all the usual diagrams commute. Thus the universal property of Sρ implies that µ extends
to µ : Rπ → Sρ.

4.6.b Valuations

In many cases the ring Rπ may be described as a completion with respect to a discrete valuation.
This important notion is central in much of modern number theory and algebraic geometry.

Definition 4.6.4. Let A be a ring. A valuation on A (sometimes called a “discrete exponential
valuation”) is a function ν : A→ Z ∪ {∞} such that for all a, b ∈ A

1. ν(a+ b) ≥ min(ν(a), ν(b)).
2. ν(ab) = ν(a) + ν(b).
3. ν(a) =∞ if and only if a = 0.

It follows that ν(1) = 0 so ν(a−1) = −ν(a) if a ∈ A is invertible. The valuation is nontrivial if
there exists a nonzero a ∈ A such that ν(a) > 0. Let (A, ν) be a ring with a nontrivial valuation.
Then A is an integral domain (for if ab = 0 then ∞ = ν(0) = ν(ab) = ν(a) + ν(b) so at least one
of ν(a), ν(b) is ∞). If K is the field of fractions of A, then the valuation extends to a valuation on
K by ν(a/b) = ν(a)− ν(b).

Conversely, if (F, ν) is a field with a (nontrivial discrete exponential) valuation ν then the
following statements can be checked.

1. The set F≥0 = {a ∈ F : ν(a) ≥ 0} is a ring with valuation, called the valuation ring of the
field. For every a ∈ F , at least one of a ∈ F≥0 or a−1 ∈ F≥0.

2. If S−1F≥0 denotes the fraction field of F≥0 then the mapping h : S−1F≥0 → F given by
h(a/b) = ab−1 is an isomorphism of fields (with valuation).

3. There is exactly one maximal ideal in F≥0 and it is the set I = F>0 = {a : ν(a) > 0}.
Consequently F≥0 is a local ring, and an element a ∈ F≥0 is invertible if and only if ν(a) = 0.
Moreover, ∩∞i=0I

n = {0}, cf. equation (4.12).
4. The quotient F≥0/F>0 is a field, called the residue field,.

Examples:

1. Let K be a field and F = K((x)) its field of formal Laurent series. If

a(x) = amx
m + am+1x

m+1 + am+2x
m+2 + · · · ∈ F

is a series with leading term am 6= 0, set ν(a(x)) = m (which can be positive, zero, or negative).
Then ν is a discrete valuation on F and its valuation ring is the ring of formal power series F [[x]],
with maximal ideal (x). The residue field is K.
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2. Let p be a prime integer. If a ∈ Z is an integer then we have a = pnb for some nonnegative
integer n and some integer b that is relatively prime to p. Define νp(a) = n. Then νp is a valuation
on Z. This valuation extends to the fraction field Q and its valuation ring is Q≥0 = Zp,0, the set
of fractions a/b (in lowest terms) such that b is not divisible by p, cf. Section 4.4.c. The maximal
ideal in Zp,0 is (p) and the residue field is Fp = Z/(p). We remark that this procedure does not
give a valuation if p is replaced by a composite integer, say, N = ab with a, b ∈ Z. For then
νN(a) = νN(b) = 0 (since N does not divide a or b), but ν(N) = 1.

3. Let p ∈ Z be a prime integer and let Qp be the field of p-adic numbers. If a = amp
m +

am+1p
m+1 + · · · with leading term am 6= 0, set νp(a) = m. Then νp is a valuation on Qp; its

restriction to Q ⊂ Qp agrees with the valuation νp described in item (2) above. The valuation ring
is Zp, the p-adic integers, and the residue field is Fp = Z/(p).

4. More generally, let R be a UFD with fraction field F , and let π ∈ R be prime. If a ∈ R, then
a = πnb for some nonnegative integer n and some b ∈ R not divisible by π. If we define νπ(a) = n,
then νπ is a valuation on R. It extends to a valuation on F by ν(c/d) = ν(c)− ν(d). Similarly, it
extends to valuations on Rπ and Fπ. Moreover, Rπ = (Fπ)≥0.

5. Let (F, ν) be a discretely valued field with valuation ring Rν = F≥0 and maximal ideal Iν = F>0.
Let π ∈ Iν be an element whose valuation is minimal, say ν(π) = c. Then π is prime in Rν , and
every element y ∈ F is of the form y = πax with ν(x) = 0, and ν(y) = ac. In other words, the
construction in example (4) is completely general. To see this, first suppose that ν(y) = ac + d
with 0 < d < c. Then ν(y/πa) = d which contradicts the minimality of c, hence d = 0. Therefore
b = y/πa is a unit, and y = bπa as claimed. Similarly, if π = uv is a nontrivial product (with
u, v ∈ Rν , neither of which is a unit) then ν(π) = ν(u) + ν(v) ≥ 2c which is false, so π is prime in
Rν .

4.6.c Completions

A metric space is a set X with a metric or “distance function” δ : X × X → R such that
δ(a, b) = δ(b, a); δ(a, b) = 0 if and only if a = b; and δ(a, b) ≤ δ(a, c) + δ(c, b) (triangle inequality)
for all a, b, c ∈ X. The metric topology on X is the topology generated by the open “balls”
Bε(x) = {y ∈ X : δ(x, y) < ε} for all x ∈ X and all ε > 0. The metric δ is continuous with
respect to this topology. A mapping f : (X, δX) → (Y, δY ) between metric spaces is isometric if
δY (f(x1), f(x2)) = δX(x1, x2) for all x1, x2 ∈ X. Such a mapping is continuous with respect to the
metric topologies on X and Y. An isometry f : (X, δX) → (Y, δY ) is an isometric mapping that
has an isometric inverse. (In particular, it is one to one and onto.)

A sequence of points x1, x2, · · · in a metric space X is a Cauchy sequence if for every ε > 0
there exists a k so that δ(xi, xj) < ε if i, j ≥ k. A metric space is complete if every Cauchy
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sequence converges. A completion (X̂, δ̂) of a metric space (X, δ) is a complete metric space that

contains X as a dense subset, such that the restriction of δ̂ to X equals δ. Every metric space
has a completion (constructed below). If (X̂1, δ̂1) and (X̂2, δ̂2) are two completions of a metric
space (X, δ) then the identity mapping X → X extends in a unique way, to a continuous mapping

f̂ : (X̂1, δ̂1)→ (X̂2, δ̂2) and moreover, the mapping f̂ is an isometry.
Thus, the completion of (X, δ) is unique up to isometry. It may be constructed as follows. The

points in X̂ are equivalence classes of Cauchy sequences in X, two sequences x = x1, x2, · · · and
y = y1, y2, · · · being equivalent if

lim
i→∞

δ(xi, yi) = 0.

If z = z1, z2, · · · is another point in X̂ then the extended metric is defined by δ̂(x, z) = lim δ(xi, zi)

(which exists because x, z are Cauchy sequences). The space X is contained in X̂ as the set of
constant sequences.

Two metrics δ1, δ2 on a set X are equivalent if the set of Cauchy sequences for δ1 coincides with
the set of Cauchy sequences for δ2. In this case, the identity mapping I : X → X has a unique
continuous extension to the completions, Î : (X̂, δ̂1)→ (X̂, δ̂2) and Î is a homeomorphism.

Lemma 4.6.5. Let ν be a discrete valuation on a field F and let q > 1 be a positive real number.
Then δ(a, b) = q−ν(a−b) defines a metric on F . A different choice of q > 1 determines an equivalent
metric. Moreover, for any Cauchy sequence x1, x2, · · · the limit lim ν(xi) ∈ Z ∪ ∞ exists, and if
the limit is not ∞ then it is attained after finitely many terms.

Proof. If δ(a, b) = 0 then ν(a− b) =∞ so a = b. If a, b, c ∈ F then

δ(a, b) = q−ν(a−c+c−b) ≤ max(q−ν(a−c), q−ν(c−b)) ≤ q−ν(a−c) + q−ν(c−b) = δ(a, c) + δ(c, b)

so δ is a metric. Now let x1, x2, · · · be a Cauchy sequence. This means that for any T ≥ 1 there is
a k ≥ 1 such that

ν(xi − xj) ≥ T whenever i, j ≥ k. (4.14)

(So the particular choice of q does not matter.) There are now two possibilities. The first is that
for infinitely many values of i, the values of ν(xi) grow without bound. This in fact implies that
ν(xi)→∞ (so xi → 0) because, for all i, j,

ν(xj) = ν(xi + (xj − xi)) ≥ min{ν(xi), ν(xj − xi)}. (4.15)

Since ν(xi) can be chosen to be arbitrarily large, and since ν(xi − xj) grows without bound, it
follows that ν(xj) grows without bound.

The second possibility, therefore, is that the values of ν(xi) remain bounded for all i. Con-
sequently there exists 0 ≤ M < ∞ so that ν(xj) ≤ M for all j sufficiently large, and so that
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ν(xi) = M for infinitely many values of i. So there is an index i0 with the property that ν(xi0) = M
and if i, j ≥ i0 then ν(xi − xj) > M. Hence, by equation (4.15), ν(xj) = M whenever j ≥ i0, that
is, the sequence ν(xj) converges to M and it equals M after finitely many terms have passed.

If the discretely valued field (F, ν) is complete with respect to the metric defined by ν, then
we say that (F, ν) is a complete discretely valued field or local field.

Theorem 4.6.6. Let (F, ν) be a field with a discrete valuation, with associated metric δ as in
Lemma 4.6.5, and with valuation ring R = F≥0. Then the valuation ν extends to a valuation ν̂ on

the completion F̂ . Moreover, F̂ is again a field (so it is a local field) and its valuation ring F̂≥0

naturally identifies with the completion R̂. In particular, F̂ is the fraction field of R̂. We say that
F̂ is the completion of F with respect to ν.

Proof. Let x = x1, x2, · · · be a Cauchy sequence. By Lemma 4.6.5 the sequence ν(x1), ν(x2), · · ·
converges so we may define ν̂(x) = limi→∞ ν(xi). If y = y1, y2, · · · is an equivalent Cauchy sequence

then ν̂(y) = ν̂(x) so ν̂ is a well defined valuation on the completion F̂ .
Let T be the set of all Cauchy sequences in F . Then T is a subring of the product of infinitely

many copies of F, that is, addition and multiplication of two sequences is defined termwise. We
need to check that these arithmetic operations are preserved by the equivalence relation on Cauchy
sequences. The set of Cauchy sequences with limit 0 is an ideal I in T. Observe that two Cauchy
sequences x = x1, x2, · · · and y = y1, y2, · · · are equivalent if and only if

0 = lim
i→∞

δ(xi, yi) = q−ν(xi−yi)

which holds if and only if ν(xi − yi)→∞, that is, xi − yi ∈ I. Thus, the completion F̂ is exactly
T/I, which is a ring. To see that it is a field we need to show that every nonzero element has an
inverse. Let x = x1, x2, · · · be a Cauchy sequence that does not converge to 0. By Lemma 4.6.5 the
sequence ν(xi) converges to some number M and it equals M after some finite point. Therefore if
i, j are sufficiently large,

ν

(
1

xi
− 1

xj

)
= ν

(
xj − xi
xixj

)
= ν(xi − xj)− ν(xi)− ν(xj) = ν(xi − xj)− 2M →∞.

This shows that the sequence x−1
1 , x−1

2 · · · is a Cauchy sequence, and it therefore represents x−1 ∈ F̂ .
In a similar way we obtain the completion R̂ ⊂ F̂ of the valuation ring R = F≥0 and Lemma

4.6.5 implies that R̂ ⊂ F̂≥0. Conversely, if x ∈ F̂ and if ν̂(x) ≥ 0 then, again by Lemma 4.6.5,
this implies that ν(xi) ≥ 0 for all sufficiently large i, say, i ≥ i0. Therefore, if we replace x by the

equivalent Cauchy sequence x′ = xi0 , xi0+1, · · · then x′ ∈ R̂, which proves that F̂≥0 = R̂.
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Remarks. Completeness is not a “purely topological” invariant: it depends on a choice of metric
as well. The real numbers R is complete (with the usual metric) but the open interval (0, 1), which is
homeomorphic to R, is not complete. Its completion is the closed interval. The set of real numbers
is the completion of the rational numbers with respect to the Euclidean metric δ(x, y) = |x − y|,
however this metric does not arise from a discrete valuation. The following theorem says that the
π-adic numbers as constructed in Section 4.5 is an example of a completion.

Theorem 4.6.7. Let R be a UFD with field of fractions F. Let π ∈ R be prime and let νπ be the
corresponding discrete valuation as in example 4 of Section 4.6.b. Then (Rπ, νπ) is isomorphic to

its completion (R̂, ν̂π), and Fπ is isomorphic to its completion (F̂ , ν̂π).

Proof. Let x = x1, x2, · · · ∈ R̂ be a Cauchy sequence. For each fixed n the sequence of reductions
xi (mod πn) ∈ R/(πn) eventually stabilizes, giving a collection of compatible homomorphism

R̂→ R/(πn). By Corollary 4.6.2 this gives a homomorphism R̂→ Rπ. The inverse homomorphism
associates to each power series

∑∞
i=0 aiπ

i its sequence of partial sums a0, a0 + a1π, · · · which is a
Cauchy sequence. Thus ψ is an isomorphism of complete valued rings, so its canonical extension
ψ : F̂ → Fπ is an isomorphism of the corresponding fraction fields.

A basic property of local fields is expressed in Hensel’s Lemma which allows us to factor a
polynomial over the residue field, and to lift the factorization to the local field. Let F be a
complete discretely valued field with discrete valuation ν, valuation ring R = F≥0, maximal ideal
I = F>0 and residue field K = F≥0/F>0 (all depending on ν) as in Section 4.6.b. If f(x) is a
polynomial over R, we denote by f̄(x) the reduction of f(x) modulo the ideal I. The proof of the
following may be found, for example, in [15, pp. 573-4].

Theorem 4.6.8. (Hensel’s Lemma) Suppose f(x) ∈ R[x] is a monic polynomial and f̄(x) =
g0(x)h0(x) in K[x], where g0(x) and h0(x) are monic and relatively prime. Then there exist monic
polynomials g(x) and h(x) in R[x] such that f(x) = g(x)h(x), ḡ(x) = g0(x), and h̄(x) = h0(x).

Corollary 4.6.9. With the same hypotheses, if f̄(x) has a simple root a0, then f(x) has a simple
root a such that a (mod I) = a0.

4.6.d Adic topology

The construction of Rπ using valuations only works when R is a UFD and π is prime. But a similar
construction works for more general ideals in more general rings. Let R be an integral domain and
let I ⊂ R be an ideal. Suppose that R is separable with respect to I, that is, ∩∞n=1I

n = {0} . If
x ∈ I define V (x) = sup {n : x ∈ In} ∈ Z∪∞. If x, y ∈ I then V (x+ y) ≥ min {V (x), V (y)} and
V (xy) ≥ V (x) + V (y) (compare with Section 4.6.4). Fix q > 1 and define

δ(x, y) =

{
q−V (x−y) if x− y ∈ I
∞ otherwise.
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Then V is almost a valuation, although it is not defined on all of R. However, the same method
as in Lemma 4.6.5 and Theorem 4.6.6 shows that δ is a metric on R. It determines a topology on
R, a basis of which is given by the open sets of the form Bn(x) = x + In for x ∈ R and n ≥ 1. If
I = (π) is principal we refer to δ as a π-adic metric, and to the resulting topology as the π-adic
topology.

Theorem 4.6.10. Let R be an integral domain and let π ∈ R. Suppose R is separable with respect
to the ideal (π). Then the ring Rπ of π-adic integers may be naturally identified with the completion
of R in the π-adic metric.

Proof. The proof is the same as that of Theorem 4.6.7.

4.7 Continued fractions

Continued fraction expansion provides an alternate way to represent certain algebraic objects.
Every real number x has a continued fraction expansion. The continued fraction expansion of
a rational number a/b is equivalent to Euclid’s algorithm (300 BC) for (a, b). Specific examples
of continued fractions were known to Bombelli and Cataldi around 1600. The first systematic
treatment of continued fractions was by John Wallis in Opera Mathematica (1695). The subject
was intensively studied in the nineteenth century. Like the Euclidean algorithm, the continued
fraction expansion is optimal in two ways: (a) the successive terms, or “convergents” in this
expansion give best-possible rational approximations to x, see Theorem 4.7.4; and (b) the terms
in the expansion can be computed with very little effort. There are many wonderful applications
of continued fractions to problems in mathematics, science, and engineering. For example, in [2]
a constant is estimated, using a hand calculator, to be 2.1176470588. The CF expansion for this
number is [2, 8, 2, 147058823], suggesting that the actual number is [2, 8, 2] = 36/17, which turns
out to be correct. In [8], continued fractions are used to describe the efficacy of the twelve-tone
equal tempered musical scale, with the next best equal tempered scale having 19 tones.

Standard references for continued fractions include [11], [16] and [27]. We shall not explore this
topic in detail, but we develop enough of the theory to understand the relation between continued
fractions and the Berlekamp-Massey algorithm for linear feedback shift register synthesis.

4.7.a Continued fractions for rational numbers

The continued fraction representation for a rational number a/b (with a, b positive integers) is
defined by the iterative procedure in Figure 4.4. Let a0 = a, a1, a2, · · · and b0 = b, b1, b2, · · · be the
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RatContFrac(a, b)
begin
n = 0
while b 6= 0 do

Let
a

b
= cn +

a′

b
with cn, a

′ ∈ Z and 0 ≤ a′ < b

a = b
b = a′

n = n+ 1
od
return 〈c0, c1, · · · , cn−1〉
end

Figure 4.4: Rational Continued Fraction Expansion.

sequences of as and bs generated by the algorithm, then we have successively

a

b
= c0 +

a′

b
= c0 +

b1

a1

= c0 +
1
a1
b1

= c0 +
1

c1 + b2
a2

= c0 +
1

c1 + 1
c2+

a3
b3

= · · ·

which we denote [c0, c1, c2 · · ·]. If a/b = 10/7, this gives
10

7
= 1 +

3

7
= 1 +

1

2 + 1
3

, so the continued

fraction expansion of 10/7 is [1, 2, 3].

Proposition 4.7.1. The procedure in algorithm RatContFrac halts after finitely many steps.

Proof. We always have b > a′, so after the first iteration a′ < a. Therefore, for every i we have
max(ai+2, bi+2) < max(ai, bi). It follows that eventually b = 0 and the algorithm halts.

The sequence of non-negative integers [c0, c1, · · · , cn−1] is called the continued fraction expansion
of a/b. It is uniquely defined and gives an exact representation of a/b. Similarly, we can generate
continued fraction expansions of real numbers. If z > 0 is real, let {z} denote the fractional part
of z and let [z] denote the integer part or floor of z. Thus z = [z] + {z}. Then the continued
fraction expansion of z is the sequence generated by the recursive definition

c0 = [z], r0 = {z} = z − c0

and for n ≥ 1,

zn =
1

rn−1

, cn = [zn] , rn = {zn} , so zn = cn + rn (4.16)
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where we continue only as long as rn 6= 0. If z is irrational, then this recursion does not halt, but
outputs an infinite sequence of integers [c0, c1, · · ·] which is called the continued fraction expansion
of z. For example, the continued fraction expansion of z0 =

√
7 is:

z0 = 2 + (
√

7− 2) z1 =
1√

7− 2
= 1 +

√
7− 1

3

z2 =
3√

7− 1
= 1 +

√
7− 1

2
z3 =

2√
7− 1

= 1 +

√
7− 2

3

z4 =
3√

7− 2
= 4 + (

√
7− 2) z5 = z1.

Thus the expansion repeats from here on, and the continued fraction is [2, 1, 1, 1, 4, 1, 1, 1, 4, · · ·].
The nth convergent of the continued fraction [c0, c1, · · ·] is the rational number fn/qn that is

obtained from the finite continued fraction [c0, c1, · · · , cn]. The convergents fn/qn form a sequence
of rational approximations to z. The following proposition, when combined with the algorithm of
equation (4.16) or Figure 4.4 provides an efficient way to compute the convergents.

Proposition 4.7.2. Let z > 0 be a real number with continued fraction expansion z = [c0, c1, · · ·].
Let rn be the remainder as in equation (4.16). Then the convergents may be obtained from the
following recursive rule: if rn 6= 0 then

fn+1 = cn+1fn + fn−1 and qn+1 = cn+1qn + qn−1. (4.17)

The initial conditions are: f0 = c0, q0 = 1, f−1 = 1, and q−1 = 0. Moreover, for any n,

z =
fn + fn−1rn
qn + qn−1rn

. (4.18)

Proof. At the nth stage of the recursion we have a representation

z = c0 + (c1 + (c2 + · · ·+ (cn−1 + (cn + rn)−1)−1 · · ·)−1)−1.

The dependence on the innermost quantity, (cn + rn), is fractional linear:

z =
un(cn + rn) + wn
xn(cn + rn) + yn

, (4.19)

where un, wn, xn, yn are multilinear expressions in c0, · · · , cn−1. Then fn/qn is obtained by setting
rn = 0 in equation (4.19), so

fn
qn

=
uncn + wn
xncn + yn

.
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That is, fn = uncn + wn and qn = xncn + yn. Now consider equation (4.19) with n replaced by
n+ 1. This gives the same result as equation (4.19) with rn 6= 0 replaced by (cn+1 + rn+1)−1. Thus

un+1(cn+1 + rn+1) + wn+1

xn+1(cn+1 + rn+1) + yn+1

=
un(cn + (cn+1 + rn+1)−1) + wn
xn(cn + (can+1 + rn+1)−1) + yn

=
un(cn(cn+1 + rn+1) + 1) + wn(cn+1 + rn+1)

xn(cn(cn+1 + rn+1) + 1) + yn(cn+1 + rn+1)

=
(uncn + wn)(cn+1 + rn+1) + un
(xncn + yn)(cn+1 + rn+1) + xn

.

This being an equality of rational functions, we may conclude that un+1 = uncn + wn and that
wn+1 = un. But uncn + wn = fn hence un+1 = fn (and therefore un = fn−1). Similarly xn+1 =
xncn + yn = qn, and yn+1 = xn = qn−1. Equation (4.17) follows immediately and equation (4.19)
becomes (4.18).

Lemma 4.7.3. If n ≥ 0 and rn 6= 0 then fn+1qn − qn+1fn = (−1)n+1 so fn and qn are relatively
prime.

Proof. The proof is by induction on n. The initial conditions give f0q−1 − q0f−1 = 1. If n > 1,
then using equations (4.17) we have

fnqn+1 − qnfn+1 = fn(cn+1qn + qn−1)− qn(cn+1fn + fn−1) = −(fn−1qn − qn−1fn) = −(−1)n.

Theorem 4.7.4. Let fn/qn denote the nth convergent (n ≥ 1) of z ∈ R (z > 0). Then∣∣∣∣z − fn
qn

∣∣∣∣ < 1

qnqn+1

. (4.20)

If rn 6= 0, then qn+1 > qn. If f, q are positive integers and if |z − f/q| < 1/qnqn+1, then q > qn
unless f/q = fn/qn.

Proof. If rn = 0, then z = fn/qn, so we may assume rn 6= 0. By equation (4.18) we have

z − fn
qn

=
fn + fn−1rn
qn + qn−1rn

− fn
qn

=
(fn−1qn − qn−1fn)rn
qn(qn + qn−1rn)

=
(−1)nrn

qn(qn + qn−1rn)

=
(−1)n

qn((1/rn)qn + qn−1)
.
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For i ≥ 1 we have ci ≥ 0. Thus by equation (4.17), qi ≥ 0 for all i. Therefore

1

rn
qn + qn−1 ≥ cn+1qn + qn−1 = qn+1

which proves equation (4.20). If 0 6= rn < 1 then zn+1 > 1 so cn+1 ≥ 1. Since qn−1 > 0, equation
(4.17) gives qn > qn−1. Although it is not difficult, the proof of the last statement is tedious, and
may be found in [11], [16], or [27].

4.7.b Continued fractions for (reciprocal) Laurent Series

A theory of continued fractions can be developed whenever we have a subset R (the analog of
the “integers”) of a field F and a subset U ⊂ F (of “fractions”) so that every element of F can
be uniquely written in the form a + y with a ∈ R and y ∈ U . Let z 7→ {z} be a function from
F to U so that for every z we have z − {z} ∈ R. The sequences of elements c0, c1, · · · ∈ R and
r0, r1, · · · ∈ U are defined exactly as in equation (4.16). This point of view is developed in [32],
following work of [26] and [22]. In many cases (but not always: see the example in Section 4.7.c)
the resulting “rational” approximations converge and they are often the “best” possible. In this
section we describe the approach of [32].

Let K be a field. We wish to develop continued fraction expansions for rational functions
f(x)/g(x) where f, g ∈ R = K[x] are polynomials. Unfortunately there is no apparent analog
to the “integer part” of such a function, which we would like to be a polynomial in x. However
a formal Laurent series h(x) ∈ K((x)) is the sum of two pieces: the (finitely many) terms with
negative powers of x, plus the infinite series of terms with positive powers of x. We are thus led
to consider continued fractions for the field

F = K((x−1)) =

{
∞∑
i=k

aix
−i : k ∈ Z, ai ∈ K

}
,

of “reciprocal Laurent series”, or formal Laurent series in x−1, because the “integer part” will now
be a polynomial in x (with positive powers). As in Section 4.3, the field F contains all quotients
of polynomials f(x)/g(x). Thus we define[

∞∑
i=k

aix
−i

]
=
∑
i≤0

aix
−i ∈ R = K[x]

and {
∞∑
i=k

aix
−i

}
=
∞∑
i≥1

aix
−i ∈ x−1K[[x−1]].
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That is, the polynomial part of this Laurent series is the sum of the monomials with nonnegative
exponents. The fractional part is the sum of the monomials with negative exponents. It is an
element in the unique maximal ideal (x−1) in K[[x−1]]. With these definitions we can carry out
continued fraction expansions just as for the real numbers in equation (4.16). That is,

zn =
1

rn−1

, cn = [zn] , rn = {zn} , so zn = cn + rn

with c0 = [z] and r0 = {z}. (See exercises 16 and 17.) The associated convergent fn/qn is obtained
by stopping at stage n and replacing rn with 0.

Proposition 4.7.5. Let z ∈ K((x−1)), let n ≥ 1 and let fn/qn be its nth convergent. Then

fn+1 = cn+1fn + fn−1 and qn+1 = cn+1qn + qn−1. (4.21)

The initial conditions are f0 = c0 = [z]; q0 = 1; and f−1 = 1; q−1 = 0. Moreover,

fn−1qn − qn−1fn = (−1)n (4.22)

so fn and qn are relatively prime. If z = u/v with u, v ∈ K[x] then the continued fraction expansion
of z is finite and its length is at most the degree of v.

Proof. The proof of the first two statements is exactly the same as that of Proposition 4.7.2 and
Lemma 4.7.3. For n ≥ 1, the element rn can be expressed as a quotient of polynomials with
the degree of the numerator less than the degree of the denominator. The numerator at the nth
stage is the denominator at the (n+ 1)st stage. Thus the degrees of the denominators are strictly
decreasing. This implies the length of the expansion is no more than deg(v).

Recall from Section 4.6.b that the field K((x−1)) of formal Laurent series admits a metric,

δ(z, w) = 2−ν(z−w)

for z, w ∈ K((x−1)), where ν is the discrete valuation

ν

(
∞∑
i=k

aix
−i

)
= min{i : ai 6= 0}.

If u ∈ K[x] is a polynomial then ν(u) = − deg(u).
Now fix z ∈ K((x−1)). Let fn/qn be its nth convergent and set en = deg(qn). The following

theorem says that the continued fraction expansion converges, and that the convergents provide
the best rational approximation to z.
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Theorem 4.7.6. For any n ≥ 1, the power series expansion of z equals that of fn/qn in all terms
involving xk for k > −(en + en+1). That is, fn/qn ≡ z (mod x−en−en+1) or equivalently,

δ

(
z,
fn
qn

)
≤ 2−en−en+1 . (4.23)

If rn 6= 0 then en+1 > en. If f, q ∈ K[x] are relatively prime and if δ(z, f/q) < 2−2en then
deg(q) > deg(qn) unless f/q = fn/qn.

Proof. If rn = 0 then z = fn/qn so to prove (4.23), we may assume that rn 6= 0. As in the proof
of Theorem 4.7.4,

z − fn
qn

=
(−1)n

qn((1/rn)qn + qn−1)
=

(−1)n

qn(qn+1 + rn+1qn)
.

We will use the fact that ν(x + y) ≥ min(ν(x), ν(y)) and that equality holds if ν(x) 6= ν(y). By
construction, if n ≥ 0 we have ν(rn) ≥ 1 so ν(1/rn) ≤ −1 so for n ≥ 1 we have:

ν(cn) = ν((1/rn−1)− rn) = ν(1/rn−1) ≤ −1.

Assuming rn 6= 0 gives cn+1 6= 0. By equation (4.21) and induction,

−en+1 = ν(qn+1) = ν(cn+1qn + qn−1) < ν(qn) = −en. (4.24)

It follows that ν(qn+1 + rn+1qn) = ν(qn+1) = −en+1. Thus ν(z − fn/qn) = en + en+1 as claimed.
Now suppose that f, q ∈ K[x] are relatively prime and that ν(z − f/q) > 2en. Assume that

e = deg(q) ≤ en = deg(qn). We must show that f/q = fn/qn. Assume for the moment that
deg(f) ≤ deg(q) and deg(fn) ≤ deg(qn). (We will remove these assumptions below.) Let

f̂ = x−ef, q̂ = x−eq, f̂n = x−enfn, and q̂n = x−enqn.

Then f̂ , q̂, f̂n, q̂n ∈ K[x−1] are polynomials with

f

q
=
f̂

q̂
, and

fn
qn

=
f̂n
q̂n
.

Thus
f̂

q̂
≡ f̂n
q̂n

(mod x−2en−1)

in the ring K[[x−1]]. It follows that

f̂ q̂n ≡ f̂nq̂ (mod x−2en−1).
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However, by assumption, the left and right sides of this congruence have degrees ≤ 2en in x−1,
so they are in fact equal. It follows then that fqn = fnq. Now we can take this as an equation
in K[x]. Since f and q are relatively prime, f divides fn and q divides qn. Since fn and qn are
relatively prime, fn divides f and qn divides q. It follows that f/q = fn/qn.

Now suppose that deg(f) ≥ deg(q) (or that deg(fn) ≥ deg(qn)). Since δ(z, f/q) ≤ 1 this
implies that [z] = [f/q] = [fn/qn] = c0. So we may subtract off this integral part, and apply
the previous case to the fractional part. In other words, let z′ = z − c0, f ′ = f − c0q, and
f ′n = fn − c0qn. Then deg(f ′) < deg(q) and deg(f ′n) < deg(qn), while δ(z′, f ′/q) = δ(z, f/q) and
δ(z′, f ′n/qn) = δ(z, fn/qn). We conclude that deg(q) > deg(qn) unless f ′/q = f ′n/qn, in which case,
by adding back the integral part c0, we have f/q = fn/qn.

4.7.c Continued fractions for Laurent series and p-adic numbers

Continued fractions can be developed almost identically for the field F of Laurent series in x,
F = K((x)) = {

∑∞
i=k aix

i : ai ∈ K}. In this case the “integer part” is a polynomial in x−1.
Every statement in Section 4.7.b now holds with x−1 replaced by x. The terms cn = [zn] will
be polynomials in x−1 and the convergents fn/qn will be quotients of polynomials in x−1. By
multiplying numerator and denominator by an appropriate power of x, we can convert these into
approximations by ordinary rational functions, and the series of approximations will generally
differ from that in Section 4.7.b because the metrics on K((x)) and K((x−1)) are different.

A similar situation exists with the p-adic numbers. We can define continued fraction expansions
for z =

∑∞
i=k ai2

i with ai ∈ {0, 1, · · · , p−1} (and k possibly negative) by taking the “integer part”,
[z], to be the part involving non-positive powers,

[z] =
0∑
i=k

ai2
i and {z} =

∞∑
i=1

ai2
i

to be the fractional part. The appropriate metric comes from the usual p-adic valuation. However,
the set of “integral parts”, (polynomials in 2−1) is not closed under addition or multiplication. This
leads to continued fraction expansions that do not converge. For example, consider the 2-adic CF
expansion for −1/2 = 2−1 +20 +21 + · · ·. Since [−1/2] = 2−1 +20 and {−1/2} = 21 +22 + · · · = −2
we obtain the infinite expansion

−1

2
= 20 + 2−1 +

1

20 + 2−1 + 1
20+2−1+ 1

···

We can find the best rational approximation to a p-adic number using the theory of approximation
lattices.
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4.8 Exercises

1. Let F = Q be the rational numbers and q(x) = x− 1
2
. Show that the power series expansion of

1/q(x) is not eventually periodic.

2. Let F be a field and suppose that k is a positive integer that is invertible in F . Let a(x) =∑∞
i=0 aix

i ∈ F [[x]] be a power series such that a0 is a kth power in F . Show that a is a kth power
in F [[x]].

3. Let F be a field that is not algebraically closed. Show that F [[x]] does not contain the algebraic
closure of F .

4. If a, b ∈ ZN , make the definition of ab precise and show that ZN is a ring.

5. Show that Z3 does not contain
√
−1. Show that Z5 contains two elements whose squares are

−1, and compute the first 6 terms of each.

6. Use Theorem 4.4.8 to give an alternate proof that there is an injective homomorphism

{f/g : f, g ∈ Z, gcd(g,N) = 1} → ZN .

7. Complete the details of the proof of Theorem 4.4.8, showing that all the appropriate homomor-
phisms commute.

8. Generalize Theorem 4.4.8 to π-adic integers. What properties of the ring R are needed to make
this work?

9. Take R = Z and π = 5. Show that the element 5π0 + 4π1 + 4π2 + · · · ∈ R̂π is in the kernel of
ϕ̂n for all n.

10. Prove that the ring R̂ in Theorem 4.6.6 is an integral domain.

11. Finish the proof of Theorem 4.6.10.

12. Let R be a finite ring and let I be an ideal of R. Prove that the completion of R at I is a
quotient ring of R.

13. Prove that if the continued fraction expansion of z ∈ R is eventually periodic, then z is a root
of a quadratic polynomial with rational coefficients.

14. Use Hensel’s lemma to determine which integers m ∈ Z have a square root in Zp.
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15. (Reciprocal Laurent series) Let K be a field and let

z =
x3

x2 − 1
= x+ x−1 + x−3 + · · · =

∞∑
i=0

x1−2i.

Show that the continued fraction expansion of z is [x, x,−x]. That is,

x+ x−1 + x−3 + · · · = x+
1

x+ 1
−x
.

16. (Reciprocal Laurent series) Let K be a field whose characteristic is not equal to 2. Let z2 =
(1− x−1). Show that this equation has two solutions z in the ring K[[x−1]] of power series in x−1.
Hint: set z = a0 + a1x

−1 + · · ·, solve for a0 = ±1. For a0 = +1 solve recursively for an to find

0 = 2a0an + 2a1an−1 + · · ·+
{
a2
n/2 if n is even

2a(n−1)/2a(n+1)/2 if n is odd.

Do the same for a0 = −1.

17. (continued) Show that the continued fraction expansion for the above z is

(1− x−1)1/2 = 1 +
1

−2x+ 1/2 +
1

8x− 4 +
1

−2x+ 1 +
1

8x− 4 +
1

−2x+ 1 + · · ·
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Index

µN , 52
φ(N), 17
π-adic number, 113–125

as inverse limit, 119

Abelian group, 4
action of a group, 11
adic topology, 124
algebra, over a ring, 33
algebraic

closure, 45
curve, 77
integer, 74
model, 98

algebraic element, 42
algebraically closed, 73
algorithm

Euclidean, 24
complexity of, 25

alphabet, 96
annihilator, 13, 15
aperiodic state, 97
approximation lattice, 132
Artin’s conjecture, 18
associate elements, 19
Aut(S), 15
automorphism, 8, 15

basic irreducible polynomial, 79
basis, 28, 30
Bézout coefficients, 25
bound

Deligne, 59
Weil, 57, 58

carry, 107
delayed, 117

Cauchy sequence, 121
character, 34

additive, 57
multiplicative, 57
quadratic, 57, 61

character sum, 57
characteristic, 16
characteristic (of a ring), 15
Chinese remainder theorem, 26
class number, 76
closed

algebraically, 45, 73
integrally, 75

coefficient
Bézout, 25
of N -adic integer, 106
of a power series, 99

companion matrix, 54, 74
complete

metric space, 121
set of representatives, 114
valued field, 123

completion, 96, 123, 125
metric space, 122

conjugacy class, 11
continued fraction, 125–132

convergent, 127
expansion, 126, 130
Laurent series, 129

convergent, of a continued fraction, 127, 130
convex set, 32
convolution, 37
coordinates, 94
coprime, 20, 116
coprime elements, 87
coset, 10
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curve, algebraic, 77
cyclic group, 7, 16
cyclotomic coset, 53
cyclotomic field, 52

DU , 30
Dedekind domain, 76
degree

of an extension, 45
of nilpotency, 81

delayed carry, 117
Deligne bound, 59
determinant

of a lattice, 30
DFT, 37
directed system, 33
discrete Fourier transform, 37, 59–60
discrete state machine, 97
discrete valuation, 120
div π, 116
div N , 107
divisibility, 22

in R[x], 86, 87
division

of polynomials, 39
divisor, 19
domain, 13

Dedekind, 76
integral, 13, 20, 120
principal ideal, 20

dual vector space, 29

endomorphism, 8, 15
entire ring, 13, 20, 120
epimorphism, 8, 15
equation, quadratic, 55
Euclidean

algorithm, 24, 87
complexity of, 25

ring, 20
Euler totient, 17
eventually periodic, 102
eventually periodic sequence, 96
eventually periodic state, 98
exact sequence, 9

split, 9

expansion
power series, 101

exponential representation, 98
exponential sum, 57
extension

Galois, 45, 50
of degree d, 89
of fields, 45
of rings, 15, 88
ramified, 88
unramified, 88

extension field, 45
extension ring, 88

F≥0, 120
factorial ring, 20
factorization ring, 20, 76
Fermat’s congruence, 17
field, 13, 57

cyclotomic, 52
extension, 45
finite, 47–55
function, 103
Galois, 47
global, 77
local, 77, 123
number, 72
p-adic, 108
residue, 14, 79, 120
valued, 120

finite field, 47–55
finite local ring, 79–94

unit, 80
formal Laurent series, 100
formal power series, 99
Fourier

inversion formula, 36
Fourier transform, 34–37, 58

discrete, 37, 59–60
fraction field, 26
full lattice, 30
function

rational, 100
function field

global, 77, 103
local, 77
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Galois
conjugates, 50
extension, 45, 50, 88
field, 47–55
group, 45, 49
ring, 79–94

Galois field, 47
Galois group

of a finite local ring, 88
Galois ring, 93
Gauss sum, 57, 58
gcd, 19, 66
generating function, 96
generator (of a sequence), 97
global field, 77
group, 4–12, 34

Abelian, 4
structure of, 12

action, 11
character, 34
cyclic, 7
direct product of, 7, 11
finite Abelian, 12
Galois, 45, 49
homomorphism, 8
multiplicative, 17
order, 4
order of an element, 7
quotient, 10
subgroup

index of, 10
torsion element of, 12
torsion-free, 12

Hadamard
transform, 58

Hensel’s Lemma, 124
Hensel’s lemma, 124
HomF(V,W), 29
homomorphism, 8

of sequence generators, 98
ring, 15

ideal (in a ring), 13
principal, 13

image (of a homomorphism), 8

inequality
triangle, 121

integer
algebraic, 74
in a number field, 75
N -adic, 106

integral domain, 13, 20, 120
integral quotient, 115
integrally closed, 75
inverse limit, 33, 103, 118

π-adic number as, 119
N -adic integer as, 111
power series as, 104

inversion formula, 36
invert (a multiplicative subset), 26
irreducible

element, 20
isomorphism, 8, 15
isotropy subgroup, 11

kernel, 8, 15

lattic
volume of, 30

lattice, 30
full, 30

Laurent series, 100
reciprocal, 104

lcm, 20
least degree, 106

of a power series, 99
left shift, 97
Legendre

symbol, 58
lemma, Hensel’s, 124
lift, 84
limit, inverse, 33, 103
linear function, 29
linear recurrence, 101
local field, 77, 123
local ring, 20, 79–94, 120

MU , 30
metric space, 121
minimal polynomial, 42, 50
Minkowski’s theorem, 32
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mod, 5, 115
model, of a sequence generator, 98
modular integers, 5
module, 30
monic, 38
monomorphism, 8, 15
multiplicative

group, 17
order, 13
subset, 26

N -adic integer, 106–109
as inverse limit, 111
coefficient, 106
eventually periodic, 107
periodic, 107
reduction modulo N , 107

N -ary sequence, 96
Nakayama’s lemma, 80
nilpotent element, 80, 86
Noetherian ring, 20
norm, 46, 53, 73, 76

of rings, 90
normal subgroup, 10
number

N -adic, 108
p-adic, 108

number field, 72
order in, 75

orbit, 11
ord, 17
order

in a number field, 75
multiplicative, 13, 17
of a polynomial, 40
of an element, 7

order of a group, 4
orthogonality (of characters), 36

p-adic numbers, 77, 108
period, 96
periodic, 96

eventually, 102
periodic state, 97
PID, 20

polynomial
basic irreducible, 79
primitive, 51, 92
reciprocal, 104
regular, 79

polynomial ring, 21, 23, 38
power series, 99–104

as inverse limit, 104
expansion, 101

primary
element, 20
ideal, 14

primary ideal, 87
prime

element, 20
ideal, 14
in a finite local ring, 86
relatively, 20, 116

primitive
element, 51
polynomial, 51, 92
root, 18

principal ideal, 13
principal ideal domain, 20

Qp, 77, 108
quadratic character, 57, 61
quadratic equation, 55
quadratic form, 56, 61
quotient

group, 10
in R[x], 39
in a ring, 20

R((x)), 100
R0(x), 100
Rπ, 114
R[[x]], 99
R[x], 23, 38
ramified extension, 88
rank, 29

of a quadratic form, 61
rational function, 100, 103
reciprocal Laurent series, 104
reciprocal polynomial, 104
recurrence
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linear, 101
reduction, 115
regular element, 86
regular polynomial, 79
relatively prime, 20, 116
remainder

in R[x], 39
in a ring, 20

residue, 6
residue field, 14, 79, 120
right inverse, 15
ring, 12

commutative, 12
discrete valuation, 120
entire, 13, 20, 120
Euclidean, 20
extension, 88
factorial, 20
factorization, 20, 76
finite local, 79–94

unit, 80
Galois, 79–94
integral domain, 13, 20, 120
local, 20, 120
Noetherian, 20
of fractions, 26
polynomial, 21, 23, 38
principal, 20
valuation, 120

ring homomorphism, 15
root

of a polynomial, 38
of unity, 52, 59
primitive, 18
simple, 40

separable, 124
seq(a), seqπ(a), 99, 113
seqN (a), 107
sequence, 96–99

Cauchy, 121
eventually periodic, 96
generator, 97

homomorphism, 98
periodic, 96
strictly periodic, 96

shift
of a sequence, 97

shift distinct, 97
shift register, see LFSR, FCSR, AFSR
short exact sequence, 9, 15
simple root, 40
space, metric, 121
split (exact sequence), 9
splitting, 15
S−1R, 26
stabilizer, 11
Stark-Heegner Theorem, 76
state

aperiodic, 97
eventually periodic, 98
periodic, 97

states, set of
closed, 98
complete, 98
discrete, 97

strictly periodic sequence, 96
subgroup, 6

isotropy, 11
normal, 10

sum
character, 57
exponential, 57
Gauss, 57, 58

symbol, Legendre, 58

torsion element, 12
torsion-free, 12
totient, 6
totient, Euler, 17
trace, 46, 53, 73

of rings, 90
transform

Fourier, 34–37, 58
discrete, 37, 59–60

Hadamard, 58
Walsh, 58

transitive action, 11
transpose, 29
triangle inequality, 121

UFD, 20
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unit, 12, 19, 86
in a finite local ring, 80

unity, root of, 52, 59
unramified extension, 88

valuation
and metric space, 122
on a ring, 120

valuation ring, 120
valued field, 120
vector space, 28

dual, 29
volume (of a lattice), 30

Walsh transform, 58
Weil

bound, 57, 58

ZN , 106
ZN,0, 109
zero divisor, 12, 86
Z/(N), 5
Z/(N), 16–19, 81
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