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Abstract. A revision algorithm is a learning algorithm that identifies
the target concept, starting from an initial concept. Such an algorithm
is considered efficient if its complexity (in terms of the resource one is
interested in) is polynomial in the syntactic distance between the initial
and the target concept, but only polylogarithmic in the number of vari-
ables in the universe. We give efficient revision algorithms in the model
of learning with equivalence and membership queries. The algorithms
work in a general revision model where both deletion and addition type
revision operators are allowed. In this model one of the main open prob-
lems is the efficient revision of Horn sentences. Two revision algorithms
are presented for special cases of this problem: for depth-1 acyclic Horn
sentences, and for definite Horn sentences with unique heads. We also
present an efficient revision algorithm for threshold functions.

1 Introduction

Efficient learnability has been studied from many different angles in computa-
tional learning theory for the last two decades, for example, in both the PAC
and query learning models, and by measuring complexity in terms of sample size,
the number of queries or running time. Attribute-efficient learning algorithms
are required to be efficient (polynomial) in the number of relevant variables, and
“super-efficient” (polylogarithmic) in the total number of variables [1, 2]. It is
argued that practical and biologically plausible learning algorithms need to be
attribute efficient.

A related notion, efficient revision algorithms, originated in machine learning
[3–6], and has received some attention in computational learning theory as well.
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A revision algorithm is applied in a situation where learning does not start
from scratch, but there is an initial concept available, which is a reasonable
approximation of the target concept. The standard example is an initial version
of an expert system provided by a domain expert. The efficiency criterion in this
case is to be efficient (polynomial) in the distance from the initial concept to the
target (whatever distance means; we get back to this in a minute), and to be
“super-efficient” (polylogarithmic) in the total size of the initial formula. Again,
it is argued that this is a realistic requirement, as many complex concepts can
only be hoped to be learned efficiently if a reasonably good initial approximation
is available. The notion of distance usually considered is a syntactic one: the
number of edit operations that need to be applied to the initial representation
in order to get a representation of the target. The particular edit operations
considered depend on the concept class. Intuitively, attribute-efficient learning
is a special case of efficient revision, when the initial concept has an empty
representation. In machine learning, the study of revision algorithms is referred
to as theory revision; detailed references to the literature are given in Wrobel’s
overviews of theory revision [7, 8] and also in our recent papers [9, 10].

The theoretical study of revision algorithms was initiated by Mooney [11]
in the PAC framework. We have studied revision algorithms in the model of
learning with equivalence and membership queries [9, 10] and in the mistake-
bound model [12].

It is a general observation both in practice and in theory that those edit
operations which delete something from the initial representation are easier to
handle than those which add something to it. We have obtained efficient revision
algorithms for monotone DNF with a bounded number of terms when both
deletion and addition type revisions are allowed, but for the practically important
case of Horn sentences we found an efficient revision algorithm only for the
deletions-only model. We also showed that efficient revision of general (or even
monotone) DNF is not possible, even in the deletions-only model. Finding an
efficient revision algorithm for Horn sentences with a bounded number of terms
in the general revision model (deletions and additions) emerged as perhaps the
main open problem posed by our previous work on revision algorithms. The
work presented here extends that of Doshi [13], who gave a revision algorithm
for “unique explanations”, namely depth-1, acyclic Horn formulas with unique,
non-F, and unrevisable heads. Horn revision also happens to be the problem
that most practical theory revision systems address. It is to be noted here that
the notions of learning and revising Horn formulas are open to interpretation,
as discussed in [10]; the kind of learnability result that we wish to extend to
revision in this paper is Angluin et al.’s for propositional Horn sentences [14].

It seems to be an interesting general question whether attribute-efficiently
learnable classes can also be revised efficiently. The monotone DNF result men-
tioned above shows that the answer is negative in general. We gave a positive
answer for parity functions in [9] and for projective DNF in [12]. Projective DNF
is a class of DNF introduced by Valiant [15], as a special case of his projective
learning model, and as part of a framework to formulate expressive and biologi-



cally plausible learning models. In biological terms revision may be relevant for
learning when some information is hard-wired from birth; see, e.g., Pinker [16]
for recent arguments in favor of hereditary information in the brain.

Valiant showed that projective DNF are attribute-efficiently learnable in the
mistake-bound model, and we extended his result by showing that they are effi-
ciently revisable. Our algorithm was based on showing that a natural extension
of the Winnow algorithm is in fact an efficient revision algorithm for disjunctions
even in the presence of attribute errors.

Valiant’s related models [17, 18] also involve threshold functions, and as
threshold functions are also known to be attribute-efficiently learnable, this raises
the question whether threshold functions can be revised efficiently. Threshold
functions (also called Boolean threshold functions or zero-one threshold func-
tions in the literature) form a much studied concept class in computational
learning theory. Winnow is an attribute-efficient mistake-bounded learning al-
gorithm [19]. Attribute-efficient proper query learning algorithms are given in
Uehara et al. [20] and Hegedüs and Indyk [21]. Further related results are given
in [22–25].

Results In this paper we present results for the two revision problems outlined
above: the revision of Horn sentences and threshold functions, in the general
revision model allowing both deletions and additions (more precise definitions
are given in Section 2). We use the model of learning with membership and
equivalence queries.

For Horn sentences, we show that one can revise two subclasses of Horn
sentences with respect to both additions and deletions of variables. The new
algorithms make use of our previous, deletions-only revision algorithm for Horn
sentences [10] and new techniques which could be useful for the general question
as well.

The first of the two classes is depth-1 acyclic Horn sentences. The class of
acyclic Horn sentences was introduced by Angluin [26] in a paper that presented
the first efficient learning algorithm for a class of Horn sentences, and was studied
from the point of view of minimization and other computational aspects (see,
e.g., [27]), and in the context of predicate logic learning [28]. We consider the
subclass of depth-1 acyclic Horn sentences, where, in addition to assuming that
the graph associated with the Horn sentence is acyclic, we also require this graph
to have depth 1. One of our main results, Theorem 1, shows that this class can be
revised using O(dist(ϕ, ψ)·m3 ·logn) queries, where n is the number of variables,
ϕ is the m-clause initial formula, ψ is the target formula, and dist is the revision
distance, which will be defined formally in Section 2.

We also give a revision algorithm for definite Horn sentences with unique
heads, meaning that no variable ever occurs as the head of more than one Horn
clause. For this class, we revise with query complexity O(m4 +dist(ϕ, ψ) · (m3 +
logn)), where again ϕ is the initial formula and ψ is the target function (Theo-
rem 2).

For threshold functions we give a revision algorithm using O(dist(ϕ, ψ)·log n)
queries (Theorem 3). In this algorithm the pattern mentioned above is reversed,



and it turns out to be easier to handle additions than deletions. It is also shown
that both query types are necessary for efficient revision, and that the query
complexity of the algorithm is essentially optimal up to order of magnitude.
Another interesting point is that the natural extension of Winnow mentioned
above does not work in this more general context.

Organization of paper Preliminaries are given in Section 2, Horn formula revi-
sions in Section 3, threshold functions in Section 4. Due to space constraints,
complete proofs are deferred to the full version of the paper.

2 Preliminaries

We use standard notions from propositional logic such as variable, literal, term
(or conjunction), clause (or disjunction), etc. The set of variables for n-variable
formulas and functions is Xn = {x1, . . . , xn}. (In this paper, n will always be the
total number of variables.) Instances or vectors are elements x ∈ {0, 1}

n
. When

convenient we treat x as a subset of [n] or Xn, corresponding to the components,
resp. the variables, which are set to true in x. Given a set Y ⊆ [n] = {1, . . . , n},
we write χY = (α1, . . . , αn) ∈ {0, 1}n for the characteristic vector of Y . We write
x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) if xi ≤ yi for every i = 1, . . . , n.

A Horn clause is a disjunction with at most one unnegated variable; we will
usually think of it as an implication and call the clause’s unnegated variable its
head, and its negated variables its body. We write body(c) and head(c) for the
body and head of c, respectively. A clause with an unnegated variable is called
definite (or positive). We will consider clauses with no unnegated variables to
have head F, and will sometimes write them as (body → F). A Horn sentence
is a conjunction of Horn clauses. A Horn sentence is definite if all its clauses
are definite. A Horn sentence has unique heads if no two clauses have the same
head.

We define the graph of a Horn sentence to be a directed graph on the variables
together with T and F, with an edge from variable u to variable v (resp. F iff
there is a clause with head v (resp. F) having u in its body, and an edge from T

to variable v if there is a clause consisting solely of variable v. A Horn sentence
is acyclic if its graph is acyclic; the depth of an acyclic Horn sentence is the
maximum path length in its graph [26].

For example, the Horn sentence

(x1 ∧ x2 → x3) ∧ (x1 ∧ x4 → x5) ∧ (x4 ∧ x6 → F)

is depth-1 acyclic. Its graph has the edges (x1, x3), (x2, x3), (x1, x5), (x4, x5),
(x4,F), and (x6,F) and this graph is acyclic with depth 1.

If x satisfies the body of Horn clause c, considered as a term, we say x

covers c. Notice that x falsifies c if and only if x covers c and head(c) 6∈ x. (By
definition, F 6∈ x.)

For Horn clause body b (or any monotone term) and vector x, we use b ∩ x

for the monotone term that has those variables of b that correspond to 1’s in x.
As an example, x1x4 ∩ 1100 = x1.



An n-variable threshold function THt
U is specified by a set U ⊆ [n] and a

threshold 0 ≤ t ≤ n, such that for a vector x = (x1, . . . , xn) ∈ {0, 1}n it holds
that THt

U (x) = 1 iff at least t of the variables with subscripts in U are set to 1 in
x. In other words, THt

U (x) = 1 iff
∑n

i=1
αixi ≥ t, where χU = (α1, . . . , αn). We

say that S is a positive (resp., negative) set if χS is a positive (resp., negative)
example of the target threshold function. (As the number of variables is clear
from the context, we do not mention it in the notation.) Note that for every
non-constant threshold function its set of relevant variables and its threshold
are well defined, thus every non-constant function has a unique representation.
The variables with indices in U (resp., outside of U) are the relevant (resp.,
irrelevant) variables of THt

U . As noted in the introduction, functions of this
type are also called Boolean threshold functions and 0-1-threshold functions,
in order to distinguish them from the more general kind of threshold functions
where the coefficients αi can be arbitrary reals. We simply call them threshold
functions, as we only consider this restricted class.

We use the standard model of membership and equivalence queries (with
counterexamples), denoted by MQ and EQ [29]. In an equivalence query, the
learning algorithm proposes a hypothesis, a concept h, and the answer depends
on whether h ≡ c, where c is the target concept. If so, the answer is “correct”,
and the learning algorithm has succeeded in its goal of exact identification of
the target concept. Otherwise, the answer is a counterexample, any instance x

such that c(x) 6= h(x).

2.1 Revision

The revision distance between a formula ϕ and a concept C is defined to be the
minimum number of applications of a specified set of syntactic revision operators
to ϕ needed to obtain a formula for C. The revision operators may depend on
the concept class one is interested in. Usually, a revision operator can either be
deletion-type or addition-type.

For disjunctive or conjunctive normal forms, the deletion operation can be
formulated as fixing an occurrence of a variable in the formula to a constant. In
the general model, studied in this paper, we also allow additions. The addition
operation is to add a new literal to one of the terms or clauses of the formula.
(Adding a new literal to open up a new clause or term would be an even more
general addition-type operator, which we have not considered so far.) In the case
of Horn sentences the new literals must be added to the body of a clause.

In the case of threshold functions, deletions mean deleting a relevant variable
and additions mean adding a new relevant variable. In the general model for this
class we also allow the modification of the threshold. We consider the modification
of the threshold by any amount to be a single operation (as opposed to changing
it by one); as we are going to prove upper bounds, this only makes the results
stronger. Thus, for example, the revision distance between ϕ = TH1

{x1,x2,x4} and

TH3

{x1,x2,x3,x5} is 4 in the general model.



We use dist(ϕ, ψ) to denote the revision distance from ϕ to ψ whenever
the revision operators are clear from context. In general, the distance is not
symmetric.

A revision algorithm for a formula ϕ has access to membership and equiva-
lence oracles for an unknown target concept and must return some representa-
tion of the target concept. Our goal is to find revision algorithms whose query
complexity is polynomial in d = dist(ϕ, ψ), but at most polylogarithmic in n,
the number of variables in the universe. Dependence on other parameters may
depend on the concept class. For DNF (resp. CNF) formulas, we will allow poly-
nomial dependence on the number of terms (resp. clauses) in ϕ; it is impossible
to do better even for arbitrary monotone DNF in the deletions-only model of
revision [9].

We state only query bounds in this paper; all our revision algorithms are
computable in polynomial time, given the appropriate oracles.

2.2 Binary search for new variables

Many of our revision algorithms use a kind of binary search, often used in learning
algorithms involving membership queries, presented as Algorithm 1. The starting
points of the binary search are two instances, a negative instance neg and a
positive instance pos such that neg ≤ pos. The algorithm returns two items:
the first is a set of variables that when added to neg make a positive instance;
the second is a variable that is critical in the sense that the first component plus
neg becomes a negative instance if that variable is turned off.

Algorithm 1 BinarySearch(neg,pos).

Require: MQ(neg) == 0 and MQ(pos) == 1 and neg ≤ pos

1: neg
0

:= neg

2: while neg and pos differ in more than 1 position do

3: Partition pos \ neg into approximately equal-size sets d1 and d2.
4: Put mid := neg with positions in d1 switched to 0
5: if MQ(mid) == 0 then

6: neg := mid

7: else

8: pos := mid

9: v := the one variable on which pos and neg differ
10: return ((pos \ neg

0
), v)

3 Revising Horns

In this section we give algorithms for revising two different classes of Horn sen-
tences when addition of new variables into the bodies is allowed as well as deletion
of variables.



3.1 Depth-1 acyclic Horn sentences

We show here how to revise depth-1 acyclic Horn sentences. Depth-1 acyclic Horn
sentences are precisely those where variables that occur as heads never occur in
the body of any clause. Notice that such formulas are a class of unate CNF.
Previously we gave a revision algorithm for unate DNF (which would dualize
to unate CNF) that was exponential in the number of clauses [9]. Here we give
an algorithm for an important subclass of unate CNF that is polynomial in the
number of clauses.

The general idea of the algorithm is to maintain a one-sided hypothesis, in
the sense that all equivalence queries using the hypothesis must return negative
counterexamples until the hypothesis is correct.

Each negative counterexample can be associated with one particular head
of the target clause, or else with a headless target clause. We do this with a
negative counterexample x as follows.

For a head variable v and instance x, we will use the notation xv to refer to
x modified by setting all head variables other than v to 1. Note that xv cannot
falsify any clause with a head other than v. Since v will normally be the head of
a Horn clause and we use F to denote the “head” of a headless Horn clause, we

will use xF to denote x modified to set all head variables to 1.
The algorithm begins with an assumption that the revision distance from the

initial theory to the target theory is e. If the revision fails, then e is doubled
and the algorithm is repeated. Since the algorithm is later shown to be linear
in e, this series of attempts does not affect the asymptotic complexity. We give
a brief overview of the algorithm, followed by somewhat more detail, and the
pseudocode, as Algorithm 2.

We maintain a hypothesis that is, viewed as the set of its satisfying vectors,
always a superset of the target. Thus each time we ask an equivalence query,
if we have not found the target, we get a negative counterexample x. Then the
first step is to ask a membership query on x modified to turn on all of the
head positions. If that returns 0, then the modified x must falsify a headless
target clause. Otherwise, for each head position h that is 0 in the original x,
ask a membership query on xh. We stop when the first such membership query
returns 0; we know that x falsifies a clause with head h. In our pseudocode, we
refer to the algorithm just described as Associate.

Once a negative counterexample is associated with a head, we first try to use
it to make deletions from an existing hypothesis clause with the same head. If
this is not possible, then we use the counterexample to add a new clause to the
hypothesis. We find any necessary additions when we add a new clause.

If xh ∩ body(c)h is a negative instance, which we can determine by a mem-
bership query, then we can create a new smaller hypothesis clause whose body
is x ∩ body(c). (Notice that x ∩ body(c) ⊂ body(c) because as a negative coun-
terexample, x must satisfy c.)

To use x to add a new clause, we then use an idea from the revision algorithm
for monotone DNF [9]. For each initial theory clause with the same head as we
have associated (which for F is all initial theory clauses, since deletions of heads



are allowed), use binary search from x intersect (the initial clause with the other
heads set to 1) up to x. If we get to something negative with fewer than e

additions, we update x to this negative example.
Whether or not x is updated, we keep going, trying all initial theory clauses

with the associated head. This guarantees that in particular we try the initial
theory clause with smallest revision distance to the target clause that x falsifies.
All necessary additions to this clause are found by the calls to BinarySearch;
later only deletions will be needed.

Algorithm 2 HornReviseUpToE(ϕ, e). Revises depth-1 acyclic Horn Sen-
tence ϕ if possible using ≤ e revisions; otherwise returns failure.

1: H := everywhere-true empty conjunction
2: while (x := EQ(H)) 6= “Correct!” and e > 0 do

3: h :=Associate(x, ϕ)
4: for all clauses c ∈ H with head h do

5: if MQ(xh ∩ body(c)h) == 0 then {delete vars from c}
6: body(c) = body(c) ∩ x

7: e = e−number of variables removed
8: if no vars. were deleted from any clause then {find new clause to add}
9: min = e

10: FoundAClause=false

11: for all c ∈ ϕ with head h (or all c ∈ ϕ if h == F) do

12: new = body(c)h ∩ xh

13: numAddedLits = 0 {# additions for this c}
14: while MQ(new) == 1 and numAddedLits < e do

15: l := BinarySearch(new, xh)
16: new := new ∪ {l}
17: numAddedLits = numAddedLits + 1
18: if MQ(x − {l}) == 0 then {(x − {l}) is “Pivot”}
19: {i.e., x − {l} is counterexample falsifying fewer target clauses}
20: x = x− {l}
21: restart the for all c loop with this x by backing up to Line 11 to reset

other parameters
22: if MQ(new) == 0 then

23: x := new

24: FoundAClause = true

25: min := min(numAddedLits , min)
26: if not FoundAClause then

27: return“Failure”
28: else

29: H := H ∧ (x → h) {treating x as monotone disjunction}
30: e := e − min
31: if x == “Correct!” then

32: return H
33: return “Failure”



Theorem 1. There is a revision algorithm for depth-1 acyclic Horn sentences
with query complexity O(d ·m3 · logn), where d is the revision distance and m
is the number of clauses in the initial formula.

Proof sketch: We give here some of the highlights of the proof of correctness
and query complexity of the algorithm; space does not permit detailed proofs.
Relatively straightforward calculation shows that the query complexity of Horn-

ReviseUpToE for revising an initial formula of m clauses on a universe of n
variables is polynomial in m, logn, and the parameter e. Thus, if we can argue
that when e is at least the revision distance the algorithm succeeds in finding
the target, we are done.

The result follows from a series of lemmas. The first two lemmas give quali-
tative information. The first shows that the hypothesis is always one-sided (i.e.,
only negative counterexamples can ever be received), and the second says that
newly added hypothesis clauses are not redundant.

Lemma 1. The algorithm maintains the invariant that its hypothesis is true for
every instance that satisfies the target function.

Proof. Formally the proof is by induction on number of changes to the hypoth-
esis. The base case is true, because the initial hypothesis is everywhere true.

For the inductive step, consider how we update the hypothesis, either by
adding a new clause or deleting variables from the body of an existing clause.

Before creating or updating a clause to have head h and body y, we have
ensured that MQ(yh) = 0, that is, that yh is a negative instance. Because of
that, yh must falsify some clause, and because of its form and the syntactic form
of the target, it must be a clause with head h. None of the heads in yh \ y can
be in any body, so y must indeed be a superset of the variables of some target
clause with head h, as claimed.

Lemma 2. If negative counterexample x is used to add a new clause with head
h to the hypothesis, then the body of the new clause does not cover any target
clause body covered by any other hypothesis clause with head h.

Proof. Recall that head h was associated with x. If x falsified the same target
clause as an existing hypothesis clause body, then x would be used to delete
variables from that hypothesis clause body. Therefore x does not falsify the
same target clause as any existing hypothesis clause with the same head, and
the newly added hypothesis clause’s body is a subset of x.

The following two lemmas, whose proof will be given in the journal version
of this paper, complete the proof.

Lemma 3. HornReviseUpToE(ϕ, e) succeeds in finding the target Horn sen-
tence ψ if it has revision distance at most e from initial formula ϕ.

Lemma 4. The query complexity of HornReviseUpToE is O(m3 · e · logn),
where the initial formula has m clauses and there are n variables in the universe.



3.2 Definite Horn sentences with unique heads

We give here a revision algorithm for definite Horn sentences with unique heads.
Since we are considering only definite Horn sentences, note that the head vari-
ables cannot be fixed to 0. We use the algorithm for revising Horn sentences in
the deletions-only model presented in [10] as a subroutine. Its query complexity
is O(dm3 +m4), where d is the revision distance and m is the number of clauses
in the initial formula.

This algorithm has a first phase that finds all the variables that need to be
added to the initial formula. That partially revised formula is then passed as an
initial formula to the known algorithm [10] for revising Horn sentences in the
deletions-only model of revision.

To find all necessary additions to the body b of clause c = (b → h), we first
construct the instance xc as follows: in the positions of the heads of the initial
formula, instance xc has 1’s, except for a 0 in position h. Furthermore, instance
xc has 1’s in all the positions corresponding to a variable in the clause’s body,
and 0 in all positions not yet specified.

Next, the query MQ(xc) is asked. If MQ(xc) = 0, then no variables need to
be added to the body of c. If MQ(xc) = 1, the necessary additions to the body
of c are found by repeated use of BinarySearch. To begin the binary search,
xc is the known positive instance that must satisfy the target clause c∗ derived
from c, and the assignment with a 0 in position h and a 1 everywhere else is the
known negative instance that must falsify c∗.

Each variable returned by BinarySearch is added to the body of the clause,
and xc is updated by setting the corresponding position to 1. The process ends
when xc becomes a negative instance.

Once the necessary additions to every clause in the initial theory are found, a
Horn sentence needing only deletions has been produced, and the deletions-only
algorithm from [10] can be used to complete the revisions.

Theorem 2. There is a revision algorithm for definite Horn sentences with
unique heads in the general model of revision with query complexity O(m4 +
dm3 + d log n), where d is the revision distance from the initial formula to the
target formula.

Proof sketch. The key part is adding variables to one initial clause c = (b→ h).
Let c∗ be the target clause derived from c.

Lemma 5. Every variable added to a clause c must occur in the target clause
c∗ that is derived from c.

(Proof of lemma omitted.)
This is enough to allow us to use the earlier algorithm for learning in the

deletions-only model.
The query complexity for the part of the algorithm that finds necessary

additions is at most the O(log n) per added variable, which contributes a factor of
O((ϕ, ψ)·log n). The deletions-only algorithm has complexity (m4+dm3), where
d is the revision distance. Combining these two gives us O(m4 + dm3 + d logn).

⊓⊔



4 Revising threshold functions

We present a threshold revision algorithm ReviseThreshold. The overall re-
vision algorithm is given as Algorithm 3, using the procedures described in Al-
gorithms 4 and 5. Algorithm ReviseThreshold has three main stages. First
we identify all the variables that are irrelevant in ϕ but relevant in ψ (Algo-
rithm FindAdditions). Then we identify all the variables that are relevant
in ϕ but irrelevant in ψ (Algorithm FindDeletions). Finally, we determine
the target threshold. (In our pseudocode this third step is built into Algorithm
FindDeletions, as the last iteration after the set of relevant variables of the
target function is identified.)

Algorithm 3 The procedure ReviseThreshold(ϕ)

1: {function to be revised is ϕ = THt

U}
2: Use 2 EQ’s to determine if target is constant 0 or 1; if so return

3: V := FindAdditions(U)
4: return FindDeletions(U,V )

The main result of the section is the following.

Theorem 3. ReviseThreshold is a threshold function revision algorithm of
query complexity O(d log n), where d is the revision distance between the initial
formula ϕ and the target function ψ.

Proof sketch. Throughout, let ϕ = THt
U and ψ = THθ

R.

Algorithm 4 The procedure FindAdditions(U)

Require: the target function is not constant
1: Potentials := Xn \ U ; NewRelevants := ∅
2: if MQ(χU ) == 0 then

3: Base := U
4: else

5: (Base , x) := BinarySearch(∅, U), Base := Base \ {x}
6: if MQ(χBase∪Potentials) == 0 then

7: return ∅
8: repeat

9: (Y, y) := BinarySearch(Base ,Base ∪ Potentials)
10: NewRelevants := NewRelevants ∪ {y}
11: Potentials := Potentials \ {y}
12: if MQ(χBase∪Potentials) == 0 then

13: Base := Base ∪ {y}
14: until MQ(χBase) == 1
15: return NewRelevants



A set S is critical for the target function ψ, or simply critical, if |S∩R| = θ−1.
It is clear from the definition that if S is critical, then for every Z ⊆ Xn \ S it
holds that Z contains at least one relevant variable of ψ iff MQ(χS∪Z) = 1.

Algorithm 5 The procedure FindDeletions(U, V )

Require: U , V disjoint; V ⊆ R and R ⊆ U ∪ V (R = relevant variables in target)
1: Û := U ;
2: u := |Û | + |V |; ℓ := 1
3: if (ϕ′ := TestExtreme(N, P, Û ∪ V )) 6= constant then

4: return ϕ′

5: while u > ℓ + 1 do

6: m := ⌈(u + ℓ)/2⌉
7: if (x := EQ(THm

Û∪V
)) == Y ES then

8: return THm

Û∪V

9: let C := x ∩ (Û ∪ V )
10: if x is a positive counterexample then

11: P := C and u := m
12: else

13: N := C and ℓ := m
14: (P, p) := BinarySearch(∅, P )
15: Base := P ∩ N , P ′ := P \ Base, N ′ := N \ Base

{Now the key property holds for Base, N ′ and P ′}
16: Test := (Base ∪ P ′) \ {p}

{For any i ∈ N ′, MQ(χTest∪{i}) = 1 iff i is relevant}
17: while |P ′| > 1 do

18: i := MakeEven(N ′, P ′, Base)
{Make |N ′| and |P ′| be even without spoiling the key property}

19: if MQ(χTest∪i) == 0 then

20: Û := Û − i and goto Line 2
21: Let N0, N1 (resp. P0, P1) be an equal-sized partition of N ′ (resp. P ′)
22: Ask MQ(χBase∪Nj∪Pk

) for j, k = 0, 1
23: Let j and k be indices s.t. MQ(χBase∪Nj∪Pk

) = 0 {such j and k exist}
24: Base := Base ∪ Pk, P ′ := P1−k, N ′ := Ni

25: Û := Û \ N ′

26: goto Line 2

Procedure FindAdditions (Algorithm 4) finds the new relevant variables;
that is, the elements of R ∩ Ū , where Ū = Xn \ U . It stores the uncertain
but potentially relevant variables in the set Potentials (thus Potentials is ini-
tially set to Xn \ U). The procedure first determines a set Base ⊆ U such that
Base is negative, and Base ∪ Potentials is positive (unless Potentials contains
no relevant variables—in which case there are no new relevant variables used
by ψ, so we quit). Then the search for the new relevant variables starts. We
use BinarySearch(Base,Base ∪Potentials) to find one relevant variable. This
variable is removed from Potentials , and the process is repeated, again using
BinarySearch. After removing a certain number of relevant variables from



Potentials , the instance Base ∪ Potentials must become critical. After reaching
this point, we do not simply remove any newly found relevant variables from
Potentials , but we also add them to the set Base. This way from then on it
holds that |(Base ∪ Potentials) ∩ R| = θ. Thus the indicator that the last rele-
vant variable has been removed from Potentials is that Base becomes positive
(MQ(χBase) = 1).

Let us assume that we have identified a set of variables that is known to
contain all the relevant variables of the target function, and possibly some addi-
tional irrelevant variables. Consider threshold functions with the set of variables
above, and all possible values of the threshold. Let us perform a sequence of
equivalence queries with these functions, doing a binary search over the thresh-
old value (moving down, resp. up, if a positive, resp. negative, counterexample
is received). In algorithm FindDeletions this is done by the first while loop
starting at Line 5 and the use of TestExtreme right before it at Line 3 (the
latter is needed to ensure the full range of search; it performs the test for the two
extreme cases in the binary search, which the while loop might miss: the con-
junction and the disjunction of all the variables). In case the relevant variables
of the target functions are exactly those that we currently use, then one can see
that this binary search will find ψ. Otherwise (i. e. when some of the currently
used variables are irrelevant in ψ) it can be shown that after the above binary
search we always end up with a “large” negative example (χN ) and a “small”
positive example (χP ); more precisely they satisfy |P | ≤ |N |. Using these sets
one easily obtains three sets Base,N ′ and P ′ that have the key property:

Key property: Sets Base, N ′, and P ′ satisfy the key property if they are pair-
wise disjoint, and it holds that Base∪N ′ is negative, |(Base∪P ′)∩R| = θ, and
|N ′| ≥ |P ′|.

The following claim gives two important features of this definition.

Claim 1 a) If Base,N ′ and P ′ satisfy the key property then N ′ contains an
irrelevant variable and P ′ contains a relevant variable.

b) If Base,N ′ and P ′ satisfy the key property and |P ′| = 1 then every element
of N ′ is irrelevant.

From now on we maintain these three sets in such a manner that they preserve
the key property, but in each iteration the size of N ′ and P ′ get halved. For this
we split up N ′ (respectively P ′) into two equal sized disjoint subsets N1 and N2

(resp. P1 and P2). When both |N ′| and |P ′| are even then we can do this without
any problem; otherwise we have to make some adjustments to N ′ and/or to P ′,
that will be taken care of by procedure MakeEven (the technical details are
omitted due to space limitations). Using the notation θ′ = θ − |R ∩ Base| we
have |R∩(N1∪N2)| < θ′ and |R∩(P1∪P2)| = θ′. Thus for some j, k ∈ {0, 1} we
have |R ∩ (Nj ∪ Pk)| < θ′ (equivalently MQ(χBase∪Nj∪Pk

) = 0). Note that the
sets Base := Base ∪ Pk, N ′ := Nj and P ′ := P1−k still have the key property,
but the size of N ′ and P ′ is reduced by half. Thus after at most logn steps P ′ is
reduced to a set consisting of a single (relevant) variable. Thus N ′ is a nonempty
set of irrelevant variables (part b) of Claim 1). ⊓⊔



We mention some additional results showing that both types of queries are
necessary for efficient revision, the query bound of algorithm ReviseThreshold

cannot be improved in general and that Winnow (see [19]) cannot be used for
revising threshold functions (at least in its original form).

Theorem 4. a) Efficient revision is not possible using only membership queries,
or only equivalence queries.

b) The query complexity of any revision algorithm for threshold functions is
Ω

(

d log n
d

)

queries, where d is the revision distance.
c) Winnow is not an efficient revision algorithm for threshold functions be-

cause it may make too many mistakes. More precisely, for any weight vector
representing the initial threshold function TH1

x1,...,xn
, Winnow can make n mis-

takes when the target function is TH2

x1,...,xn
.

Proofs will be given in the full version of this paper.
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