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S For instance, our second partic#lar example would provide
ole R :
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i 6L If, in general. there is no decreasing or mu asing subsequence of length n + 1, then 1 <
| : t<nandl <y, <nforall l <k <n®+1. Consequently, there are at most f'z distinct
. o v : . ‘ .
ordered pairs (., v;). But we have n° + | ordu =d pairs (xe, v, since 1 <& <n” +1.S0 3
e o
- 5 the pigeonhole prmupl implies that there are two identical a,,rdcrcd pairs ny. Vi), (e, v,
‘ : where [ # j—say i < j. Now the real numbers a, a». . ... a2, are distinct, so ifa; < a;
vides ! C S o ' :
i ) \ then v; < v;, while if a; <@, then x; > x;. In either case we no longer have (x,,
5 b ) . . . ’. . . = '
) o : (x;, y;). This contradiction tells us that x;, =n + 1 or vy =n + 1 for some n + |
- 1. : : 2 :
. : n- + 1; the result then follows.
- ‘ For an interesting application of this result, consider 7= + 1 sumo wrestlers facing for-
wWom i . .
o ward and standing shoulder to shoulder. (Here no two wrestlers have the same weight.) We
l) = . .
can selectn + 1 of these wrestlers to take one step forward so that, as they are scanned from
e m . . . . . ) N . ’
r“ & left to right, their successive weights either decrease or increase.
r—s _ :
W 3
out he

ibutes i : b) Let SCZ” X Z7. Find the minimal value of |S]
Il plav i ! ; EXERCISES 5.5 : that guarantees the existence of distinct ordered pairs
R : i (X1, x2), (¥i, y2) € Ssuchthatx, + y, and x> + v» are both

1. In Example 5.40, what plays the roles of the pigeons and aven
of the pigeonholes? . . . . ) . .

V. o ) i c¢) Extending the ideas in parts (a) and (b), consider § <
2. Show that if eight people are in a room, at least two of them

A ) . X 2 X ZF. What size must | S| be to guarantee the ex-
i - } a0 . ~ . . . f
o0 55 : : o have birthdays that occur on the same day of the week. istence of distinct ordered triples (x;. vz, x3), (y1, y2, v3) €
R : *‘* 3. An auditorium has a seating capacity of §00. How many © Swherex; + v, x> + v, and x3 + vy are all even’?
> exist ' ) :
- C ara at a st tw ) .
i “seats must be occupied to guarantee [h_u at least tw o lpu‘pk d) Generalize the results of parts (a), (b), and (c).
ay b seated in the auditorium have the same first and last initials? . ) )
: e) A point P(r.y) in the Cartesian plane is called
7 . 5 ‘ = [3 ".' o} [ g5 QcC 7 3 OW anv . . . . . .
e ; V4. Le 3. +15,19.....95,99,103). How m{u._\ a lawice {u)m if x,yeZ. Given distinct lattice
—_— i : e sele . sure that there wi . . : .
{ elemtn[\ must we \L!L ct from § to insure that there will be points Py(x;, vi). Pa(xa, ¥a), . . .. P,(x,. v,). determine
. aq ; cp @ " ) 2 i
lin '- at least two whose sum is 1107 the smallest value of n that guarantees the existence of
ared ¥ - T - - .
. 'ﬁ«-:;'n) Prove that if 151 integers are selected from {1, 2, 3. P(x;. v, Pi(x;.y;,), 1 <i < j<n, such that the mid-
L ' . . .
- ., 300}, then the selection must include two integers x, v point of the line segment cennecting F(x;, v;) and
where x|y or _vl,r. P;(x;, v;) is also a lattice point.
§ i b) Write a statement that generalizes the results of part (a) 9. a)y If 11 integers are selected from [I1.2.3, ..., 100],
and Example 5.43. prove that there are at least two, say x and y, such that
3 \(6 Prove that if we select 101 integers from the set § = O0<lvx— <L
ins the (1.2,3,.... 200}, there exist m, n in the selection where b) Write a statement that generalizes the result of part ().
uns ta -
ae = . ~ " . -
gedim, n) = 1. 10. Let triangle ABC be equilateral, with AB = 1. Show that
By \r 7. a) Show that if any 14 integers are selected from the set if we select 10 points in the interior of this triangle Ll ere must
n-d el 5=1{1,2,3,..., 25}, there are at least two whose sum be at least two whose distance apart is less than 1/
+ ] : is 26 - th AR Q hat it
! 1520 11. Let ABCD be a square with AB = 1. Show that if we se-
1moets 4 b} Write a statement that generalizes the results of part (a) lect five points in the interior of this square, there are at least
and Example 5.44. two whose distance apart is less than 1/v/2.
8. a) If $CZ" and |S| = 3, prove that there exist distinct V12 Let AC (1,2 3, ..., 25} where |A| =9, For any subset

X,y e § where x + yiseven. B of A let sy denote thc sum of the elements in B. Prove that
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there are distinct subsets C, D of A such that |C| = |[D]| =5 % 19. For k. n e Z7, prove that it kn + 1 pigeons ocCupy g ind
and s¢ = s5p. pigeonholes, then at least one pigeonhole has & + 1 or moye -
% 13. Let § be a set of five positive integers the maximum of p1geons roosting 1n it
which is at most 9. Prove that the sums of the elements in all 20. How many times must we roll a single die in order to get 7ol
the nonempty subsets of § cannot all be distinct. the same score (a) at least twice? (b) at least three times? (¢} at
. : . L . act 1 times far g > 49
v 14. During the first six weeks of his senior year in college. least 2 times, forn = 4
Brace sends out at least one resumé each day but no more than 21. a) Let S € Z7. What is the smallest value for | S| that suar-
60 resumés in total. Show that there is a period of consecutive antees the existence of two elements x, ¥ € § where x apg
days during which he sends out exactly 23 resumés. v have the same remainder upon division by 10007
g, 15. Let S CZ7 with || =7.For¥d # A C S, let s denote the b) What is the smallest value of n such that whenever
sum of the elements in A. If m is the maximum element in S. Z7 and | S| = n. then there exist three elements x, V.2
find the possible values of m so that there will exist distinct where all three have the same remainder upon division by
subsets B, C of § with 55 = 5. 10007
v 16. Letk € Z7. Prove that there exists a positive integer n such ¢) Write a statement that generalizes the results of parts (1)
that £|n and the only digits in n are 0's and 3’s. and (b) and Example 5.42.
17. a) Find a sequence of four distinct real numbers with no 22. Form.n = Z7, prove that if m pigeons occupy n pigeon-
decreasing or increasing subsequence of length 3. holes, then at least one pigeonhole has [ (m — 1)/n] 4+ 1 ormore
b) Find a sequence of nine distinct real numbers with no p1geons roosting in it.
decreasing or increasing subsequence of length 4. 23. Let py, pa, ..., o € L7, Prove that if py + py + .+ &
¢) Generalize the results in parts (2) and (). Pa —n + 1 pigeens occupy n pigeonholes, then either the first
. . h- A I, R
n . L . pigeonhole has p; or more DIZECNS Toosting In i, or the second ;
d) What do the preceding purts of this exercise tell us about S p1e o ) o
) = oo . pigeonhole has p, or more pigeons roosting in it, . . . . or the E
Example 5.497 : _ . co
nth pigeonhole has p, or more pigeons roosting in it.
18. The 30 members of Nardine’s acrobics class line up to vet . o
. , O . plogct 24. Given 8 Perl books, 17 Visual BASIC' boaks, 6 Java books, i
their equipment. Assuming that no two of these people have the o e _ s ) . ) -
) ‘ R oot . 12 SQL books, and 20 C++ books, how many of these hooks e
same height. show that eight of them (as the line is equipped . ; . :
. .- = , : must we select to insure that we have 10 books dealing with the
. from first to last) have successive heights that either decrease i N
i = same computer language’
‘ or Increase.
! "y

i
5.6 . g
Function Composition :
and Inverse Functions

When computing with the elements of Z, we find that the (closed binary) operation of
addition provides a method for combining two integers, say a and b, into a third integer, |
namely a + b. Furthermore, for each integer ¢ there is a second integer d where ¢ +d =7
d + ¢ = 0, and we call d the additive inverse of ¢. (It is also true that ¢ is the additive inverse
of d.)

Tuarning to the elements of R and the (closed binary) operation of multiplication, we

have a method for combining any #, 5 € R into their product rs. And here, for each 1 € R, ; |
if £ # 0. then there is a real number u such that ur = tu = 1. The real number u is called’ f
the multiplicative inverse of t. (The real number 7 is also the multiplicative inverse of u.)

In this section we first study a method for combining two functions into a single function. i
Then we develop the concept of the inverse (of a tunction) for functions with certain
properties. To accomplish these objectives, we need the following preliminary ideas. i

"Visual BASIC is a trademark of the Microsoft Corporation
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on A, B, (a) <= (b). Assuming (b), if f is not one-to-one, then there are elements ay, a, <
A, with @ # a», but f(a,) = f{ay). Then |A| > | f(A)| = |B], contradicting |A] = | 3|,
Conversely, if f is not onto, then | f(A)| < |B|. With |A| = |B| we have |A] > [ f(A)], m‘d
it follows from the pigeonhole principle that f is not one-to-one.

Using Theorem 5.11 we now verify the combinatorial identity introduced in Problem 6
at the start of this chapter. For if n € Z7 and |A| = |B] = n, there are n! one-to-one
functions from A to B de Y i=o(=D*(,%)(n — k)" onto functions from A to B. The
equality n! = z_”, ~1)*¥(,")(n — k)" is then the numerical equivalent of parts (a) and
{(b) of Theorem 5.11. [This is also the reason why the diagonal elements S(n, n), 1 <n <8§,
shown in Table 5.1 all equal 1.]

9, a) Find the inverse of the function f: R — R defined by

flx) = >+’

b) Show that fo f~' = lg-andf~'o f = 1g

1. a) For A={1,2,3,4, ..., 7}, how many bijective tunc-
tions f: A — A sdnsh fiy #17? \/10. For each of the following functions f: R — R, determine
b) Answer part (a) where A = {,tfx €Z* 1<x<n) for  Whether fisinvertible. and, if so, determine /™.
some fixedn € Z7. a) f={(x, V2x +3v =7}

2. a) For A = (=2, 7] € R define the functions by f={(x. Viax+by=c,b#0)

f.g:A— Rby O F = (e, 9y = )
V d) f={(x.y)y=x"+x)

11. Prove Theorem 5.9.

flx)y=2x—4 and g(x)=
" Verify that f = g.
12.If A=1{1,2.3,4,56,7}. B=1{2,4,6,8, 10,12}, and
f:A— B where f= { 1. “) (2,6), (3,6), (4, 8).(5.0),
(6, 8), (7,12)}, determine the preimage of B, under / in
each of the following cases.

b) Is the result in part (a) affected if we change A to
[=7,2)?
3. Let f,g:R— R, where g(x)=1—x+x% and f(x) =
ax+b. If (go fi(x)= 9x? — 9x + 3, determine a, b.

a) B, = {2} b) B, = (6}
vV 4. Letg:N— Nbedefinedby gn) = 2n.If A = (1, 2.3, 4) _ 'j L N
and f1 A — Nisgiven by f = ({1,2),(2,3). (3,5). (4 D}, ¢} B = {6, 8] d) B, = (6,8, 10]
find g o f. e) B, = {6, 8, 10, 12) £) B, = (10, 12}

4 . .
L If QL is a given universe with (fixed) S, T €A, define ?’\'13 Let f: R — R be defined by
g: PO,L) — P(U) by g(A)=TN(SUA) forAC U Prove

that g* = g. ’ v x=0
\/6. Let f, g: R — Rwhere f(x) =ax +handg(x) = cx + d flo)y=§ —2x+5, 0<x<3
forallx € R, witha, b, ¢, d real constants. What relationship(s) ¢ — 1, 3<x
must be satisied by a, b, ¢, dif (f o g){x) = (g o f)(x) forall
= 9 - - | - - ]
x € R a) Find _ffIE -10), f~ Loy, i(-l]‘j (6), f 7y, and
7. Let f, g, h: Z — Zbe defined by f(x) =x — 1, FYR).
glx) = 3x, b) Determine the preimage under f for each of the inter-
0, X even vals (i) [=3, —=1]; (i) [—5. 0]; (iii) [—2. 4]: (iv) (5, 1O}
h(x) = and (v) [11, 17
I v odd. and (v) [L1, 17).
D . . . b oo ) 14. Let f:R — R be defined by f(x) = x~. For each of the
>t > (& g pof, g . . 2 A . N . . .
etermine (2) f G” 3 f gemn O1"' ;j:‘\o \g o following subsets B of R, find f L(B).
fogloh;(b) f*, f' g7 g’ h b7 BT ”
L ) ) a) B=1{0,1}) b) B={-10,1}
8 Let f:A— B, g:B— C.Provethat(a)ifgo f: 4 — C o0
~ "is onto, then g is onto; and (b) if g o f: A — C is one-to-one, ¢ B8=1[01] d) B=1[01
then f is one-to-one. e) B=1[0,4] f)y B=1(0, 11U (4, 9)

I
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‘%1;_ Let A={1,2,3,4,5} and B=16,7,8,9,10. 11, 12). ) Is any one of the given tunctions invertible?
'hr -~ 1
How many functions f: A — B are such that f~'({6, 7, 8}) d) Are any of the following sets infinite”
712 1
{1, 25" (1) £~ (2) ¢~ (@)
16. Let f:R— R be defined by f(x) = |x], the greatest (3) h=Y (i @) £
integer in x. Find f~'(B) for each of the following subsets B (3) g=t2p (6) A~ H((3}
of R. (7) F7'(4,7hH (8) g71((8. 12
\ -L¢15 QU
a) B=1(0,1) b) B={-1,0.1) (5) A=H((3, 9D
¢ B=1[0,1) d) B=1[0,2) e} Determine the number of elements in each of the finite
) . . sets in part (d).
e) B=[-1.2] £) B=[-1,0)U(1, 3] i part id
. . . 19. Prove parts (a) and (¢) of Theorem 5.10.
17. Let fo g0 2" — Z7 where for all x € Z7, flx) = x + | Fove paf sorE e
and g(x) = max{1, x — 1}, the maximum of 1 and x — 1. V/20. a) Give an example of a function fiZ — Zwhere(i) fis
) What is the range of £? ) one-to-one but not onto; and (ii) £ is onto but not one-to-
a ‘hat 1s  rang ! -
’ - one.

b) Is f an onto function? ) ) . L
b) Do the examples in part (a) contradict Theorem 5.117

%‘21. Let f:Z — N be defined by

2x — 1, itx =0

¢) Is the function f one-to-one?
d) What is the range of g?

e) Is g an onto function? fx) =

, : ; 9 —~2x, forx <0.
f) Is the function g one-to-one? {

. . a) Prove that £ is one-to-one and onto.
g) Show that go f = 1,-. ‘ J 15 one-to-one anc

L . - ) Determine f~1,
h) Determine (f o g)(x) forx = 2.3, 4,7, 12, and 25. b) Determine f
22, If |Al = [B| =35, how many functions f:A— B are

i} Do the answers for parts (b), (g). and (h) contradict the . o
invertible?

result in Theorem 3.87
t8. Let f, g. h denote the following closed binary operations

23. Let fog. b k:N— N where f(n) =3n, gln) = (nf3],
on P(Z7). For A,BCZ' f(A, B)=ANB, g(A, B) = a

Aln) = [(n + 1)/3]. and k(n) = [(n + 2)/3], for each n & N.

S i o a) For each ne N what are (go f)(n), (ho £)(n). and
\UB,h(A. By=AA B, (, or each (g0 f)(m), (ho £)G (
ShE . . ) (ko f)(n)? (b) Do the results in part (a) contradict Theo-
o a) Are any of the functions one-to-one? rem 5.77

i b) Are any of f. g, and & onto functions?

5.7
Computational Complexity”

j - In Section 4.4 we introduced the concept of an algorithm, following the examples set forth
b by the division algorithm (of Section 4.3) and the Euclidean algorithm (of Section 4.4). At
that time we were concerned with certain properties of a general algorithm:

® The precision of the individual step-by-step instructions

® The input provided to the algorithm, and the output the algorithm then provides

¢ Theability of the algorithm to solve a certain type of problem, not justspecific instances

of the problem

® The uniqueness of the intermediate and final results, based on the input

"The material in Sections 5.7 and 5.8 may be skipped at this point. It will not be used very much until Chapter
10. The only place where this material appears betore Chapter 10 is in Example 7 13, but that example can be
Y F b
omitted without any loss of continuity.




