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Shuhua Lai � Fuhua (Frank) ChengTexture Mapping on Surfaes of Arbitrary Topology usingNorm Preserving based Optimization
Abstrat A simple and yet highly eÆient, high qualitytexture mapping method for surfaes of arbitrary topol-ogy is presented. The new method projets the givensurfae from the 3D objet spae into the 2D texturespae to identify the 2D texture struture that will beused to texture the surfae. The objet spae to texturespae projetion is optimized to ensure minimum distor-tion of the texture mapping proess. The optimizationis ahieved through a ommonly used norm preservingminimization proess on edges of the surfae. The maindi�erene here is, by using an initial value approah, theoptimization problem an be set up as a quadrati pro-gramming problem and, onsequently, solved by a lin-ear least squares method. Three methods to hoose agood initial value are presented. Test ases show that thenew method works well on surfaes of arbitrary topology,with the exeption of surfaes with exeptionally abnor-mal urvature distribution. Other advantages of the newmethod inlude uniformity and seamlessness of the tex-ture mapping proess. The new method is suitable forappliations that do not require preise texture mappingresults but demand highly eÆient mapping proess suhas omputer animation or video games.Keywords Texture Mapping � Optimization � RealistiRendering1 IntrodutionTexture mapping means the mapping of a funtion froma texture spae onto a surfae in 3D spae [13℄. EahResearh work of the authors is supported by NSF undergrants DMS-0310645 and DMI-0422126.Shuhua Lai and Fuhua (Frank) ChengGraphis & Geometri Modeling LabDepartment of Computer SieneUniversity of KentukyLexington, Kentuky 40506{0046, USATel.: +1 859 257 6760Fax: +1 859 323 1971E-mail: fslai2,hengg�s.uky.edu

point on the objet surfae is the image of an element intexture spae. The domain of the mapping an be one,two, or three-dimensional, and it an be represented byeither a disrete array or by a mathematial funtion.Texture mapping was �rst introdued as a method ofadding to the visual rihness of a omputer generated im-age without adding geometry in [6℄. Its use by far is oneof the most suessful tehniques in the quest for morerealisti imagery. Texture mapping an enhane the vi-sual e�ets of raster san images immensely while entail-ing only a relatively small inrease in omputation [13℄.The study of texture mapping is popular in both om-puter graphis and image proessing beause its methodsare appliable to both areas. There are three main top-is in the fundamentals of texture mapping: aquiring atexture, possibly inluding texture synthesis and texturesanning, the geometri mapping that warps a textureonto a surfae, and the �ltering that is neessary in or-der to avoid aliasing. The study of geometri mappingwith a 2D domain is a major researh onern.Mapping a 2D texture onto a 3D surfae usually re-quires a parametrization of the surfae [13℄. This omesnaturally for surfaes that are de�ned parametrially,suh as bi-ubi pathes, but less naturally for other sur-faes suh as polyhedra or subdivision surfaes, whihare usually de�ned impliitly. One of the �rst algorithmsusing the parametri representation of pathes to �ndtexture is [4℄. However, in general, there is no naturalmapping from a 2D texture spae to a 3D objet spae.The texture is usually distorted [13℄. This is espeiallytrue for surfaes with arbitrary topology.Distortion of the texture an be avoided to ertaindegree through onsidering speial funtions suh as on-formal mappings and isometri mappings. A mapping issaid to be onformal if it preserves angles between edges[5℄. A mapping is alled an isometry if it preserves thenorm (length) of eah edge [5℄. For a triangular mesh,an isometri mapping is also onformal but the reverseis not true. Construting a geometri mapping that isisometri or onformal, unfortunately, is not always pos-sible. A seond hoie is to use a norm preserving based



2 Shuhua Lai, Fuhua (Frank) Chengor angle preserving based optimization to redue overalldistortion of the mapped image. The problem with thisapproah is its omputation ost.In this paper we will introdue a geometri mappingmethod that an generate high quality texture on sur-faes of arbitrary topology, but with a less expensiveomputation proess. The method is simple, it maps thegiven surfae from the 3D objet spae into the 2D tex-ture spae to identify the 2D texture struture that willbe used to texture the surfae. The 2D texture stru-ture has the same topology as the given 3D surfae.Therefore, the mapping guarantees a seamlessly texturedsurfae. The objet spae to texture spae projetion isoptimized to ensure minimum distortion of the texturemapping proess. The optimization is ahieved througha ommonly used norm preserving minimization proesson edges of the surfae. However, the optimization prob-lem an be set up as a quadrati programming problemand, hene, solved by a linear least squares method. Thekey here is to make a good guess on an initial value ofthe solution set, a seemingly trivial onept but with sur-prisingly important impat on the omputation proess.Three guessing methods that provide di�erent level ofvisual e�et will be proposed.The remaining part of the paper is arranged as fol-lows. A brief review of previous works related to this oneis given in Setion 2. A desription of our texture map-ping tehnique is given in Setion 3. Three tehniquesto hoose an initial guess are presented in Setion 4. Asummary of the algorithm is given in Setion 5. Imple-mentation issues and test ases are shown in Setion 6.The onluding remarks are given in Setion 7.2 Previous and Related WorkTexture mapping with a 2D texture spae is basially asurfae parametrization proess. Therefore, if a surfae isalready parametrized, then texture mapping of the sur-fae is a straightforward proess if parametrization ofthe surfae is followed in the texture mapping proess.The problem with this approah is, the result might notbe uniform or seamless if the parametrization is pathbased. See Figure 1 for an example of parametrizationbased texture mapping. Notie the non-uniform streth-ing of the texture and the existene of seams at severalplaes of the surfae. Atually, even a global parametriza-tion annot guarantee uniform and seamless texturing.One needs to impose extra onstraints suh as isometryor onformity on the mapping proess to ahieve uni-formity and seamlessness. General methods for globalparametrization are based on funtional optimization,with speial metris de�ned to measure the deviation ofthe parametrization from an isometry [10℄. Several meth-ods have been proposed for texture mapping using globalparametrization for surfaes with arbitrary topology. Forexample, in [11℄, a global onformal parametrization for

Fig. 1 An example of path parametrization based texturemapping.surfaes with nontrivial topology is presented and quitegood test results are generated. However, in general, aglobal parametri texture mapping tehnique that pre-serves distanes and, onsequently, an at as an isome-try does not exist [5℄.To improve the parametri mapping of (u; v) to S(u; v)and to alleviate the distortion, several methods havebeen proposed for texture mapping with minimal dis-tortion. For example, in [1℄, the image is projeted ontoa freeform surfae so it is free from distane distortionwhen viewed from the projetion diretion. In [3℄, texturemapping through an intermediate simple surfae, suhas a ube, a ylinder, or a sphere is used to minimizethe distortion in the texture of the �nal objet. Relax-ation tehniques to minimize the distane distortion byemploying a grid of sampled points on the surfae andoptimizing the deviation of the distanes of neighbor-ing grid points have also been onsidered [2,14℄. Therealso exist feature-based warping and blending tehniquesfor texture mapping [18,20℄. The user ontrols the map-ping proess by de�ning a set of features onsisting of3D points piked on the surfae and orresponding 2Dpoints of the texture spae. By minimizing some met-ri funtions, the mapping interpolates the features withsatisfatory distortion. In addition, energy based opti-mization methods have been studied as well. For exam-ple, in [16℄, several energies are de�ned for the texturemapping proess. By minimizing the deformation energy,one gets a minimal distorted mapping.Tehniques aiming at improving the quality of realis-ti e�ets of texture mapping have also been proposed.For example, view dependent texture mapping (VDTM)[17℄ is a tehnique for generating novel views of a senewith approximately known geometry making maximaluse of a sparse set of original views. Another useful tex-ture mapping tehnique is texture synthesis. Texture syn-thesis is the proess of repliating the statistial andpereptual properties of a user spei�ed example overa larger surfae [15℄. Algorithms exist for synthesizinga wide variety of textures over surfaes with arbitrarytopology [19,20℄. However, for ompliated meshes, there



Texture Mapping on Surfaes of Arbitrary Topology using Norm Preserving based Optimization 3is no guarantee that the meshes are textured without no-tieable seams or artifats.
3 Texture Mapping using Norm Preservingbased Optimization3.1 Basi IdeaThe idea is to projet the objet into a big piee of elastitexture paper so that for eah projeted fae (visible orinvisible) of the objet, a piee of the texture paper anbe identi�ed. This piee of the texture paper is then du-pliated and used to over the orresponding fae of the3D objet. The elastiity of the texture paper enables usto over the entire fae of the objet even if the texturepaper piee is not idential to the objet fae. For in-stane, if the 3D triangular pyramid shown in Figure 1(a)is projeted into a 2D texture spae like the one shownin Figure 1(b), then the image regions�abd, �ab, �adand �bd are used to texture the faes �ABD, �ABC,�ACD and�CBD of the 3D pyramid, respetively. Thetexturing proess will streth the image regions if nees-sary to ensure eah fae is overed properly.For a projeted objet, all the olletion of the or-responding image regions in the texture spae (suh as�abd, �ab and �ad in the above example) a texturestruture. It is easy to see that the quality of the resultingtexture mapping is ompletely determined by propertiesof the texture struture. For instane, one an tell im-mediately that the texture mapping generates seamlessresult beause the texture struture has the same topol-ogy as the 3D objet. If the length of eah image regionedge is the same as the length of the orresponding objetfae's edge, then for a triangular polyhedron, the resultof the texture mapping proess will be the best one anget beause in this ase, no strething or distortion of theimage region will be neessary at all during the texturemapping proess. However, projeting a 3D objet into a2D plane with all the edge lengths preserved is not possi-ble in general, espeially when the objet is of arbitrarytopology [5,10℄. A seond hoie is to de�ne a projetionthat preserves the length of eah objet edge as muh aspossible. This approah gives good results even thoughit annot ompletely avoid distortion of the texture [16℄.However, sine the length preserving based optimizationproess is a non-linear problem [16℄, it an only be solvedby a non-linear least squares method whih is both ostlyand unstable. Hene, the key in providing a better solu-tion to this problem is to �nd a way to preserve theadvantage of the length preserving based optimization,but eliminate its disadvantage - the ostly omputationproess.
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(b) 2D texture space(a) 3D object spaceFig. 2 Basi idea of texture mapping using norm preservingbased optimization.3.2 Mathematial SetupThe norm preserving requirement is satis�ed ifk Pi � Pj kq=k Ti � Tj kq; for all (i; j) 2 Edges (1)where k : kq denotes the lq-norm of a vetor, Pk is avertex of the surfae in the 3D objet spae and Tk isthe orresponding point in the uv texture (parameter)spae. A mapping satisfying the above requirement isa non-distortion mapping. However, in general, this re-quirement annot be satis�ed by surfaes of arbitrarytopology. A ompromise is to minimize the sum of thedi�erenes of the edges:P(i;j)2Edges(k Pi � Pj kq � k Ti � Tj kq)2 =P(i;j)(k Pi � Pj kq � qp(ui � uj)q + (vi � vj)q )2 (2)where Pk are knowns and uk, vk are unkowns. This op-timization problem is a non-linear problem, no matterwhat value is used for q. To �nd uk, vk that minimizeEq. 2, a non-linear least squares method [7℄ has to beused. For a 3D surfae with only a few verties, a non-linear least squares method works well and gives goodresults [16℄. When the number of verties in a 3D poly-hedron is large, say more that 1,000 verties as in manyases, a non-linear least squares method beomes veryslow and unstable, sometime annot even solve the prob-lem. Hene, a di�erent approah has to be used.When q = 1 in Eq. 2, we haveX(i;j)2Edges(k Pi � Pj k1 �(jui � uj j+ jvi � vj j))2 (3)Eq. 3 is still a non-linear problem due to the existene ofthe absolute value operator. But we an remove the ab-solute value operator if we know the signs of (ui�uj) and(vi�vj) for eah (i; j). If this is possible, then minimizingEq. 3 beomes a quadrati programming problem, whihan be readily solved by a linear least squares method[8℄. We will address the sign determination problem inthe next setion. Here we assume the signs are known tous and show how to solve the resulting problem.



4 Shuhua Lai, Fuhua (Frank) ChengWithout loss of generality, let ui � uj and vi � vj .Then Eq. 3 beomesX(i;j)(jxi�xj j+jyi�yj j+jzi�zj j�(ui�uj+vi�vj))2 (4)where (xk ; yk; zk) are oordinates of 3D objet spae ver-tex Pk. This is a quadrati programming problem. A lin-ear least squares method an be used to �nd a minimumof this problem [8℄. However, to ensure uniqueness ofthe solution, we need some extra onstraints. Due to thefat that a general solution is subjet to a translationand a rotation, we an resolve the uniqueness problemby �xing two points in the uv parameter spae. Althoughany two points would work, a better hoie is to seletpoints orresponding to adjaent verties of the 3D sur-fae in the objet spae. We assume that Ta = (�ua; �va)and Tb = (�ub; �vb) are the �xed points in the uv texturespae orresponding to verties Pa and Pb in the objetspae.If we put Eq. 4 in matrix form, then our task is to�nd a solution w = (u1; v1; u2; v2; � � � ; un; vn) for the fol-lowing onstrained minimization problem:8><>:min (C � w � d)T (C � w � d)A � w � 0ua = �ua; va = �vaub = �ub; va = �vb (5)where matrix C and vetor d are derived from Eq. 4,and matrix A is determined by the signs of (ui�uj) and(vi � vj) for all pairs (i; j).4 Determine an Initial GuessIn our algorithm, the signs of (ui�uj) and (vi�vj) in Eq.4 are de�ned using signs of orresponding values in theinitial guess ~w = (~u1; ~v1; ~u2; ~v2; � � � ; ~un; ~vn), i.e., (ui�uj)is set to positive if (~ui � ~uj) is positive, and (vi � vj) isset to positive if (~vi � ~vj) is positive. Hene, the initialguess is important not only in reduing the number ofiterations of the minimization proess, but also in set-ting up a good approximation of the �nal mapping. Theinitial guess does not have to be numerially preise, butit must aurately reet the order of points in the so-lution set. Three possible ways to make an initial guessare presented below.4.1 XY-MinMax MethodSuppose the maximum and minimum of all the 3D ver-ties in X and Y diretions are Xmax, Xmin, Y maxand Y min, respetively. Then the initial guess (~u; ~v) fora vertex (x; y; z) is set to� ~u = (x �Xmin)=(Xmax�Xmin)~v = (y � Ymin)=(Ymax� Y min)

This setting of initial guess is intuitive and straightfor-ward. It does not take into onsideration the Z ompo-nent of a 3D vertex. But this method athes the overallstruture of the 3D objet in the view plane, hene insome ases it an result in good result, espeially whentopology of the objet is simple and it has only a fewontrol points. The glass in Fig. 3(g) is textured usingthis method.4.2 Combination MethodOne an take the Z omponent of a 3D vertex into a-ount by making simple modi�ation of the �rst method.For example, one an rotate the objet for ertain degreesin several di�erent diretions, and then ombine the or-responding XY-MinMax initial guesses linearly to forma new initial guess. One thing one has to be areful withwhen rotating the objet is that one needs to avoid ro-tating the objet symmetrially, beause symmetri ro-tations anel out the e�et of rotation.Another possible modi�ation to the �rst methodis to use an objet-to-sphere mapping to ompute thevalue of (u; v). First, enlose the 3D objet in a spherelarge enough to ontain all the verties of the objet.The sphere is entered at the entroid of the objet andparameterized asS(u; v) = (os(v) os(u); os(v) sin(u); sin(v))where 0 � u < 2� and ��=2 � v < �=2. A ray is thenemitted from the enter of the sphere to eah vertex ofthe polygonal surfae. The (u; v) values of the interse-tion point of the ray with the sphere are then ombinedwith the rotated XY-MinMax initial guess value to geta new ombined initial guess value.These are two small improvements to the �rst methodbut, surprisingly, the results are muh better, even foromplex objets. Fig. 3(f), Fig. 3(h), and Fig. 3(j) aretextured using this method.4.3 Graph Based MethodThe �rst two methods do not work well for some objets,suh as objets with many handles. A method that worksfor all kinds of objets, espeially objets with ompli-ated topology, is needed. In the following, we propose agraph based method for suh a purpose.First, treat the 3D mesh as a graph and traverse themesh using depth �rst searh. For edges at the samedepth level, the one with the longest length is traversed�rst. After the traversal, a linear list of all or some of the3D verties is obtained. Assume the list is (P1; P2; � � � ; Pn).Let Lij denote the norm of the vetor from Pi to Pj andLi denote the norm of the path from P1 to Pi, i.e.Li = L12 + L23 + � � �+ Li�1;i



Texture Mapping on Surfaes of Arbitrary Topology using Norm Preserving based Optimization 5For eah vertex in the above list, the orresponding pair(~ui; ~vi) is assigned a set of values using the XY-MinMaxmethod. Then, we interpolate these (~ui; ~vi) values in the2D uv parameter spae using a uniform ubi B-splineurve. If the resulting uniform B-spline urve is f(t),0 � t � 1, then we reset (~ui; ~vi) to f(Li=Ln).If there are verties that have not been traversed yet,use a tehnique similar to the onstrution of an Eu-ler iruit to traverse the remaining verties. For eahremaining omponent, start the traversal of that ompo-nent with a vertex that has already been visited (i.e., anvertex in the above list). The new list of verties on-struted will also end with a vertex in the above list.Hene the �rst and the last verties in the new list haveassigned initial guess. Using the XY-MinMax method wean assign initial guess values to other verties in the listand then repeat the interpolation proess to reset thesevalues.This method is better than the previous two meth-ods in that it fully takes the Z omponent into aountby onsidering the norm (length) of eah edge. Sine thenorm of eah edge is determined by X , Y and Z ompo-nents of a 3D vetor, using a norm based parameter toreset the initial guess values obviously results in a lessdistorted texture mapping. In our implementation, Fig.3(a), 3(b), 3(), 3(d), 3(e), 3(i) are generated with thismethod.5 The AlgorithmOne we have initial values for all the verties, we needto transform them so that the onstrains in Eq. 5 hold,i.e., we need to determine the matrix that transforms theinitial guesses for Ta and Tb from (~ua; ~va) and (~ub; ~vb) to(�ua; �va) and (�ub; �vb), respetively. This transformationmatrix M is of size 3� 3 and has the following form:M = 24  �s r1s  r20 0 1 35M an be determined from the following linear system:�M � (~ua; ~va; 1)T = (�ua; �va; 1)TM � (~ub; ~vb; 1)T = (�ub; �vb; 1)TOne M is available, we transform all the initial guessvalues by left multiplying M , and set up the quadratiprogramming problem in Eq. 5 and solve it using themethod proposed in [8℄. Matlab also provides a om-mand (lsqlin) to solve this kind of problem.After we get the solution of the quadrati problem,we may still need to lamp them suh that all the textureoordinates fall in between 0 and 1. At rendering time,if m�n texture images are tiled together to texture the3D objet surfae, we just need to sale all the textureoordinates in u-diretion by m, and in v-diretion by n.

The overall algorithm an be summarized as follows.NormPreservingTM(Mesh, Texture, m, n)1. triangulate the input polygonal surfae,2. determine (�ua; �va) and (�ub; �vb),3. get an initial guess,4. ompute the transformation matrix M ,5. transform the initial guess by M ,6. set up the quadrati problem in Eq. 5,7. solve the quadrati problem,8. lamp all the texture oordinates to (0, 1),9. sale texture oordinates by m and n,10. do the rendering with the texture oordinates.6 Implementation and Test ResultsThe proposed approah has been implemented in C++using OpenGL as the supporting graphis system on aWindows system. Quite a few examples have been testedwith the method desribed here. Sine the initial guessvalues play an important role in our algorithm, test aseswith di�erent initial guess values are presented. For ex-ample, Fig. 3(g) is textured using the XY-MinMax method,while Fig. 3(f) Figs. 3(j), and 3(h) are textured using theombination method. The remaining test ases in Fig. 3are textured using the graph based method. We an seethat all the results are seamless and ontinuous. A om-parison of the textured teapots shown in Fig. 3(d) andFig. (1) makes this point obviously lear. The one shownin Fig. 3(d) is uniform and seamless while the one shownin Fig. (1) has notieable seams and the texture is non-uniformly strethed.Although all the tested results have some distortion,we an tell the results generated by the graph basedmethod have the best visual e�et. We have also testedour algorithm on surfaes with multiple holes. For ex-ample, Fig. 3(a), Fig. 3(b), and Fig. 3(i) have one ormore holes, none of them an be represented by a singleNURBS surfae. Hene it is very diÆult to do texturemapping on this kind of surfaes using a parametriza-tion method. However, with our method, it is not morediÆult than doing a texture mapping on a ube.7 ConlusionA texture mapping method for surfaes of arbitrary topol-ogy is proposed. This method maps the surfae from the3D objet spae into the 2D texture spae to identify the2D texture struture that will be used to texture the sur-fae. The 2D texture struture has the same topology asthe 3D objet surfae. Therefore, the new method guar-antees a uniformly and seamlessly textured surfae. The3D to 2D mapping performs norm preserving based op-timization on eah edge to lower overall distortion of the
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(a) Toy station (b) Ventilation ontrol omponent

() Stanford Bunny (d) Utah Teapot

(e) Cow (f) Horse

(g) Glass (h) Rokerarm (i) Roker arm (j) CamelFig. 3 Texture mapping on surfae with arbitrary topology.
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