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Abstract A simple and yet highly efficient, high quality
texture mapping method for surfaces of arbitrary topol-
ogy is presented. The new method projects the given
surface from the 3D object space into the 2D texture
space to identify the 2D texture structure that will be
used to texture the surface. The object space to texture
space projection is optimized to ensure minimum distor-
tion of the texture mapping process. The optimization
is achieved through a commonly used norm preserving
minimization process on edges of the surface. The main
difference here is, by using an initial value approach, the
optimization problem can be set up as a quadratic pro-
gramming problem and, consequently, solved by a lin-
ear least squares method. Three methods to choose a
good initial value are presented. Test cases show that the
new method works well on surfaces of arbitrary topology,
with the exception of surfaces with exceptionally abnor-
mal curvature distribution. Other advantages of the new
method include uniformity and seamlessness of the tex-
ture mapping process. The new method is suitable for
applications that do not require precise texture mapping
results but demand highly efficient mapping process such
as computer animation or video games.

Keywords Texture Mapping - Optimization - Realistic
Rendering

1 Introduction

Texture mapping means the mapping of a function from
a texture space onto a surface in 3D space [13]. Each
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point on the object surface is the image of an element in
texture space. The domain of the mapping can be one,
two, or three-dimensional, and it can be represented by
either a discrete array or by a mathematical function.

Texture mapping was first introduced as a method of
adding to the visual richness of a computer generated im-
age without adding geometry in [6]. Its use by far is one
of the most successful techniques in the quest for more
realistic imagery. Texture mapping can enhance the vi-
sual effects of raster scan images immensely while entail-
ing only a relatively small increase in computation [13].
The study of texture mapping is popular in both com-
puter graphics and image processing because its methods
are applicable to both areas. There are three main top-
ics in the fundamentals of texture mapping: acquiring a
texture, possibly including texture synthesis and texture
scanning, the geometric mapping that warps a texture
onto a surface, and the filtering that is necessary in or-
der to avoid aliasing. The study of geometric mapping
with a 2D domain is a major research concern.

Mapping a 2D texture onto a 3D surface usually re-
quires a parametrization of the surface [13]. This comes
naturally for surfaces that are defined parametrically,
such as bi-cubic patches, but less naturally for other sur-
faces such as polyhedra or subdivision surfaces, which
are usually defined implicitly. One of the first algorithms
using the parametric representation of patches to find
texture is [4]. However, in general, there is no natural
mapping from a 2D texture space to a 3D object space.
The texture is usually distorted [13]. This is especially
true for surfaces with arbitrary topology.

Distortion of the texture can be avoided to certain
degree through considering special functions such as con-
formal mappings and isometric mappings. A mapping is
said to be con formal if it preserves angles between edges
[5]. A mapping is called an isometry if it preserves the
norm (length) of each edge [5]. For a triangular mesh,
an isometric mapping is also conformal but the reverse
is not true. Constructing a geometric mapping that is
isometric or conformal, unfortunately, is not always pos-
sible. A second choice is to use a norm preserving based
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or angle preserving based optimization to reduce overall
distortion of the mapped image. The problem with this
approach is its computation cost.

In this paper we will introduce a geometric mapping
method that can generate high quality texture on sur-
faces of arbitrary topology, but with a less expensive
computation process. The method is simple, it maps the
given surface from the 3D object space into the 2D tex-
ture space to identify the 2D texture structure that will
be used to texture the surface. The 2D texture struc-
ture has the same topology as the given 3D surface.
Therefore, the mapping guarantees a seamlessly textured
surface. The object space to texture space projection is
optimized to ensure minimum distortion of the texture
mapping process. The optimization is achieved through
a commonly used norm preserving minimization process
on edges of the surface. However, the optimization prob-
lem can be set up as a quadratic programming problem
and, hence, solved by a linear least squares method. The
key here is to make a good guess on an initial value of
the solution set, a seemingly trivial concept but with sur-
prisingly important impact on the computation process.
Three guessing methods that provide different level of
visual effect will be proposed.

The remaining part of the paper is arranged as fol-
lows. A brief review of previous works related to this one
is given in Section 2. A description of our texture map-
ping technique is given in Section 3. Three techniques
to choose an initial guess are presented in Section 4. A
summary of the algorithm is given in Section 5. Imple-
mentation issues and test cases are shown in Section 6.
The concluding remarks are given in Section 7.

2 Previous and Related Work

Texture mapping with a 2D texture space is basically a
surface parametrization process. Therefore, if a surface is
already parametrized, then texture mapping of the sur-
face is a straightforward process if parametrization of
the surface is followed in the texture mapping process.
The problem with this approach is, the result might not
be uniform or seamless if the parametrization is patch
based. See Figure 1 for an example of parametrization
based texture mapping. Notice the non-uniform stretch-
ing of the texture and the existence of seams at several
places of the surface. Actually, even a global parametriza-
tion cannot guarantee uniform and seamless texturing.
One needs to impose extra constraints such as isometry
or conformity on the mapping process to achieve uni-
formity and seamlessness. General methods for global
parametrization are based on functional optimization,
with special metrics defined to measure the deviation of
the parametrization from an isometry [10]. Several meth-
ods have been proposed for texture mapping using global
parametrization for surfaces with arbitrary topology. For
example, in [11], a global conformal parametrization for
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Fig. 1 An example of patch parametrization based texture
mapping.

surfaces with nontrivial topology is presented and quite
good test results are generated. However, in general, a
global parametric texture mapping technique that pre-
serves distances and, consequently, can act as an isome-
try does not exist [5].

To improve the parametric mapping of (u, v) to S(u,v)
and to alleviate the distortion, several methods have
been proposed for texture mapping with minimal dis-
tortion. For example, in [1], the image is projected onto
a freeform surface so it is free from distance distortion
when viewed from the projection direction. In [3], texture
mapping through an intermediate simple surface, such
as a cube, a cylinder, or a sphere is used to minimize
the distortion in the texture of the final object. Relax-
ation techniques to minimize the distance distortion by
employing a grid of sampled points on the surface and
optimizing the deviation of the distances of neighbor-
ing grid points have also been considered [2,14]. There
also exist feature-based warping and blending techniques
for texture mapping [18,20]. The user controls the map-
ping process by defining a set of features consisting of
3D points picked on the surface and corresponding 2D
points of the texture space. By minimizing some met-
ric functions, the mapping interpolates the features with
satisfactory distortion. In addition, energy based opti-
mization methods have been studied as well. For exam-
ple, in [16], several energies are defined for the texture
mapping process. By minimizing the deformation energy,
one gets a minimal distorted mapping.

Techniques aiming at improving the quality of realis-
tic effects of texture mapping have also been proposed.
For example, view dependent texture mapping (VDTM)
[17] is a technique for generating novel views of a scene
with approximately known geometry making maximal
use of a sparse set of original views. Another useful tex-
ture mapping technique is texture synthesis. Texture syn-
thesis is the process of replicating the statistical and
perceptual properties of a user specified example over
a larger surface [15]. Algorithms exist for synthesizing
a wide variety of textures over surfaces with arbitrary
topology [19,20]. However, for complicated meshes, there
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is no guarantee that the meshes are textured without no-
ticeable seams or artifacts.

3 Texture Mapping using Norm Preserving
based Optimization

3.1 Basic Idea

The idea is to project the object into a big piece of elastic
texture paper so that for each projected face (visible or
invisible) of the object, a piece of the texture paper can
be identified. This piece of the texture paper is then du-
plicated and used to cover the corresponding face of the
3D object. The elasticity of the texture paper enables us
to cover the entire face of the object even if the texture
paper piece is not identical to the object face. For in-
stance, if the 3D triangular pyramid shown in Figure 1(a)
is projected into a 2D texture space like the one shown
in Figure 1(b), then the image regions Aabd, Aabe, Aacd
and Acbd are used to texture the faces AABD, AABC,
AACD and ACBD of the 3D pyramid, respectively. The
texturing process will stretch the image regions if neces-
sary to ensure each face is covered properly.

For a projected object, call the collection of the cor-
responding image regions in the texture space (such as
Aabd, Aabe and Aacd in the above example) a texture
structure. It is easy to see that the quality of the resulting
texture mapping is completely determined by properties
of the texture structure. For instance, one can tell im-
mediately that the texture mapping generates seamless
result because the texture structure has the same topol-
ogy as the 3D object. If the length of each image region
edge is the same as the length of the corresponding object
face’s edge, then for a triangular polyhedron, the result
of the texture mapping process will be the best one can
get because in this case, no stretching or distortion of the
image region will be necessary at all during the texture
mapping process. However, projecting a 3D object into a
2D plane with all the edge lengths preserved is not possi-
ble in general, especially when the object is of arbitrary
topology [5,10]. A second choice is to define a projection
that preserves the length of each object edge as much as
possible. This approach gives good results even though
it cannot completely avoid distortion of the texture [16].
However, since the length preserving based optimization
process is a non-linear problem [16], it can only be solved
by a non-linear least squares method which is both costly
and unstable. Hence, the key in providing a better solu-
tion to this problem is to find a way to preserve the
advantage of the length preserving based optimization,
but eliminate its disadvantage - the costly computation
process.

(a) 3D object space B bj 2D7ext?re s?)acg

Fig. 2 Basic idea of texture mapping using norm preserving
based optimization.

3.2 Mathematical Setup
The norm preserving requirement is satisfied if
| P = P [lg=Il T = Tj [l4, for all (i,j) € Edges (1)

where || . ||, denotes the I,-norm of a vector, Py is a
vertex of the surface in the 3D object space and Ty is
the corresponding point in the uv texture (parameter)
space. A mapping satisfying the above requirement is
a non-distortion mapping. However, in general, this re-
quirement cannot be satisfied by surfaces of arbitrary
topology. A compromise is to minimize the sum of the
differences of the edges:

2 ijerdges( i = Pillg = 1 Ti = Tj [|g)* =
, @
SN Pi= Py llg — /(i —uj)® + (vi —v;)7)

where Py are knowns and uy, v are unkowns. This op-
timization problem is a non-linear problem, no matter
what value is used for ¢. To find ug, v that minimize
Eq. 2, a non-linear least squares method [7] has to be
used. For a 3D surface with only a few vertices, a non-
linear least squares method works well and gives good
results [16]. When the number of vertices in a 3D poly-
hedron is large, say more that 1,000 vertices as in many
cases, a non-linear least squares method becomes very
slow and unstable, sometime cannot even solve the prob-
lem. Hence, a different approach has to be used.
When ¢ =1 in Eq. 2, we have

>

(i.j) € Bdges

(Il P — Pj |1 —v;)? (3)

—(Jus = uj| + |os

Eq. 3 is still a non-linear problem due to the existence of
the absolute value operator. But we can remove the ab-
solute value operator if we know the signs of (u; —u;) and
(v; —wv;) for each (i, 7). If this is possible, then minimizing
Eq. 3 becomes a quadratic programming problem, which
can be readily solved by a linear least squares method
[8]. We will address the sign determination problem in
the next section. Here we assume the signs are known to
us and show how to solve the resulting problem.
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Without loss of generality, let u; > u; and v; > v;.
Then Eq. 3 becomes

> (lmi =51+ lyi— 5142 — 2] — (s —uj+vi—v;))* (4)
(i,4)

where (zr, yr, zx) are coordinates of 3D object space ver-
tex Pj. This is a quadratic programming problem. A lin-
ear least squares method can be used to find a minimum
of this problem [8]. However, to ensure uniqueness of
the solution, we need some extra constraints. Due to the
fact that a general solution is subject to a translation
and a rotation, we can resolve the uniqueness problem
by fixing two points in the uv parameter space. Although
any two points would work, a better choice is to select
points corresponding to adjacent vertices of the 3D sur-
face in the object space. We assume that T, = (tq,0a)
and Ty, = (@p, 0p) are the fixed points in the uv texture
space corresponding to vertices P, and P, in the object
space.

If we put Eq. 4 in matrix form, then our task is to
find a solution w = (u1,v1,u2,v2, - ,Upn,v,) for the fol-
lowing constrained minimization problem:

min (C-w —d)T(C-w — d)

A-w<0 (5)
ua:ﬂay ’Ua:T)a
Up = Up, Vg = Up

where matrix C' and vector d are derived from Eq. 4,
and matrix A is determined by the signs of (u; —u;) and
(v; — ;) for all pairs (i, j).

4 Determine an Initial Guess

In our algorithm, the signs of (u; —u;) and (v;—v;) in Eq.
4 are defined using signs of corresponding values in the
initial guess @ = (41,01, U2, V2, - -+, Un, Un), L.€., (u; —u; )
is set to positive if (@; — ;) is positive, and (v; — v;) is
set, to positive if (9; — 9;) is positive. Hence, the initial
guess is important not only in reducing the number of
iterations of the minimization process, but also in set-
ting up a good approximation of the final mapping. The
initial guess does not have to be numerically precise, but
it must accurately reflect the order of points in the so-
lution set. Three possible ways to make an initial guess
are presented below.

4.1 XY-MinMax Method

Suppose the maximum and minimum of all the 3D ver-
tices in X and Y directions are Xmaz, Xmin, Ymaz
and Y'min, respectively. Then the initial guess (u, o) for
a vertex (z,y, z) is set to

{11 = (z — Xmin)/(Xmaz — Xmin)
0= (y — Ymin)/(Ymaz — Ymin)

This setting of initial guess is intuitive and straightfor-
ward. It does not take into consideration the Z compo-
nent of a 3D vertex. But this method catches the overall
structure of the 3D object in the view plane, hence in
some cases it can result in good result, especially when
topology of the object is simple and it has only a few
control points. The glass in Fig. 3(g) is textured using
this method.

4.2 Combination Method

One can take the Z component of a 3D vertex into ac-
count by making simple modification of the first method.
For example, one can rotate the object for certain degrees
in several different directions, and then combine the cor-
responding XY-MinMax initial guesses linearly to form
a new initial guess. One thing one has to be careful with
when rotating the object is that one needs to avoid ro-
tating the object symmetrically, because symmetric ro-
tations cancel out the effect of rotation.

Another possible modification to the first method
is to use an object-to-sphere mapping to compute the
value of (u, v). First, enclose the 3D object in a sphere
large enough to contain all the vertices of the object.
The sphere is centered at the centroid of the object and
parameterized as

S(u,v) = (cos(v) cos(u), cos(v) sin(u), sin(v))

where 0 < u < 27 and —7/2 < v < w/2. A ray is then
emitted from the center of the sphere to each vertex of
the polygonal surface. The (u,v) values of the intersec-
tion point of the ray with the sphere are then combined
with the rotated XY-MinMax initial guess value to get
a new combined initial guess value.

These are two small improvements to the first method
but, surprisingly, the results are much better, even for
complex objects. Fig. 3(f), Fig. 3(h), and Fig. 3(j) are
textured using this method.

4.3 Graph Based Method

The first two methods do not work well for some objects,
such as objects with many handles. A method that works
for all kinds of objects, especially objects with compli-
cated topology, is needed. In the following, we propose a
graph based method for such a purpose.

First, treat the 3D mesh as a graph and traverse the
mesh using depth first search. For edges at the same
depth level, the one with the longest length is traversed
first. After the traversal, a linear list of all or some of the
3D vertices is obtained. Assume the list is (P, Py, -+, Py,).
Let L;; denote the norm of the vector from P; to P; and
L; denote the norm of the path from P; to P;, i.e.

Li=1Lis+ Los+---+ Li—1;
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For each vertex in the above list, the corresponding pair
(u;, ;) is assigned a set of values using the XY-MinMax
method. Then, we interpolate these (4;, 0;) values in the
2D wwv parameter space using a uniform cubic B-spline
curve. If the resulting uniform B-spline curve is f(t),
0 <t <1, then we reset (a;,v;) to f(Li/Ly).

If there are vertices that have not been traversed yet,
use a technique similar to the construction of an Eu-
ler circuit to traverse the remaining vertices. For each
remaining component, start the traversal of that compo-
nent with a vertex that has already been visited (i.e., an
vertex in the above list). The new list of vertices con-
structed will also end with a vertex in the above list.
Hence the first and the last vertices in the new list have
assigned initial guess. Using the XY-MinMax method we
can assign initial guess values to other vertices in the list
and then repeat the interpolation process to reset these
values.

This method is better than the previous two meth-
ods in that it fully takes the Z component into account
by considering the norm (length) of each edge. Since the
norm of each edge is determined by X, Y and Z compo-
nents of a 3D vector, using a norm based parameter to
reset the initial guess values obviously results in a less
distorted texture mapping. In our implementation, Fig.
3(a), 3(b), 3(c), 3(d), 3(e), 3(i) are generated with this
method.

5 The Algorithm

Once we have initial values for all the vertices, we need
to transform them so that the constrains in Eq. 5 hold,
i.e., we need to determine the matrix that transforms the
initial guesses for T, and T} from (u,,?,) and (4, 0p) to
(ta,0,) and (s, vp), respectively. This transformation
matrix M is of size 3 x 3 and has the following form:

c—57T
s € To
00 1

M =

M can be determined from the following linear system:
M - (aa: f)a: l)T = (aaﬂjan l)T
M - ('ELb, 65: 1)T = (ﬂb7’Db7 I)T

Once M is available, we transform all the initial guess

values by left multiplying M, and set up the quadratic

programming problem in Eq. 5 and solve it using the

method proposed in [8]. Matlab also provides a com-

mand (Isqglin) to solve this kind of problem.

After we get the solution of the quadratic problem,
we may still need to clamp them such that all the texture
coordinates fall in between 0 and 1. At rendering time,
if m X n texture images are tiled together to texture the
3D object surface, we just need to scale all the texture
coordinates in u-direction by m, and in v-direction by n.

The overall algorithm can be summarized as follows.

NormPreservingTM(Mesh, Texture, m, n)

1. triangulate the input polygonal surface,

2. determine (@, 0,) and (@, Up),

3. get an initial guess,

4. compute the transformation matrix M,

5. transform the initial guess by M,

6. set up the quadratic problem in Eq. 5,

7. solve the quadratic problem,

8. clamp all the texture coordinates to (0, 1),
9. scale texture coordinates by m and n,

10. do the rendering with the texture coordinates.

6 Implementation and Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on a
Windows system. Quite a few examples have been tested
with the method described here. Since the initial guess
values play an important role in our algorithm, test cases
with different initial guess values are presented. For ex-
ample, Fig. 3(g) is textured using the XY-MinMax method,
while Fig. 3(f) Figs. 3(j), and 3(h) are textured using the
combination method. The remaining test cases in Fig. 3
are textured using the graph based method. We can see
that all the results are seamless and continuous. A com-
parison of the textured teapots shown in Fig. 3(d) and
Fig. (1) makes this point obviously clear. The one shown
in Fig. 3(d) is uniform and seamless while the one shown
in Fig. (1) has noticeable seams and the texture is non-
uniformly stretched.

Although all the tested results have some distortion,
we can tell the results generated by the graph based
method have the best visual effect. We have also tested
our algorithm on surfaces with multiple holes. For ex-
ample, Fig. 3(a), Fig. 3(b), and Fig. 3(i) have one or
more holes, none of them can be represented by a single
NURBS surface. Hence it is very difficult to do texture
mapping on this kind of surfaces using a parametriza-
tion method. However, with our method, it is not more
difficult than doing a texture mapping on a cube.

7 Conclusion

A texture mapping method for surfaces of arbitrary topol-
ogy is proposed. This method maps the surface from the
3D object space into the 2D texture space to identify the
2D texture structure that will be used to texture the sur-
face. The 2D texture structure has the same topology as
the 3D object surface. Therefore, the new method guar-
antees a uniformly and seamlessly textured surface. The
3D to 2D mapping performs norm preserving based op-
timization on each edge to lower overall distortion of the
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a) Toy station (b) Ventilation control component
(c) Stanford Bunny ) Utah Teapot
_——
“::" “"‘\::' e
(e) Cow ) Horse
(g) Glass (h) Rocker (i) Rocker arm (j) Camel
arm

Fig. 3 Texture mapping on surface with arbitrary topology.
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subsequent texture mapping process. The main contri-
bution of the paper is to make the optimization process
a quadratic programming problem so it can be solved by
a linear least squares method. Several initial guess meth-
ods have been put forward for such a purpose, and our
experiments show that the graph based method has the
best result.

Our algorithm does not work well for complex sur-
faces with exceptionally abnormal curvature distribu-
tion. This problem can be alleviated by splitting the ob-
ject into several disjoint regions [16]. Nevertheless, our
method works well in most cases. The resulting surfaces
generated by our method look more realistic than those
generated by patch parametrization based approaches,
which do not texture the surface uniformly, because dif-
ferent patches may have different sizes. Our method is
especially suitable for applications that do not require
precise texture mapping results but demand highly ef-
ficient mapping process such as computer animation or
video games.

Acknowledgements Data set for Figure 3(e) and data sets
for Figures 3(f) and 3(j) are downloaded from the following
web sites

— http://graphics.cs.uiuc.edu/~garland/research/quadrics.html.
— http://graphics.csail.mit.edu/~sumner/research/deftransfer/data.html

respectively.
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