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Abstra
t A simple and yet highly eÆ
ient, high qualitytexture mapping method for surfa
es of arbitrary topol-ogy is presented. The new method proje
ts the givensurfa
e from the 3D obje
t spa
e into the 2D texturespa
e to identify the 2D texture stru
ture that will beused to texture the surfa
e. The obje
t spa
e to texturespa
e proje
tion is optimized to ensure minimum distor-tion of the texture mapping pro
ess. The optimizationis a
hieved through a 
ommonly used norm preservingminimization pro
ess on edges of the surfa
e. The maindi�eren
e here is, by using an initial value approa
h, theoptimization problem 
an be set up as a quadrati
 pro-gramming problem and, 
onsequently, solved by a lin-ear least squares method. Three methods to 
hoose agood initial value are presented. Test 
ases show that thenew method works well on surfa
es of arbitrary topology,with the ex
eption of surfa
es with ex
eptionally abnor-mal 
urvature distribution. Other advantages of the newmethod in
lude uniformity and seamlessness of the tex-ture mapping pro
ess. The new method is suitable forappli
ations that do not require pre
ise texture mappingresults but demand highly eÆ
ient mapping pro
ess su
has 
omputer animation or video games.Keywords Texture Mapping � Optimization � Realisti
Rendering1 Introdu
tionTexture mapping means the mapping of a fun
tion froma texture spa
e onto a surfa
e in 3D spa
e [13℄. Ea
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point on the obje
t surfa
e is the image of an element intexture spa
e. The domain of the mapping 
an be one,two, or three-dimensional, and it 
an be represented byeither a dis
rete array or by a mathemati
al fun
tion.Texture mapping was �rst introdu
ed as a method ofadding to the visual ri
hness of a 
omputer generated im-age without adding geometry in [6℄. Its use by far is oneof the most su

essful te
hniques in the quest for morerealisti
 imagery. Texture mapping 
an enhan
e the vi-sual e�e
ts of raster s
an images immensely while entail-ing only a relatively small in
rease in 
omputation [13℄.The study of texture mapping is popular in both 
om-puter graphi
s and image pro
essing be
ause its methodsare appli
able to both areas. There are three main top-i
s in the fundamentals of texture mapping: a
quiring atexture, possibly in
luding texture synthesis and textures
anning, the geometri
 mapping that warps a textureonto a surfa
e, and the �ltering that is ne
essary in or-der to avoid aliasing. The study of geometri
 mappingwith a 2D domain is a major resear
h 
on
ern.Mapping a 2D texture onto a 3D surfa
e usually re-quires a parametrization of the surfa
e [13℄. This 
omesnaturally for surfa
es that are de�ned parametri
ally,su
h as bi-
ubi
 pat
hes, but less naturally for other sur-fa
es su
h as polyhedra or subdivision surfa
es, whi
hare usually de�ned impli
itly. One of the �rst algorithmsusing the parametri
 representation of pat
hes to �ndtexture is [4℄. However, in general, there is no naturalmapping from a 2D texture spa
e to a 3D obje
t spa
e.The texture is usually distorted [13℄. This is espe
iallytrue for surfa
es with arbitrary topology.Distortion of the texture 
an be avoided to 
ertaindegree through 
onsidering spe
ial fun
tions su
h as 
on-formal mappings and isometri
 mappings. A mapping issaid to be 
onformal if it preserves angles between edges[5℄. A mapping is 
alled an isometry if it preserves thenorm (length) of ea
h edge [5℄. For a triangular mesh,an isometri
 mapping is also 
onformal but the reverseis not true. Constru
ting a geometri
 mapping that isisometri
 or 
onformal, unfortunately, is not always pos-sible. A se
ond 
hoi
e is to use a norm preserving based



2 Shuhua Lai, Fuhua (Frank) Chengor angle preserving based optimization to redu
e overalldistortion of the mapped image. The problem with thisapproa
h is its 
omputation 
ost.In this paper we will introdu
e a geometri
 mappingmethod that 
an generate high quality texture on sur-fa
es of arbitrary topology, but with a less expensive
omputation pro
ess. The method is simple, it maps thegiven surfa
e from the 3D obje
t spa
e into the 2D tex-ture spa
e to identify the 2D texture stru
ture that willbe used to texture the surfa
e. The 2D texture stru
-ture has the same topology as the given 3D surfa
e.Therefore, the mapping guarantees a seamlessly texturedsurfa
e. The obje
t spa
e to texture spa
e proje
tion isoptimized to ensure minimum distortion of the texturemapping pro
ess. The optimization is a
hieved througha 
ommonly used norm preserving minimization pro
esson edges of the surfa
e. However, the optimization prob-lem 
an be set up as a quadrati
 programming problemand, hen
e, solved by a linear least squares method. Thekey here is to make a good guess on an initial value ofthe solution set, a seemingly trivial 
on
ept but with sur-prisingly important impa
t on the 
omputation pro
ess.Three guessing methods that provide di�erent level ofvisual e�e
t will be proposed.The remaining part of the paper is arranged as fol-lows. A brief review of previous works related to this oneis given in Se
tion 2. A des
ription of our texture map-ping te
hnique is given in Se
tion 3. Three te
hniquesto 
hoose an initial guess are presented in Se
tion 4. Asummary of the algorithm is given in Se
tion 5. Imple-mentation issues and test 
ases are shown in Se
tion 6.The 
on
luding remarks are given in Se
tion 7.2 Previous and Related WorkTexture mapping with a 2D texture spa
e is basi
ally asurfa
e parametrization pro
ess. Therefore, if a surfa
e isalready parametrized, then texture mapping of the sur-fa
e is a straightforward pro
ess if parametrization ofthe surfa
e is followed in the texture mapping pro
ess.The problem with this approa
h is, the result might notbe uniform or seamless if the parametrization is pat
hbased. See Figure 1 for an example of parametrizationbased texture mapping. Noti
e the non-uniform stret
h-ing of the texture and the existen
e of seams at severalpla
es of the surfa
e. A
tually, even a global parametriza-tion 
annot guarantee uniform and seamless texturing.One needs to impose extra 
onstraints su
h as isometryor 
onformity on the mapping pro
ess to a
hieve uni-formity and seamlessness. General methods for globalparametrization are based on fun
tional optimization,with spe
ial metri
s de�ned to measure the deviation ofthe parametrization from an isometry [10℄. Several meth-ods have been proposed for texture mapping using globalparametrization for surfa
es with arbitrary topology. Forexample, in [11℄, a global 
onformal parametrization for

Fig. 1 An example of pat
h parametrization based texturemapping.surfa
es with nontrivial topology is presented and quitegood test results are generated. However, in general, aglobal parametri
 texture mapping te
hnique that pre-serves distan
es and, 
onsequently, 
an a
t as an isome-try does not exist [5℄.To improve the parametri
 mapping of (u; v) to S(u; v)and to alleviate the distortion, several methods havebeen proposed for texture mapping with minimal dis-tortion. For example, in [1℄, the image is proje
ted ontoa freeform surfa
e so it is free from distan
e distortionwhen viewed from the proje
tion dire
tion. In [3℄, texturemapping through an intermediate simple surfa
e, su
has a 
ube, a 
ylinder, or a sphere is used to minimizethe distortion in the texture of the �nal obje
t. Relax-ation te
hniques to minimize the distan
e distortion byemploying a grid of sampled points on the surfa
e andoptimizing the deviation of the distan
es of neighbor-ing grid points have also been 
onsidered [2,14℄. Therealso exist feature-based warping and blending te
hniquesfor texture mapping [18,20℄. The user 
ontrols the map-ping pro
ess by de�ning a set of features 
onsisting of3D points pi
ked on the surfa
e and 
orresponding 2Dpoints of the texture spa
e. By minimizing some met-ri
 fun
tions, the mapping interpolates the features withsatisfa
tory distortion. In addition, energy based opti-mization methods have been studied as well. For exam-ple, in [16℄, several energies are de�ned for the texturemapping pro
ess. By minimizing the deformation energy,one gets a minimal distorted mapping.Te
hniques aiming at improving the quality of realis-ti
 e�e
ts of texture mapping have also been proposed.For example, view dependent texture mapping (VDTM)[17℄ is a te
hnique for generating novel views of a s
enewith approximately known geometry making maximaluse of a sparse set of original views. Another useful tex-ture mapping te
hnique is texture synthesis. Texture syn-thesis is the pro
ess of repli
ating the statisti
al andper
eptual properties of a user spe
i�ed example overa larger surfa
e [15℄. Algorithms exist for synthesizinga wide variety of textures over surfa
es with arbitrarytopology [19,20℄. However, for 
ompli
ated meshes, there



Texture Mapping on Surfa
es of Arbitrary Topology using Norm Preserving based Optimization 3is no guarantee that the meshes are textured without no-ti
eable seams or artifa
ts.
3 Texture Mapping using Norm Preservingbased Optimization3.1 Basi
 IdeaThe idea is to proje
t the obje
t into a big pie
e of elasti
texture paper so that for ea
h proje
ted fa
e (visible orinvisible) of the obje
t, a pie
e of the texture paper 
anbe identi�ed. This pie
e of the texture paper is then du-pli
ated and used to 
over the 
orresponding fa
e of the3D obje
t. The elasti
ity of the texture paper enables usto 
over the entire fa
e of the obje
t even if the texturepaper pie
e is not identi
al to the obje
t fa
e. For in-stan
e, if the 3D triangular pyramid shown in Figure 1(a)is proje
ted into a 2D texture spa
e like the one shownin Figure 1(b), then the image regions�abd, �ab
, �a
dand �
bd are used to texture the fa
es �ABD, �ABC,�ACD and�CBD of the 3D pyramid, respe
tively. Thetexturing pro
ess will stret
h the image regions if ne
es-sary to ensure ea
h fa
e is 
overed properly.For a proje
ted obje
t, 
all the 
olle
tion of the 
or-responding image regions in the texture spa
e (su
h as�abd, �ab
 and �a
d in the above example) a texturestru
ture. It is easy to see that the quality of the resultingtexture mapping is 
ompletely determined by propertiesof the texture stru
ture. For instan
e, one 
an tell im-mediately that the texture mapping generates seamlessresult be
ause the texture stru
ture has the same topol-ogy as the 3D obje
t. If the length of ea
h image regionedge is the same as the length of the 
orresponding obje
tfa
e's edge, then for a triangular polyhedron, the resultof the texture mapping pro
ess will be the best one 
anget be
ause in this 
ase, no stret
hing or distortion of theimage region will be ne
essary at all during the texturemapping pro
ess. However, proje
ting a 3D obje
t into a2D plane with all the edge lengths preserved is not possi-ble in general, espe
ially when the obje
t is of arbitrarytopology [5,10℄. A se
ond 
hoi
e is to de�ne a proje
tionthat preserves the length of ea
h obje
t edge as mu
h aspossible. This approa
h gives good results even thoughit 
annot 
ompletely avoid distortion of the texture [16℄.However, sin
e the length preserving based optimizationpro
ess is a non-linear problem [16℄, it 
an only be solvedby a non-linear least squares method whi
h is both 
ostlyand unstable. Hen
e, the key in providing a better solu-tion to this problem is to �nd a way to preserve theadvantage of the length preserving based optimization,but eliminate its disadvantage - the 
ostly 
omputationpro
ess.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

d
c

b

aA

B

D

C

(b) 2D texture space(a) 3D object spaceFig. 2 Basi
 idea of texture mapping using norm preservingbased optimization.3.2 Mathemati
al SetupThe norm preserving requirement is satis�ed ifk Pi � Pj kq=k Ti � Tj kq; for all (i; j) 2 Edges (1)where k : kq denotes the lq-norm of a ve
tor, Pk is avertex of the surfa
e in the 3D obje
t spa
e and Tk isthe 
orresponding point in the uv texture (parameter)spa
e. A mapping satisfying the above requirement isa non-distortion mapping. However, in general, this re-quirement 
annot be satis�ed by surfa
es of arbitrarytopology. A 
ompromise is to minimize the sum of thedi�eren
es of the edges:P(i;j)2Edges(k Pi � Pj kq � k Ti � Tj kq)2 =P(i;j)(k Pi � Pj kq � qp(ui � uj)q + (vi � vj)q )2 (2)where Pk are knowns and uk, vk are unkowns. This op-timization problem is a non-linear problem, no matterwhat value is used for q. To �nd uk, vk that minimizeEq. 2, a non-linear least squares method [7℄ has to beused. For a 3D surfa
e with only a few verti
es, a non-linear least squares method works well and gives goodresults [16℄. When the number of verti
es in a 3D poly-hedron is large, say more that 1,000 verti
es as in many
ases, a non-linear least squares method be
omes veryslow and unstable, sometime 
annot even solve the prob-lem. Hen
e, a di�erent approa
h has to be used.When q = 1 in Eq. 2, we haveX(i;j)2Edges(k Pi � Pj k1 �(jui � uj j+ jvi � vj j))2 (3)Eq. 3 is still a non-linear problem due to the existen
e ofthe absolute value operator. But we 
an remove the ab-solute value operator if we know the signs of (ui�uj) and(vi�vj) for ea
h (i; j). If this is possible, then minimizingEq. 3 be
omes a quadrati
 programming problem, whi
h
an be readily solved by a linear least squares method[8℄. We will address the sign determination problem inthe next se
tion. Here we assume the signs are known tous and show how to solve the resulting problem.



4 Shuhua Lai, Fuhua (Frank) ChengWithout loss of generality, let ui � uj and vi � vj .Then Eq. 3 be
omesX(i;j)(jxi�xj j+jyi�yj j+jzi�zj j�(ui�uj+vi�vj))2 (4)where (xk ; yk; zk) are 
oordinates of 3D obje
t spa
e ver-tex Pk. This is a quadrati
 programming problem. A lin-ear least squares method 
an be used to �nd a minimumof this problem [8℄. However, to ensure uniqueness ofthe solution, we need some extra 
onstraints. Due to thefa
t that a general solution is subje
t to a translationand a rotation, we 
an resolve the uniqueness problemby �xing two points in the uv parameter spa
e. Althoughany two points would work, a better 
hoi
e is to sele
tpoints 
orresponding to adja
ent verti
es of the 3D sur-fa
e in the obje
t spa
e. We assume that Ta = (�ua; �va)and Tb = (�ub; �vb) are the �xed points in the uv texturespa
e 
orresponding to verti
es Pa and Pb in the obje
tspa
e.If we put Eq. 4 in matrix form, then our task is to�nd a solution w = (u1; v1; u2; v2; � � � ; un; vn) for the fol-lowing 
onstrained minimization problem:8><>:min (C � w � d)T (C � w � d)A � w � 0ua = �ua; va = �vaub = �ub; va = �vb (5)where matrix C and ve
tor d are derived from Eq. 4,and matrix A is determined by the signs of (ui�uj) and(vi � vj) for all pairs (i; j).4 Determine an Initial GuessIn our algorithm, the signs of (ui�uj) and (vi�vj) in Eq.4 are de�ned using signs of 
orresponding values in theinitial guess ~w = (~u1; ~v1; ~u2; ~v2; � � � ; ~un; ~vn), i.e., (ui�uj)is set to positive if (~ui � ~uj) is positive, and (vi � vj) isset to positive if (~vi � ~vj) is positive. Hen
e, the initialguess is important not only in redu
ing the number ofiterations of the minimization pro
ess, but also in set-ting up a good approximation of the �nal mapping. Theinitial guess does not have to be numeri
ally pre
ise, butit must a

urately re
e
t the order of points in the so-lution set. Three possible ways to make an initial guessare presented below.4.1 XY-MinMax MethodSuppose the maximum and minimum of all the 3D ver-ti
es in X and Y dire
tions are Xmax, Xmin, Y maxand Y min, respe
tively. Then the initial guess (~u; ~v) fora vertex (x; y; z) is set to� ~u = (x �Xmin)=(Xmax�Xmin)~v = (y � Ymin)=(Ymax� Y min)

This setting of initial guess is intuitive and straightfor-ward. It does not take into 
onsideration the Z 
ompo-nent of a 3D vertex. But this method 
at
hes the overallstru
ture of the 3D obje
t in the view plane, hen
e insome 
ases it 
an result in good result, espe
ially whentopology of the obje
t is simple and it has only a few
ontrol points. The glass in Fig. 3(g) is textured usingthis method.4.2 Combination MethodOne 
an take the Z 
omponent of a 3D vertex into a
-
ount by making simple modi�
ation of the �rst method.For example, one 
an rotate the obje
t for 
ertain degreesin several di�erent dire
tions, and then 
ombine the 
or-responding XY-MinMax initial guesses linearly to forma new initial guess. One thing one has to be 
areful withwhen rotating the obje
t is that one needs to avoid ro-tating the obje
t symmetri
ally, be
ause symmetri
 ro-tations 
an
el out the e�e
t of rotation.Another possible modi�
ation to the �rst methodis to use an obje
t-to-sphere mapping to 
ompute thevalue of (u; v). First, en
lose the 3D obje
t in a spherelarge enough to 
ontain all the verti
es of the obje
t.The sphere is 
entered at the 
entroid of the obje
t andparameterized asS(u; v) = (
os(v) 
os(u); 
os(v) sin(u); sin(v))where 0 � u < 2� and ��=2 � v < �=2. A ray is thenemitted from the 
enter of the sphere to ea
h vertex ofthe polygonal surfa
e. The (u; v) values of the interse
-tion point of the ray with the sphere are then 
ombinedwith the rotated XY-MinMax initial guess value to geta new 
ombined initial guess value.These are two small improvements to the �rst methodbut, surprisingly, the results are mu
h better, even for
omplex obje
ts. Fig. 3(f), Fig. 3(h), and Fig. 3(j) aretextured using this method.4.3 Graph Based MethodThe �rst two methods do not work well for some obje
ts,su
h as obje
ts with many handles. A method that worksfor all kinds of obje
ts, espe
ially obje
ts with 
ompli-
ated topology, is needed. In the following, we propose agraph based method for su
h a purpose.First, treat the 3D mesh as a graph and traverse themesh using depth �rst sear
h. For edges at the samedepth level, the one with the longest length is traversed�rst. After the traversal, a linear list of all or some of the3D verti
es is obtained. Assume the list is (P1; P2; � � � ; Pn).Let Lij denote the norm of the ve
tor from Pi to Pj andLi denote the norm of the path from P1 to Pi, i.e.Li = L12 + L23 + � � �+ Li�1;i



Texture Mapping on Surfa
es of Arbitrary Topology using Norm Preserving based Optimization 5For ea
h vertex in the above list, the 
orresponding pair(~ui; ~vi) is assigned a set of values using the XY-MinMaxmethod. Then, we interpolate these (~ui; ~vi) values in the2D uv parameter spa
e using a uniform 
ubi
 B-spline
urve. If the resulting uniform B-spline 
urve is f(t),0 � t � 1, then we reset (~ui; ~vi) to f(Li=Ln).If there are verti
es that have not been traversed yet,use a te
hnique similar to the 
onstru
tion of an Eu-ler 
ir
uit to traverse the remaining verti
es. For ea
hremaining 
omponent, start the traversal of that 
ompo-nent with a vertex that has already been visited (i.e., anvertex in the above list). The new list of verti
es 
on-stru
ted will also end with a vertex in the above list.Hen
e the �rst and the last verti
es in the new list haveassigned initial guess. Using the XY-MinMax method we
an assign initial guess values to other verti
es in the listand then repeat the interpolation pro
ess to reset thesevalues.This method is better than the previous two meth-ods in that it fully takes the Z 
omponent into a

ountby 
onsidering the norm (length) of ea
h edge. Sin
e thenorm of ea
h edge is determined by X , Y and Z 
ompo-nents of a 3D ve
tor, using a norm based parameter toreset the initial guess values obviously results in a lessdistorted texture mapping. In our implementation, Fig.3(a), 3(b), 3(
), 3(d), 3(e), 3(i) are generated with thismethod.5 The AlgorithmOn
e we have initial values for all the verti
es, we needto transform them so that the 
onstrains in Eq. 5 hold,i.e., we need to determine the matrix that transforms theinitial guesses for Ta and Tb from (~ua; ~va) and (~ub; ~vb) to(�ua; �va) and (�ub; �vb), respe
tively. This transformationmatrix M is of size 3� 3 and has the following form:M = 24 
 �s r1s 
 r20 0 1 35M 
an be determined from the following linear system:�M � (~ua; ~va; 1)T = (�ua; �va; 1)TM � (~ub; ~vb; 1)T = (�ub; �vb; 1)TOn
e M is available, we transform all the initial guessvalues by left multiplying M , and set up the quadrati
programming problem in Eq. 5 and solve it using themethod proposed in [8℄. Matlab also provides a 
om-mand (lsqlin) to solve this kind of problem.After we get the solution of the quadrati
 problem,we may still need to 
lamp them su
h that all the texture
oordinates fall in between 0 and 1. At rendering time,if m�n texture images are tiled together to texture the3D obje
t surfa
e, we just need to s
ale all the texture
oordinates in u-dire
tion by m, and in v-dire
tion by n.

The overall algorithm 
an be summarized as follows.NormPreservingTM(Mesh, Texture, m, n)1. triangulate the input polygonal surfa
e,2. determine (�ua; �va) and (�ub; �vb),3. get an initial guess,4. 
ompute the transformation matrix M ,5. transform the initial guess by M ,6. set up the quadrati
 problem in Eq. 5,7. solve the quadrati
 problem,8. 
lamp all the texture 
oordinates to (0, 1),9. s
ale texture 
oordinates by m and n,10. do the rendering with the texture 
oordinates.6 Implementation and Test ResultsThe proposed approa
h has been implemented in C++using OpenGL as the supporting graphi
s system on aWindows system. Quite a few examples have been testedwith the method des
ribed here. Sin
e the initial guessvalues play an important role in our algorithm, test 
aseswith di�erent initial guess values are presented. For ex-ample, Fig. 3(g) is textured using the XY-MinMax method,while Fig. 3(f) Figs. 3(j), and 3(h) are textured using the
ombination method. The remaining test 
ases in Fig. 3are textured using the graph based method. We 
an seethat all the results are seamless and 
ontinuous. A 
om-parison of the textured teapots shown in Fig. 3(d) andFig. (1) makes this point obviously 
lear. The one shownin Fig. 3(d) is uniform and seamless while the one shownin Fig. (1) has noti
eable seams and the texture is non-uniformly stret
hed.Although all the tested results have some distortion,we 
an tell the results generated by the graph basedmethod have the best visual e�e
t. We have also testedour algorithm on surfa
es with multiple holes. For ex-ample, Fig. 3(a), Fig. 3(b), and Fig. 3(i) have one ormore holes, none of them 
an be represented by a singleNURBS surfa
e. Hen
e it is very diÆ
ult to do texturemapping on this kind of surfa
es using a parametriza-tion method. However, with our method, it is not morediÆ
ult than doing a texture mapping on a 
ube.7 Con
lusionA texture mapping method for surfa
es of arbitrary topol-ogy is proposed. This method maps the surfa
e from the3D obje
t spa
e into the 2D texture spa
e to identify the2D texture stru
ture that will be used to texture the sur-fa
e. The 2D texture stru
ture has the same topology asthe 3D obje
t surfa
e. Therefore, the new method guar-antees a uniformly and seamlessly textured surfa
e. The3D to 2D mapping performs norm preserving based op-timization on ea
h edge to lower overall distortion of the
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(a) Toy station (b) Ventilation 
ontrol 
omponent

(
) Stanford Bunny (d) Utah Teapot

(e) Cow (f) Horse

(g) Glass (h) Ro
kerarm (i) Ro
ker arm (j) CamelFig. 3 Texture mapping on surfa
e with arbitrary topology.



Texture Mapping on Surfa
es of Arbitrary Topology using Norm Preserving based Optimization 7subsequent texture mapping pro
ess. The main 
ontri-bution of the paper is to make the optimization pro
essa quadrati
 programming problem so it 
an be solved bya linear least squares method. Several initial guess meth-ods have been put forward for su
h a purpose, and ourexperiments show that the graph based method has thebest result.Our algorithm does not work well for 
omplex sur-fa
es with ex
eptionally abnormal 
urvature distribu-tion. This problem 
an be alleviated by splitting the ob-je
t into several disjoint regions [16℄. Nevertheless, ourmethod works well in most 
ases. The resulting surfa
esgenerated by our method look more realisti
 than thosegenerated by pat
h parametrization based approa
hes,whi
h do not texture the surfa
e uniformly, be
ause dif-ferent pat
hes may have di�erent sizes. Our method isespe
ially suitable for appli
ations that do not requirepre
ise texture mapping results but demand highly ef-�
ient mapping pro
ess su
h as 
omputer animation orvideo games.A
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