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Abstract. A new method for constructing a smooth
surface that interpolates the vertices of an arbitrary
mesh is presented. The mesh can be open or closed.
Normals specified at vertices of the mesh can also be
interpolated. The interpolating surface is obtained
by locally adjusting the limit surface of the given
mesh (viewed as the control mesh of a Catmull-Clark
subdivision surface) so that the modified surface
would interpolate all the vertices of the given mesh.
The local adjustment process is achieved through
locally blending the limit surface with a surface
defined by non-uniform transformations of the limit
surface. This local blending process can also be used
to smooth out the shape of the interpolating surface.
Hence, a surface fairing process is not needed in the
new method. Because the interpolation process does
not require solving a system of linear equations, the
method can handle meshes with large number of
vertices. Test results show that the new method leads
to good interpolation results even for complicated
data sets. The new method is demonstrated with the
Catmull-Clark subdivision scheme. But with some
minor modification, one should be albe to apply this
method to other subdivision schemes as well.

CR Categories: 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling - curve,
surface, solid and object representations;

Keywords: subdivision, subdivision surfaces,
Catmull-Clark subdivision surfaces, interpolation

1 Introduction

Constructing a smooth surface to interpolate the ver-
tices of a given mesh is an important task in many ar-
eas, including geometric modeling, computer graphics,
computer animation, interactive design, and scientific
visualization. The interpolating surface sometime is
also required to interpolate normal vectors specified
for some or all of the mesh vertices. Developing a
general solution for this task is difficult because the
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required interpolating surface could be of arbitrary
topology and with arbitrary genus. Traditional repre-
sentation schemes such as B-spline or Bézier surfaces
can not represent such a complex shape with only one
surface.

Subdivision surfaces were introduced as an efficient
technique to model complex shapes [2][3][10]. But
building a connection between a given mesh and an in-
terpolating subdivision surface has never really been
successful when the number of vertices of the given
mesh is large '. One exception is a work published
recently [11]. In this paper, an iterative interpolation
technique similar to the one used in [8] for non-uniform
B-spline surfaces is proposed for subdivision surfaces.
Since the iterative approach does not require solving a
system of linear equations, it can handle meshes with
large number of vertices. But the paper fails to prove
the convergence of the iterative process.

In this paper we will address the problem of ‘con-
structing a smooth surface to interpolate the vertices
of a given mesh’ and present a new solution to this
problem. We briefly review previous work in this area
first.

1.1 Previous Work: A Brief Review

There are two major ways to interpolate a given mesh
with a subdivision surface: interpolating subdivision
[4, 6, 7, 14, 19] or global optimization [5, 12]. In the
first case, a subdivision scheme that interpolates the
control vertices, such as the Butterfly scheme [4], Zorin
et al’s improved version [19] or Kobbelt’s scheme [7],
is used to generate the interpolating surface. New ver-
tices are defined as local affine combinations of nearby
vertices. This approach is simple and easy to imple-
ment. It can handle meshes with large number of ver-
tices. However, since no vertex is ever moved once
it is computed, any distortion in the early stage of
the subdivision will persist. This makes interpolating
subdivision very sensitive to irregularity in the given

Hnterpolating subdivision [4] will be addressed shortly
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(a) Given Mesh

(b) Interpolating surface generated with blending area
automatically selected

(c) Interpolating surface generated with user selected
blending areas around upper portion of the teapot body

(d) Interpolating surface generated with user selected
blending areas around bottom portion of the teapot
body

Figure 1: Example with local control

mesh. In addition, it is difficult for this approach to
interpolate normals or derivatives.

The second approach, global optimization, usually
needs to build a global linear system with some con-
straints [13]. The solution to the global linear sys-
tem is a control mesh whose limit surface interpolates
the vertices of the given mesh. This approach usu-
ally requires some fairness constraints in the interpo-
lation process, such as the energy functions presented
in [5], to avoid undesired undulations. Although this
approach seems more complicated, it results in a tra-
ditional subdivision surface. For example, the method
in [5] results in a Catmull-Clark subdivision surface
(CCSS), which is C2-continuous almost everywhere
and whose properties are well studied and understood.
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The problem with this approach is that a global linear
system needs to be built and solved. It is difficult for
this approach to handle meshes with large number of
vertices.

There are also techniques that produce surfaces
to interpolate given curves or surfaces that near- (or
quasi-) interpolate given meshes [9]. But those tech-
niques are either of different natures or of different
concerns and, hence, will not be discussed here.

1.2 Overview

In this paper a new method for constructing a smooth
surface that interpolates the vertices of a given mesh
is presented. The mesh can be of arbitrary topology
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and can be open or closed. Normal vectors specified
for any vertices of the mesh can also be interpolated.
The basic idea is to view the given mesh as the con-
trol mesh of a Catmull-Clark subdivision surface and
locally adjust the limit surface of the given mesh so
that the resulting surface would not only interpolate
vertices of the given mesh, but also possess a satis-
factory smooth shape. The local adjustment process
is achieved through blending the limit surface S with
a blending surface 7' defined by non-uniform transfor-
mations of the limit surface. By performing the blend-
ing process at different selected points, we are able to
(1) ensure the modified surface would interpolate the
given mesh, (2) prevent it from generating unneces-
sary undulations, and (3) smooth out the shape of the
resulting surface.

The new method has two main advantages. First,
since we do not have to compute the interpolating sur-
face’s control mesh, there is no need to solve a system
of linear equations. Therefore, the new method can
handle meshes with large number of vertices, and is
more robust and stable. Second, because the local
blending process can be used to smooth out the shape
of the interpolating surface, a surface fairing process
is not needed in the new method.

An example of this interpolation process is shown
in Figure 1. The surfaces shown in Figures 1(b), 1(c)
and 1(d) all interpolate the mesh shown in Figure 1(a).
The blending areas in Figure 1(b) are automatically
selected by the system while Figures 1(c) and 1(c) have
user selected blending areas in the upper portion and
lower portion of the teapot body afterward. It is easy
to see from Figure 1 that local control is necessary
when better quality interpolating surfaces are needed.

The new method is demonstrated with Catmull-
Clark subdivision surfaces here (by viewing the given
mesh as the control mesh of a Catmull-Clark subdi-
vision surface). But with a minor modification, one
should be able to apply it to other subdivision schemes
as well.

The remaining part of the paper is arranged as fol-
lows. In Section 2, the basic idea of our locally con-
trollable interpolation technique for closed meshes is
presented. The construction process of a blending sur-
face is presented in Section 3. In Section 4, a local
parametrization is introduced. The blending process
around an extraordinary point or an arbitrarily se-
lected point is discussed in Section 5 and Section 6,
respectively. Issues on dealing with normal interpola-
tion and handling open meshes are discussed in Section
7 and Section 8, respectively. Implementation issues
and test results are presented in Section 9. Concluding
marks are given in Section 10.
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2 Basic Idea

Given a 3D mesh with n vertices: P =
{P1,Ps,--- ,P,}, the goal here is to construct a new
surface that interpolates P (the vertices of P, for now).
Contrast to existing interpolation methods, which ei-
ther construct a new mesh whose limit surface interpo-
lates P or perform interpolating subdivision schemes
on the input mesh, we perform interpolation by manip-
ulating the limit surface S of the given mesh directly.
The basic idea is to push or pull the limit surface of
the given mesh in vicinity of selected points so that the
modified surface interpolates the given mesh and, in
the meanwhile, prevent it from generating unnecessary
undulations and maintain its smoothness. The push or
pull process is done by constructing a new surface T',
and blending 7" with S. T must be relatively easy to
construct and interpolating P initially. For example,
in Fig. 2(a), T is composed of five separate segments:
TOl: TOQ, Tog, T04 and 7—1057 and each of them interpo—
lates a point of P = {P;, Py, P3, Py, Ps}. T and S must
be blended in a way such that the resulting surface in-
terpolates P and is C?-continuous almost everywhere.
The interpolating surface can be defined as follows:

S = S(u,v)W(u,v) +T(u,v)(1 — W(u,v)), (1)

where 0 < W (u,v) < 1is a C*-continuous weight func-
tion satisfying the property lim(, ,j_,0 W(u,v) = 0.
The blending process is done independently on each
of the three coordinates of the surface S(u,v). T
must be parametrized so that 7(0,0) = P;, (1 <i <
n) and is C%-continuous everywhere except at (0,0)
(where it is at least C'-continuous) and except at
{(u,v) | W(u,v) = 1} (where it is not even necessary
to be C%-continuous). Therefore S is guaranteed to
interpolate P and is C2-continuous everywhere except
at some extraordinary points.

Usually during the initial blending process, qual-
ity of the resulting interpolating surface would not be
good enough yet. For example, the blue curve in Fig.
2(a), denoted Sp, is the resulting curve of the first
blending process. As we can see, S; has a lot of un-
desired undulations although it interpolates the given
mesh P exactly.

To improve the shape of the interpolating surface
and to reduce unnecessary oscillations, a second blend-
ing process can be performed in the vicinity of some
selected points. For example, in Fig. 2(b), a second
blending process is performed in the vicinity of all the
edge points of the given mesh. To carry out the sec-
ond blending process, a different blending surface T3
has to be constructed. T; does not have to interpolate
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P3

P Toz

(a) First blending

(b) Second blending

Figure 2: Basic idea of the new interpolation method.

P. However, T; must not change the position of the
images of P on the limit surface. In other words, the
domain involved in constructing 77 should be smaller
than the domain of Sy, so that the images of P would
not be involved in the construction process of T;. For
example, in Fig. 2(b), T1 = {T1,T12,T13,T14,T15}
and the images of P;s are not involved in the construc-
tion of Ty. Once T} is constructed, T} can be blended
with S; similarly to get Sy as follows:

Sy = St (u, v)W1(u,v) + Th (u,v)(1 — Wi(u,v))

where Wi(u,v) is a blending function similar to
W (u,v) in Eq. (1), except Wy (u,v) is constructed for
vicinity of edge points, while W (u, v) is constructed for
vicinity of vertex points. This means that we have to
translate (u,v) by some constant so that Wi (u,v) =0
at the selected edge point. Because the images of P
are not involved in the construction process of 71, the
images of P are not affected in the above blending
process. Hence interpolation requirement still holds.

Note that the blending process is done for individ-
ual pieces. For example, in Fig. 2(b), it is done for the
pieces corresponding to 77;, 1 <i < 5, independently.
Because T7 is not required to interpolate P, not every
Tii, 1 <1 <5, has to be blended with the correspond-
ing piece of S;. A blending process is performed for a
selected region only if the shape of the surface is not
good enough in that area. Hence, the blending process
is an optional operation.

As we can tell from Fig. 2, the shape of Ss is much
better than that of S;. However, if necessary, a third
or even more blending processes can be performed on
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the resulting surface to further improve its quality.
While the above idea seems to be simple and straight-
forward, the key here is how to construct a T'(u, v) for
each local blending process and how to construct the
corresponding blending weight function W (u,v) such
that the resulting interpolating surface is smooth and
oscillation-free. The construction process of T' will be
shown in the next section. For consistency, we denote
the (i + 1)st blending surface T by T}, and use T" as a
general reference to all possible levels of T;.

3 Construction of T

The construction process of T must satisfy two re-
quirements: it should be intuitive enouch to use and
the result should be easy to obtain. Note that only
Ty is required to interpolate P, not the subsequent 75,
1 > 1. Hence, it is sufficient to show the construc-
tion process of Ty only. T; (i > 1) can be constructed
similarly, without the interpolation constraint. Nev-
ertheless, we will show how to construct T; (i > 1)
with details in Section 6 after local parameterization
of subdivision surfaces is discussed.

T can be constructed in several different ways.
In this paper we construct 7' by linearly transform-
ing pieces of S in 3D object space. Note that Ty
is not necessary to be C°-continuous at parameters
where W(u,v) = 1. The affine transformation ma-
trix can be chosen in a way such that Ty interpo-
lates P and, in the meanwhile, changes the original
limit surface as little as possible. For example, in Fig-
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ure 2(a), to get T for the limit surface S defined by
P = {P,,P,, P;, P, P;}, we simply translate S seg-
ment by segment, in the direction from the image of
P; to P;, and then scale each segment with appropriate
scaling factors for X, Y and Z components such that
T interpolates P and has an appropriate size. Conse-
quently, as it shows in Figure 2(a), T is represented
by five segments: {T[)l, T[)z, :Z_bg7 T’(]47 T05} and they are
not C%-continuous. But after a blending process us-
ing equation (1), we get a surface S; which smoothly
interpolates P.

4 Local Parameterization of

Subdivision Surfaces

The blending process defined by eq. (1) is performed
on regions of the limit surface. Hence a local parame-
terization is needed for each region of the limit surface
where a blending process is to be performed. Several
local parameterization methods have been reported in
the literature [15, 17]. We follow Reif’s approach [17]
here. We assume that for any two extraordinary points
of P, their corresponding points on the limit surface
are at least two patches away. If this is not the case,
simply perform one or two subdivision steps on P to
get a new control mesh for the limit surface. But the
target of the interpolation process is still P, not the
new control mesh.

Reif’s approach maps an extraordinary point to
(0,0) and is based on the characteristic map of a
subdivision scheme [17]. A characteristic map is de-
fined by calculating the limit of subdivision on a 2D
mesh formed by the two sub-dominant eigenvectors
of the local subdivision matrix [17, 21]. The char-
acteristic map for Catmull-Clark subdivision scheme
around an extraordinary vertex of valence n is based
on the topology of the 2-ring neighborhood of vertices
around the extraordinary vertex. The 2-ring neighbor-
hood is enough to determine the limit function for the
n faces adjacent to the extraordinary vertex. Thus,
the two sub-dominant eigenvectors have 6n + 1 en-
tries each. Since they do not depend on the input
mesh, they can be pre-computed for each valence n.
Once we have the two sub-dominant eigenvectors, we
can find (u,v) parameters corresponding to each ver-
tex of the k-times (k € Z and k > 0) refined mesh,
around the extraordinary point. This is done by ap-
plying a 3 x 3 limit mask [18] of bicubic B-splines to
the corresponding neighborhood of vertices in the k-
times refined mesh. Also as a normalization rule, the
two sub-dominant eigenvectors should be scaled such
that the parameters (u,v) at the end-points of edges
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emanating from the extraordinary vertex have coordi-
nates (cos(ia),sin(ia)), i = 1---n, where a = 27/n
(see Fig. 3(a)).

5 Blending around an extraor-
dinary point

With parametrization available, it is now possible to
perform blending process on regions of the limit sur-
face. To maximize the blending area around an ex-
traordinary point (note that a regular point is just a
special case of an extraordinary point), we define the
blending region in the parameter space by the condi-
tion:
u? + v? <1.

This is a circle centered at the extraordinary point
in the parameter space (See Fig. 3(a)). Note that
some of the parameters (u,v) in the characteristic map
might be outside the unit circle [17, 18], i.e., u® +
v? > 1 is possible. Hence the actual blending area is
smaller than the whole domain. It should be pointed
out that the blending area defined here is different
from the one used in [18], which is defined by u? +
v? < )\, with A, being the sub-dominant eigenvalue
of the subdivision matrix corresponding to a valence n
extraordinary vertex. The reason for this difference is
because we want to maximize the blending areas and
overlapping of blending areas does not matter in our
case.

The blending weight function W (u,v) must satisfy
the condition 0 < W (u,v) < 1 in the blending region
and has to be at least C2-continuous everywhere. We
follow Levin’s approach [18] to define W (u,v), i.e.,

W (u,v) = (u® + v?)(3(u® + v?) — 8y/(u2 + v2) + 6)

It is easy to see that W (u,v) satisfies 0 < W(u,v) <1
in the region u? +v? < 1 and is C?-continuous ev-
erywhere. At the extraordinary point, W (u,v) ap-
proaches zero at the rate of u? + v?. When near the
boundary of the blending region u? +v? = 1, W (u,v)
approaches 1, with zero partial derivatives up to order
2. Hence, the resulting surface is guaranteed to inter-
polate the given mesh and, meanwhile, cancels out the
irregularity and discontinuity of the blending surface
T.

6 Blending around an arbitrar-
ily selected point

Because we allow local adjustment of the interpolat-
ing surface, there should be a way for the system to
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(a) Blending around the image of an original
vertex

(b) Blending around an arbitrary point

Figure 3: Parameter space for a vertex of degree 5 and for an arbitrarily selected point.

perform blending process in regions around arbitrar-
ily selected points of the surface, not only the images
of the control vertices P;. With a local parametriza-
tion, such a task is actually relatively easy to achieve.
For example, in Fig. 3(b), to adjust the interpolating
surface in a small area around the selected point (the
one marked with a black solid circle), we first find the
parameter (ug,vg) of the selected 3D point in the pa-
rameter space of the local parametrization that covers
the selected point, and then find the biggest circle in
the parameter space whose center is (ug,vp) (the red
circle in Fig. 3(b)). This circle defines the blending
area for the selected point.

To speed up the search of (ug,vp), we can simply
choose the closest (ug,vg) in the k-times refined char-
acteristic map (k € Z and k > 0). Once we have
(ug,vp), we still need to find the biggest radius for
the blending area. Again we compare all the distances
from the selected point (ug,vg) to all the boundary
parameter values in the k-times refined characteristic
map (k € Z and k > 0) and the smallest one is the ra-
dius of our blending area, denoted r¢. In addition, as
mentioned above, the blending area should not include
the parameter point (0,0). So we also need to compare
ro with the distance between (0, 0) and (ug,vo) and the
smaller one is called r. Therefore the blending area for
the selected point can be defined as follows.

(u—u0)? + (v —wg)* < r?

The corresponding blending weight function W (u,v)
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is defined by the following quartic formula [18].
W (u,v) = p*(3p” — 8p +6),

where

\/(u —ug)?+ (v — 00)2-

r

p:

It is easy to see p < 1 and W(u,v) satisfies 0 <
W(u,v) < 1 in the blending region and is C?-
continuous everywhere. Note that at the selected
point, W (u,v) approaches zero. ~When near the
boundary of the blending region, W (u,v) approaches
1, with zero partial derivatives up to order 2. Con-
sequently, it can still cancel out the irregularity and
discontinuity of the blending surface T while locally
modify the shape of the interpolating surface accord-
ing to the need of the user.

6.1 Revisit Construction of Blending
Surface T

In the above section, we have discussed how to con-
struct an initial blending surface 7, around vertices
to be interpolated. In this section, we show how to
construct a blending surface T; around an arbitrarily
selected point. T;, like T, should also be easy and
efficient to construct. Again, we can use affine trans-
formation to construct 7; from S;. The scaling fac-
tor components of the affine transformation matrix are
easy to determine, simply compare the dimensions of
T; and S;. The question is how to determine the offset
components of the affine transformation matrix. Note
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that, unlike the case of Ty where the offset components
of the affine transformation matrix are determined by
the vertex to be interpolated and its limit point on S,
in this case, there is no point in the given mesh that
corresponds to the selected point on S;. In an interac-
tive environment, such a point can be specified by the
user. But how should such a point and, consequently,
the offset vector be determined for an automatic sys-
tem?

We propose to determine the offset vector for each
selected 3D point by constructing a Hermite surface
for the patch that covers the selected point. For ex-
ample, if the offset vectors for the four vertices of
the patch are Dy, Dy, D3 and Dg, then we construct
a Hermite surface patch H(u,v) based on Dy, Ds, D3
and Dy. The tangent vectors at the four corners re-
quired for the construction of H are set to the partial
derivatives of the limit surface S at the four corners.
The offset vector for a selected point with parameter
value (ug,vp) in S;, is set to H (ug,vy), where (ug, v])
can be determined by linearly mapping quadrilateral
[0, cos(2im/n)] x [0,sin(2im/n)] to a unit square.

7 Interpolation of Normal Vec-
tors

Direction of normal vectors specified at vertices of the
given mesh can also be interpolated. The key is to
modify the construction process of the blending sur-
face T so that it would have the same normals (actu-
ally the same partial derivatives) at the extraordinary
points. This can be easily achieved by rotating each
piece of Ty with appropriate X, Y and Z rotation fac-
tors after the above mentioned translation and scaling
process. This is possible because each piece of Tj inter-
polates one point of P only. Hence we have a blending
surface Tj that not only interpolates the given mesh
P but normals specified at some or all vertices of P as
well. Because the value of W (u,v) and its first partial
derivatives at (0,0) are all zero, the resulting interpo-

lating surface S then satisfies 8TE()Z’”) = 8§é’;’”) and
BT(;Z’") = asgzm)_ In other words, S and T, have the

same normal. Hence, with one more Affine transfor-
mation (actually they can be combined into a single
matrix to save computation time), we can construct
an interpolating surface that not only interpolates the
given mesh, but normals at all or some of the vertices
of the mesh as well.
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Figure 5: Handling open meshes

8 Handling Open Meshes

The interpolation process developed in the previous
sections can not be used for open meshes, such as
the one shown in Fig. 4(c), directly. This is be-
cause boundary vertices of an open mesh have no cor-
responding limit points, nor derivatives. Therefore,
the Affine transformation matrix required for the con-
struction of Ty cannot be built directly. One way to
overcome this problem is to add an additional ring of
vertices along the current boundary and connect the
vertices of this ring with corresponding vertices of the
current boundary to form an additional ring of faces.
The newly added vertices are called dummy vertices.
We then apply the interpolation method to the ex-
tended open mesh as to a closed mesh except that
there are no actions taken for the dummy vertices.
This technique of extending the boundary of a given
mesh is similar to a technique proposed for uniform
B-spline surface representation in [1]. Note that in
this case, the interpolation process is not based on the
limit surface of the given mesh, but the limit surface
of the extended mesh. Therefore, the shape of the in-
terpolating surface will be affected by locations of the
dummy vertices as well. Determining the location of
a dummy vertex, however, is a tricky issue, the user
should not be burdened by such a tricky task. In our
system, this is done by using locations of the current
boundary vertices of the given mesh as the locations
of the dummy vertices. Note that our interpolation
technique is performed directly on the limit surface,
hence there is no need to care about positions of the
dummy vertices after interpolation.

Another approach to handle open mesh interpola-
tion is to modify the proposed interpolation method
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(a) Given Mesh

(b) Interpolation Surface

(c) Given Mesh (d) Interpolation Surface

Figure 4: Examples

for closed meshes. Note that our method is locally
adjustable. Hence the limit point of a vertex actually
can be moved to anywhere, as long as the interpolation
requirement are satisfied. Consider the mesh shown in
Fig. 5 where vertices marked with circles, like P and
@, are boundary vertices and vertices marked with
solid circles, such as V', A and B, are interior vertices.
The shaded surface patch is the corresponding limit
surface where S(A) and S(B) are the images of A and
B, respectively, S(C) and S(D) are the images of the
corresponding edge points, respectively. According to
our interpolation method, S(A) and S(B) should be
moved to A and B, respectively. However, to inter-
polate the boundary points P and @), we can modify
our approach such that S(A) and S(B) are moved to
P and Q, respectively, and S(C) and S(D) are moved
to A and B, respectively. The resulting surface then
interpolates all the vertices of the given open mesh.

9 Test Results

The proposed techniques have been implemented in
C++ using OpenGL as the supporting graphics system
on the Windows platform. Quite a few examples have
been tested with the techniques described here. All
the examples have extra-ordinary vertices. Some of
the tested results are shown in Figures 1, 4 and 6.
From these examples we can see smooth and visually
pleasant shapes can be obtained by locally adjusting
the original limit surfaces.

In our implementation, two subdivision steps are
performed on the given mesh for each example be-
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fore the parametrization technique [17] is applied. The
evaluation of the interpolating surfaces are based on
sample parameter values of the 4-times refined char-
acteristic maps, and we find the results to be good for
most cases. For bigger patches one can use more sam-
ple points because patches do not have to be sampled
uniformly.

All the interpolation shown in Figures 1, 4 and 6
are done with at least two blending processes. First
one is done with Tf, which is based on all the given
control vertices. T; for the second blending process is
based on all edge points of the given mesh. Some fig-
ures in the examples went through more blending pro-
cesses to further improve quality of the interpolating
surface. T;’s for those blending processes are selected
based on, for example, face points of all patches, or
parameter values (2%, Zlk), where 7 and k are integers.
User interaction is also possible. For example, Figure
1(b) and Figure 1(c) both interpolate the given mesh
shown in Figure 1(a), but Figure 1(c) is obtained with
more local adjustment on the upper part of the teapot
body. The other parts are not adjusted, hence they
are exactly the same as those shown in Figure 1(b).
Figure 1 shows, with user local adjustment, a better
shape can be obtained after some automatic blending
processes.

The original Utah teapot consists of four separate
parts: lid, handle, body and spout. The mesh shown
in Figure 1(a) is actually a set of four meshes, one
for each component of the original Utah teapot. Each
part is an open mesh. Although each of these meshes
can be interpolated separately, Figure 1(b) and Fig-
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(a) Given Mesh (b) Interpolating Surface

(¢) Given Mesh

(d) Interpolating Surface
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ure 1(c) are generated by regarding them as a single
mesh. The mesh shown in Figure 6(b) is another ex-
ample of an open mesh with disconnected boundaries.
But different from the case shown in Figure 1, which
is generated by moving the vertices to some different
position intentionally, Figure 4(d) is generated using
additional dummy vertices in the interpolating surface
construction process.

The new interpolation method can handle meshes
with large number of vertices in a matter of less than
a second on an ordinary PC (3.2GHz CPU, 512MB
of RAM). For example, the meshes shown in Figures
1(a), 4(a), 4(c), 6(a) and 6(c) have 320, 9, 194, 354 and
66 vertices, respectively, and it takes almost no time
to interpolate these relatively small meshes. Since it is
a local blending process and is performed directly on
the limit surface, our method can easily handle meshes
with thousands of or more vertices. Hence our inter-
polation method is especially suitable for interactive
shape design.

10 Summary

A new interpolation method for meshes with arbitrary
topology is presented. The interpolation process is a
local process, it does not require solving a system of
linear equations. Hence, the method can handle data
set of any size.

The interpolating surface is obtained by locally ad-
justing the limit surface of the given mesh (viewed as
the control mesh of a Catmull-Clark subdivision sur-
face) so that the modified surface interpolates all the
vertices of the given mesh. This local adjustment pro-
cess can also be used to smooth out the shape of the
interpolating surface. Hence, a surface fairing process
is not needed in the new method.

The new method can handle both open and closed
meshes. It can interpolate not only vertices, but
normals and derivatives as well. These normals and
derivative can be anywhere, not just at the vertices
of the given mesh. Test results show that the new
method leads to good interpolation results even for
complicated data sets.

The resulting interpolating surface is not a Catmull-
Clark subdivision surface. It does not even satisfy the
convex hull property [18]. But the resulting interpo-
lating surface is guaranteed to be C? continuous ev-
erywhere except at some extraordinary points, where
it is C! continuous. Using a technique similar to the
one presented in [18], a C? continuous interpolating
surface can also be achieved.
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