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t. A new method for 
onstru
ting a smoothsurfa
e that interpolates the verti
es of an arbitrarymesh is presented. The mesh 
an be open or 
losed.Normals spe
i�ed at verti
es of the mesh 
an also beinterpolated. The interpolating surfa
e is obtainedby lo
ally adjusting the limit surfa
e of the givenmesh (viewed as the 
ontrol mesh of a Catmull-Clarksubdivision surfa
e) so that the modi�ed surfa
ewould interpolate all the verti
es of the given mesh.The lo
al adjustment pro
ess is a
hieved throughlo
ally blending the limit surfa
e with a surfa
ede�ned by non-uniform transformations of the limitsurfa
e. This lo
al blending pro
ess 
an also be usedto smooth out the shape of the interpolating surfa
e.Hen
e, a surfa
e fairing pro
ess is not needed in thenew method. Be
ause the interpolation pro
ess doesnot require solving a system of linear equations, themethod 
an handle meshes with large number ofverti
es. Test results show that the new method leadsto good interpolation results even for 
ompli
ateddata sets. The new method is demonstrated with theCatmull-Clark subdivision s
heme. But with someminor modi�
ation, one should be albe to apply thismethod to other subdivision s
hemes as well.CR Categories: I.3.5 [Computer Graphi
s℄: Com-putational Geometry and Obje
t Modeling - 
urve,surfa
e, solid and obje
t representations;Keywords: subdivision, subdivision surfa
es,Catmull-Clark subdivision surfa
es, interpolation1 Introdu
tionConstru
ting a smooth surfa
e to interpolate the ver-ti
es of a given mesh is an important task in many ar-eas, in
luding geometri
 modeling, 
omputer graphi
s,
omputer animation, intera
tive design, and s
ienti�
visualization. The interpolating surfa
e sometime isalso required to interpolate normal ve
tors spe
i�edfor some or all of the mesh verti
es. Developing ageneral solution for this task is diÆ
ult be
ause the

required interpolating surfa
e 
ould be of arbitrarytopology and with arbitrary genus. Traditional repre-sentation s
hemes su
h as B-spline or B�ezier surfa
es
an not represent su
h a 
omplex shape with only onesurfa
e.Subdivision surfa
es were introdu
ed as an eÆ
ientte
hnique to model 
omplex shapes [2℄[3℄[10℄. Butbuilding a 
onne
tion between a given mesh and an in-terpolating subdivision surfa
e has never really beensu

essful when the number of verti
es of the givenmesh is large 1. One ex
eption is a work publishedre
ently [11℄. In this paper, an iterative interpolationte
hnique similar to the one used in [8℄ for non-uniformB-spline surfa
es is proposed for subdivision surfa
es.Sin
e the iterative approa
h does not require solving asystem of linear equations, it 
an handle meshes withlarge number of verti
es. But the paper fails to provethe 
onvergen
e of the iterative pro
ess.In this paper we will address the problem of `
on-stru
ting a smooth surfa
e to interpolate the verti
esof a given mesh' and present a new solution to thisproblem. We brie
y review previous work in this area�rst.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfa
e: interpolating subdivision[4, 6, 7, 14, 19℄ or global optimization [5, 12℄. In the�rst 
ase, a subdivision s
heme that interpolates the
ontrol verti
es, su
h as the Butter
y s
heme [4℄, Zorinet al's improved version [19℄ or Kobbelt's s
heme [7℄,is used to generate the interpolating surfa
e. New ver-ti
es are de�ned as lo
al aÆne 
ombinations of nearbyverti
es. This approa
h is simple and easy to imple-ment. It 
an handle meshes with large number of ver-ti
es. However, sin
e no vertex is ever moved on
eit is 
omputed, any distortion in the early stage ofthe subdivision will persist. This makes interpolatingsubdivision very sensitive to irregularity in the given1Interpolating subdivision [4℄ will be addressed shortlyID: papers 18 Page: 1



(a) Given Mesh (b) Interpolating surfa
e generated with blending areaautomati
ally sele
ted

(
) Interpolating surfa
e generated with user sele
tedblending areas around upper portion of the teapot body (d) Interpolating surfa
e generated with user sele
tedblending areas around bottom portion of the teapotbodyFigure 1: Example with lo
al 
ontrolmesh. In addition, it is diÆ
ult for this approa
h tointerpolate normals or derivatives.The se
ond approa
h, global optimization, usuallyneeds to build a global linear system with some 
on-straints [13℄. The solution to the global linear sys-tem is a 
ontrol mesh whose limit surfa
e interpolatesthe verti
es of the given mesh. This approa
h usu-ally requires some fairness 
onstraints in the interpo-lation pro
ess, su
h as the energy fun
tions presentedin [5℄, to avoid undesired undulations. Although thisapproa
h seems more 
ompli
ated, it results in a tra-ditional subdivision surfa
e. For example, the methodin [5℄ results in a Catmull-Clark subdivision surfa
e(CCSS), whi
h is C2-
ontinuous almost everywhereand whose properties are well studied and understood.

The problem with this approa
h is that a global linearsystem needs to be built and solved. It is diÆ
ult forthis approa
h to handle meshes with large number ofverti
es.There are also te
hniques that produ
e surfa
esto interpolate given 
urves or surfa
es that near- (orquasi-) interpolate given meshes [9℄. But those te
h-niques are either of di�erent natures or of di�erent
on
erns and, hen
e, will not be dis
ussed here.1.2 OverviewIn this paper a new method for 
onstru
ting a smoothsurfa
e that interpolates the verti
es of a given meshis presented. The mesh 
an be of arbitrary topologyID: papers 18 Page: 2



and 
an be open or 
losed. Normal ve
tors spe
i�edfor any verti
es of the mesh 
an also be interpolated.The basi
 idea is to view the given mesh as the 
on-trol mesh of a Catmull-Clark subdivision surfa
e andlo
ally adjust the limit surfa
e of the given mesh sothat the resulting surfa
e would not only interpolateverti
es of the given mesh, but also possess a satis-fa
tory smooth shape. The lo
al adjustment pro
essis a
hieved through blending the limit surfa
e S witha blending surfa
e T de�ned by non-uniform transfor-mations of the limit surfa
e. By performing the blend-ing pro
ess at di�erent sele
ted points, we are able to(1) ensure the modi�ed surfa
e would interpolate thegiven mesh, (2) prevent it from generating unne
es-sary undulations, and (3) smooth out the shape of theresulting surfa
e.The new method has two main advantages. First,sin
e we do not have to 
ompute the interpolating sur-fa
e's 
ontrol mesh, there is no need to solve a systemof linear equations. Therefore, the new method 
anhandle meshes with large number of verti
es, and ismore robust and stable. Se
ond, be
ause the lo
alblending pro
ess 
an be used to smooth out the shapeof the interpolating surfa
e, a surfa
e fairing pro
essis not needed in the new method.An example of this interpolation pro
ess is shownin Figure 1. The surfa
es shown in Figures 1(b), 1(
)and 1(d) all interpolate the mesh shown in Figure 1(a).The blending areas in Figure 1(b) are automati
allysele
ted by the system while Figures 1(
) and 1(
) haveuser sele
ted blending areas in the upper portion andlower portion of the teapot body afterward. It is easyto see from Figure 1 that lo
al 
ontrol is ne
essarywhen better quality interpolating surfa
es are needed.The new method is demonstrated with Catmull-Clark subdivision surfa
es here (by viewing the givenmesh as the 
ontrol mesh of a Catmull-Clark subdi-vision surfa
e). But with a minor modi�
ation, oneshould be able to apply it to other subdivision s
hemesas well.The remaining part of the paper is arranged as fol-lows. In Se
tion 2, the basi
 idea of our lo
ally 
on-trollable interpolation te
hnique for 
losed meshes ispresented. The 
onstru
tion pro
ess of a blending sur-fa
e is presented in Se
tion 3. In Se
tion 4, a lo
alparametrization is introdu
ed. The blending pro
essaround an extraordinary point or an arbitrarily se-le
ted point is dis
ussed in Se
tion 5 and Se
tion 6,respe
tively. Issues on dealing with normal interpola-tion and handling open meshes are dis
ussed in Se
tion7 and Se
tion 8, respe
tively. Implementation issuesand test results are presented in Se
tion 9. Con
ludingmarks are given in Se
tion 10.

2 Basi
 IdeaGiven a 3D mesh with n verti
es: P =fP1;P2; � � � ;Png, the goal here is to 
onstru
t a newsurfa
e that interpolates P (the verti
es of P , for now).Contrast to existing interpolation methods, whi
h ei-ther 
onstru
t a new mesh whose limit surfa
e interpo-lates P or perform interpolating subdivision s
hemeson the input mesh, we perform interpolation by manip-ulating the limit surfa
e S of the given mesh dire
tly.The basi
 idea is to push or pull the limit surfa
e ofthe given mesh in vi
inity of sele
ted points so that themodi�ed surfa
e interpolates the given mesh and, inthe meanwhile, prevent it from generating unne
essaryundulations and maintain its smoothness. The push orpull pro
ess is done by 
onstru
ting a new surfa
e T ,and blending T with S. T must be relatively easy to
onstru
t and interpolating P initially. For example,in Fig. 2(a), T is 
omposed of �ve separate segments:T01, T02, T03, T04 and T05, and ea
h of them interpo-lates a point of P = fP1; P2; P3; P4; P5g. T and S mustbe blended in a way su
h that the resulting surfa
e in-terpolates P and is C2-
ontinuous almost everywhere.The interpolating surfa
e 
an be de�ned as follows:�S = S(u; v)W (u; v) + T (u; v)(1�W (u; v)); (1)where 0 �W (u; v) � 1 is a C2-
ontinuous weight fun
-tion satisfying the property lim(u;v)!0W (u; v) = 0.The blending pro
ess is done independently on ea
hof the three 
oordinates of the surfa
e S(u; v). Tmust be parametrized so that T (0; 0) = Pi; (1 � i �n) and is C2-
ontinuous everywhere ex
ept at (0; 0)(where it is at least C1-
ontinuous) and ex
ept atf(u; v) j W (u; v) = 1g (where it is not even ne
essaryto be C0-
ontinuous). Therefore �S is guaranteed tointerpolate P and is C2-
ontinuous everywhere ex
eptat some extraordinary points.Usually during the initial blending pro
ess, qual-ity of the resulting interpolating surfa
e would not begood enough yet. For example, the blue 
urve in Fig.2(a), denoted S1, is the resulting 
urve of the �rstblending pro
ess. As we 
an see, S1 has a lot of un-desired undulations although it interpolates the givenmesh P exa
tly.To improve the shape of the interpolating surfa
eand to redu
e unne
essary os
illations, a se
ond blend-ing pro
ess 
an be performed in the vi
inity of somesele
ted points. For example, in Fig. 2(b), a se
ondblending pro
ess is performed in the vi
inity of all theedge points of the given mesh. To 
arry out the se
-ond blending pro
ess, a di�erent blending surfa
e T1has to be 
onstru
ted. T1 does not have to interpolateID: papers 18 Page: 3
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ond blendingFigure 2: Basi
 idea of the new interpolation method.P . However, T1 must not 
hange the position of theimages of P on the limit surfa
e. In other words, thedomain involved in 
onstru
ting T1 should be smallerthan the domain of S1, so that the images of P wouldnot be involved in the 
onstru
tion pro
ess of T1. Forexample, in Fig. 2(b), T1 = fT11; T12; T13; T14; T15gand the images of Pis are not involved in the 
onstru
-tion of T1. On
e T1 is 
onstru
ted, T1 
an be blendedwith S1 similarly to get S2 as follows:S2 = S1(u; v)W1(u; v) + T1(u; v)(1�W1(u; v));where W1(u; v) is a blending fun
tion similar toW (u; v) in Eq. (1), ex
ept W1(u; v) is 
onstru
ted forvi
inity of edge points, whileW (u; v) is 
onstru
ted forvi
inity of vertex points. This means that we have totranslate (u; v) by some 
onstant so that W1(u; v) = 0at the sele
ted edge point. Be
ause the images of Pare not involved in the 
onstru
tion pro
ess of T1, theimages of P are not a�e
ted in the above blendingpro
ess. Hen
e interpolation requirement still holds.Note that the blending pro
ess is done for individ-ual pie
es. For example, in Fig. 2(b), it is done for thepie
es 
orresponding to T1i; 1 � i � 5, independently.Be
ause T1 is not required to interpolate P , not everyT1i; 1 � i � 5, has to be blended with the 
orrespond-ing pie
e of S1. A blending pro
ess is performed for asele
ted region only if the shape of the surfa
e is notgood enough in that area. Hen
e, the blending pro
essis an optional operation.As we 
an tell from Fig. 2, the shape of S2 is mu
hbetter than that of S1. However, if ne
essary, a thirdor even more blending pro
esses 
an be performed on

the resulting surfa
e to further improve its quality.While the above idea seems to be simple and straight-forward, the key here is how to 
onstru
t a T (u; v) forea
h lo
al blending pro
ess and how to 
onstru
t the
orresponding blending weight fun
tion W (u; v) su
hthat the resulting interpolating surfa
e is smooth andos
illation-free. The 
onstru
tion pro
ess of T will beshown in the next se
tion. For 
onsisten
y, we denotethe (i+ 1)st blending surfa
e T by Ti, and use T as ageneral referen
e to all possible levels of Ti.3 Constru
tion of TThe 
onstru
tion pro
ess of T must satisfy two re-quirements: it should be intuitive enou
h to use andthe result should be easy to obtain. Note that onlyT0 is required to interpolate P , not the subsequent Ti,i � 1. Hen
e, it is suÆ
ient to show the 
onstru
-tion pro
ess of T0 only. Ti (i � 1) 
an be 
onstru
tedsimilarly, without the interpolation 
onstraint. Nev-ertheless, we will show how to 
onstru
t Ti (i � 1)with details in Se
tion 6 after lo
al parameterizationof subdivision surfa
es is dis
ussed.T 
an be 
onstru
ted in several di�erent ways.In this paper we 
onstru
t T by linearly transform-ing pie
es of S in 3D obje
t spa
e. Note that T0is not ne
essary to be C0-
ontinuous at parameterswhere W (u; v) = 1. The aÆne transformation ma-trix 
an be 
hosen in a way su
h that T0 interpo-lates P and, in the meanwhile, 
hanges the originallimit surfa
e as little as possible. For example, in Fig-ID: papers 18 Page: 4



ure 2(a), to get T for the limit surfa
e S de�ned byP = fP1; P2; P3; P4; P5g, we simply translate S seg-ment by segment, in the dire
tion from the image ofPi to Pi, and then s
ale ea
h segment with appropriates
aling fa
tors for X , Y and Z 
omponents su
h thatT interpolates P and has an appropriate size. Conse-quently, as it shows in Figure 2(a), T is representedby �ve segments: fT01; T02; T03; T04; T05g and they arenot C0-
ontinuous. But after a blending pro
ess us-ing equation (1), we get a surfa
e S1 whi
h smoothlyinterpolates P .4 Lo
al Parameterization ofSubdivision Surfa
esThe blending pro
ess de�ned by eq. (1) is performedon regions of the limit surfa
e. Hen
e a lo
al parame-terization is needed for ea
h region of the limit surfa
ewhere a blending pro
ess is to be performed. Severallo
al parameterization methods have been reported inthe literature [15, 17℄. We follow Reif's approa
h [17℄here. We assume that for any two extraordinary pointsof P , their 
orresponding points on the limit surfa
eare at least two pat
hes away. If this is not the 
ase,simply perform one or two subdivision steps on P toget a new 
ontrol mesh for the limit surfa
e. But thetarget of the interpolation pro
ess is still P , not thenew 
ontrol mesh.Reif's approa
h maps an extraordinary point to(0; 0) and is based on the 
hara
teristi
 map of asubdivision s
heme [17℄. A 
hara
teristi
 map is de-�ned by 
al
ulating the limit of subdivision on a 2Dmesh formed by the two sub-dominant eigenve
torsof the lo
al subdivision matrix [17, 21℄. The 
har-a
teristi
 map for Catmull-Clark subdivision s
hemearound an extraordinary vertex of valen
e n is basedon the topology of the 2-ring neighborhood of verti
esaround the extraordinary vertex. The 2-ring neighbor-hood is enough to determine the limit fun
tion for then fa
es adja
ent to the extraordinary vertex. Thus,the two sub-dominant eigenve
tors have 6n + 1 en-tries ea
h. Sin
e they do not depend on the inputmesh, they 
an be pre-
omputed for ea
h valen
e n.On
e we have the two sub-dominant eigenve
tors, we
an �nd (u; v) parameters 
orresponding to ea
h ver-tex of the k-times (k 2 Z and k � 0) re�ned mesh,around the extraordinary point. This is done by ap-plying a 3 � 3 limit mask [18℄ of bi
ubi
 B-splines tothe 
orresponding neighborhood of verti
es in the k-times re�ned mesh. Also as a normalization rule, thetwo sub-dominant eigenve
tors should be s
aled su
hthat the parameters (u; v) at the end-points of edges

emanating from the extraordinary vertex have 
oordi-nates (
os(i�); sin(i�)), i = 1 � � �n, where � = 2�=n(see Fig. 3(a)).5 Blending around an extraor-dinary pointWith parametrization available, it is now possible toperform blending pro
ess on regions of the limit sur-fa
e. To maximize the blending area around an ex-traordinary point (note that a regular point is just aspe
ial 
ase of an extraordinary point), we de�ne theblending region in the parameter spa
e by the 
ondi-tion: u2 + v2 � 1:This is a 
ir
le 
entered at the extraordinary pointin the parameter spa
e (See Fig. 3(a)). Note thatsome of the parameters (u; v) in the 
hara
teristi
 mapmight be outside the unit 
ir
le [17, 18℄, i.e., u2 +v2 > 1 is possible. Hen
e the a
tual blending area issmaller than the whole domain. It should be pointedout that the blending area de�ned here is di�erentfrom the one used in [18℄, whi
h is de�ned by u2 +v2 � �n with �n being the sub-dominant eigenvalueof the subdivision matrix 
orresponding to a valen
e nextraordinary vertex. The reason for this di�eren
e isbe
ause we want to maximize the blending areas andoverlapping of blending areas does not matter in our
ase.The blending weight fun
tion W (u; v) must satisfythe 
ondition 0 � W (u; v) � 1 in the blending regionand has to be at least C2-
ontinuous everywhere. Wefollow Levin's approa
h [18℄ to de�ne W (u; v), i.e.,W (u; v) = (u2 + v2)(3(u2 + v2)� 8p(u2 + v2) + 6)It is easy to see that W (u; v) satis�es 0 �W (u; v) � 1in the region u2 + v2 � 1 and is C2-
ontinuous ev-erywhere. At the extraordinary point, W (u; v) ap-proa
hes zero at the rate of u2 + v2. When near theboundary of the blending region u2 + v2 = 1, W (u; v)approa
hes 1, with zero partial derivatives up to order2. Hen
e, the resulting surfa
e is guaranteed to inter-polate the given mesh and, meanwhile, 
an
els out theirregularity and dis
ontinuity of the blending surfa
eT .6 Blending around an arbitrar-ily sele
ted pointBe
ause we allow lo
al adjustment of the interpolat-ing surfa
e, there should be a way for the system toID: papers 18 Page: 5



(a) Blending around the image of an originalvertex (b) Blending around an arbitrary pointFigure 3: Parameter spa
e for a vertex of degree 5 and for an arbitrarily sele
ted point.perform blending pro
ess in regions around arbitrar-ily sele
ted points of the surfa
e, not only the imagesof the 
ontrol verti
es Pi. With a lo
al parametriza-tion, su
h a task is a
tually relatively easy to a
hieve.For example, in Fig. 3(b), to adjust the interpolatingsurfa
e in a small area around the sele
ted point (theone marked with a bla
k solid 
ir
le), we �rst �nd theparameter (u0; v0) of the sele
ted 3D point in the pa-rameter spa
e of the lo
al parametrization that 
oversthe sele
ted point, and then �nd the biggest 
ir
le inthe parameter spa
e whose 
enter is (u0; v0) (the red
ir
le in Fig. 3(b)). This 
ir
le de�nes the blendingarea for the sele
ted point.To speed up the sear
h of (u0; v0), we 
an simply
hoose the 
losest (u0; v0) in the k-times re�ned 
har-a
teristi
 map (k 2 Z and k � 0). On
e we have(u0; v0), we still need to �nd the biggest radius forthe blending area. Again we 
ompare all the distan
esfrom the sele
ted point (u0; v0) to all the boundaryparameter values in the k-times re�ned 
hara
teristi
map (k 2 Z and k � 0) and the smallest one is the ra-dius of our blending area, denoted r0. In addition, asmentioned above, the blending area should not in
ludethe parameter point (0,0). So we also need to 
omparer0 with the distan
e between (0; 0) and (u0; v0) and thesmaller one is 
alled r. Therefore the blending area forthe sele
ted point 
an be de�ned as follows.(u� u0)2 + (v � v0)2 < r2The 
orresponding blending weight fun
tion W (u; v)

is de�ned by the following quarti
 formula [18℄.W (u; v) = �2(3�2 � 8�+ 6);where � = p(u� u0)2 + (v � v0)2r :It is easy to see � � 1 and W (u; v) satis�es 0 �W (u; v) � 1 in the blending region and is C2-
ontinuous everywhere. Note that at the sele
tedpoint, W (u; v) approa
hes zero. When near theboundary of the blending region, W (u; v) approa
hes1, with zero partial derivatives up to order 2. Con-sequently, it 
an still 
an
el out the irregularity anddis
ontinuity of the blending surfa
e T while lo
allymodify the shape of the interpolating surfa
e a

ord-ing to the need of the user.6.1 Revisit Constru
tion of BlendingSurfa
e TIn the above se
tion, we have dis
ussed how to 
on-stru
t an initial blending surfa
e T0 around verti
esto be interpolated. In this se
tion, we show how to
onstru
t a blending surfa
e Ti around an arbitrarilysele
ted point. Ti, like T , should also be easy andeÆ
ient to 
onstru
t. Again, we 
an use aÆne trans-formation to 
onstru
t Ti from Si. The s
aling fa
-tor 
omponents of the aÆne transformation matrix areeasy to determine, simply 
ompare the dimensions ofTi and Si. The question is how to determine the o�set
omponents of the aÆne transformation matrix. NoteID: papers 18 Page: 6



that, unlike the 
ase of T0 where the o�set 
omponentsof the aÆne transformation matrix are determined bythe vertex to be interpolated and its limit point on S,in this 
ase, there is no point in the given mesh that
orresponds to the sele
ted point on Si. In an intera
-tive environment, su
h a point 
an be spe
i�ed by theuser. But how should su
h a point and, 
onsequently,the o�set ve
tor be determined for an automati
 sys-tem?We propose to determine the o�set ve
tor for ea
hsele
ted 3D point by 
onstru
ting a Hermite surfa
efor the pat
h that 
overs the sele
ted point. For ex-ample, if the o�set ve
tors for the four verti
es ofthe pat
h are D1; D2; D3 and D4, then we 
onstru
ta Hermite surfa
e pat
h H(u; v) based on D1; D2; D3and D4. The tangent ve
tors at the four 
orners re-quired for the 
onstru
tion of H are set to the partialderivatives of the limit surfa
e S at the four 
orners.The o�set ve
tor for a sele
ted point with parametervalue (u0; v0) in Si, is set to H(u00; v00), where (u00; v00)
an be determined by linearly mapping quadrilateral[0; 
os(2i�=n)℄� [0; sin(2i�=n)℄ to a unit square.
7 Interpolation of Normal Ve
-torsDire
tion of normal ve
tors spe
i�ed at verti
es of thegiven mesh 
an also be interpolated. The key is tomodify the 
onstru
tion pro
ess of the blending sur-fa
e T0 so that it would have the same normals (a
tu-ally the same partial derivatives) at the extraordinarypoints. This 
an be easily a
hieved by rotating ea
hpie
e of T0 with appropriate X , Y and Z rotation fa
-tors after the above mentioned translation and s
alingpro
ess. This is possible be
ause ea
h pie
e of T0 inter-polates one point of P only. Hen
e we have a blendingsurfa
e T0 that not only interpolates the given meshP but normals spe
i�ed at some or all verti
es of P aswell. Be
ause the value of W (u; v) and its �rst partialderivatives at (0; 0) are all zero, the resulting interpo-lating surfa
e �S then satis�es �T (u;v)�u = � �S(u;v)�u and�T (u;v)�v = � �S(u;v)�v . In other words, �S and T0 have thesame normal. Hen
e, with one more AÆne transfor-mation (a
tually they 
an be 
ombined into a singlematrix to save 
omputation time), we 
an 
onstru
tan interpolating surfa
e that not only interpolates thegiven mesh, but normals at all or some of the verti
esof the mesh as well.
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Figure 5: Handling open meshes8 Handling Open MeshesThe interpolation pro
ess developed in the previousse
tions 
an not be used for open meshes, su
h asthe one shown in Fig. 4(
), dire
tly. This is be-
ause boundary verti
es of an open mesh have no 
or-responding limit points, nor derivatives. Therefore,the AÆne transformation matrix required for the 
on-stru
tion of T0 
annot be built dire
tly. One way toover
ome this problem is to add an additional ring ofverti
es along the 
urrent boundary and 
onne
t theverti
es of this ring with 
orresponding verti
es of the
urrent boundary to form an additional ring of fa
es.The newly added verti
es are 
alled dummy verti
es.We then apply the interpolation method to the ex-tended open mesh as to a 
losed mesh ex
ept thatthere are no a
tions taken for the dummy verti
es.This te
hnique of extending the boundary of a givenmesh is similar to a te
hnique proposed for uniformB-spline surfa
e representation in [1℄. Note that inthis 
ase, the interpolation pro
ess is not based on thelimit surfa
e of the given mesh, but the limit surfa
eof the extended mesh. Therefore, the shape of the in-terpolating surfa
e will be a�e
ted by lo
ations of thedummy verti
es as well. Determining the lo
ation ofa dummy vertex, however, is a tri
ky issue, the usershould not be burdened by su
h a tri
ky task. In oursystem, this is done by using lo
ations of the 
urrentboundary verti
es of the given mesh as the lo
ationsof the dummy verti
es. Note that our interpolationte
hnique is performed dire
tly on the limit surfa
e,hen
e there is no need to 
are about positions of thedummy verti
es after interpolation.Another approa
h to handle open mesh interpola-tion is to modify the proposed interpolation methodID: papers 18 Page: 7



(a) Given Mesh (b) Interpolation Surfa
e (
) Given Mesh (d) Interpolation Surfa
eFigure 4: Examplesfor 
losed meshes. Note that our method is lo
allyadjustable. Hen
e the limit point of a vertex a
tually
an be moved to anywhere, as long as the interpolationrequirement are satis�ed. Consider the mesh shown inFig. 5 where verti
es marked with 
ir
les, like P andQ, are boundary verti
es and verti
es marked withsolid 
ir
les, su
h as V , A and B, are interior verti
es.The shaded surfa
e pat
h is the 
orresponding limitsurfa
e where S(A) and S(B) are the images of A andB, respe
tively, S(C) and S(D) are the images of the
orresponding edge points, respe
tively. A

ording toour interpolation method, S(A) and S(B) should bemoved to A and B, respe
tively. However, to inter-polate the boundary points P and Q, we 
an modifyour approa
h su
h that S(A) and S(B) are moved toP and Q, respe
tively, and S(C) and S(D) are movedto A and B, respe
tively. The resulting surfa
e theninterpolates all the verti
es of the given open mesh.9 Test ResultsThe proposed te
hniques have been implemented inC++ usingOpenGL as the supporting graphi
s systemon the Windows platform. Quite a few examples havebeen tested with the te
hniques des
ribed here. Allthe examples have extra-ordinary verti
es. Some ofthe tested results are shown in Figures 1, 4 and 6.From these examples we 
an see smooth and visuallypleasant shapes 
an be obtained by lo
ally adjustingthe original limit surfa
es.In our implementation, two subdivision steps areperformed on the given mesh for ea
h example be-

fore the parametrization te
hnique [17℄ is applied. Theevaluation of the interpolating surfa
es are based onsample parameter values of the 4-times re�ned 
har-a
teristi
 maps, and we �nd the results to be good formost 
ases. For bigger pat
hes one 
an use more sam-ple points be
ause pat
hes do not have to be sampleduniformly.All the interpolation shown in Figures 1, 4 and 6are done with at least two blending pro
esses. Firstone is done with T0, whi
h is based on all the given
ontrol verti
es. T1 for the se
ond blending pro
ess isbased on all edge points of the given mesh. Some �g-ures in the examples went through more blending pro-
esses to further improve quality of the interpolatingsurfa
e. Ti's for those blending pro
esses are sele
tedbased on, for example, fa
e points of all pat
hes, orparameter values ( 12j ; 12k ), where j and k are integers.User intera
tion is also possible. For example, Figure1(b) and Figure 1(
) both interpolate the given meshshown in Figure 1(a), but Figure 1(
) is obtained withmore lo
al adjustment on the upper part of the teapotbody. The other parts are not adjusted, hen
e theyare exa
tly the same as those shown in Figure 1(b).Figure 1 shows, with user lo
al adjustment, a bettershape 
an be obtained after some automati
 blendingpro
esses.The original Utah teapot 
onsists of four separateparts: lid, handle, body and spout. The mesh shownin Figure 1(a) is a
tually a set of four meshes, onefor ea
h 
omponent of the original Utah teapot. Ea
hpart is an open mesh. Although ea
h of these meshes
an be interpolated separately, Figure 1(b) and Fig-ID: papers 18 Page: 8



(a) Given Mesh (b) Interpolating Surfa
e

(
) Given Mesh

(d) Interpolating Surfa
eFigure 6: Examples

ure 1(
) are generated by regarding them as a singlemesh. The mesh shown in Figure 6(b) is another ex-ample of an open mesh with dis
onne
ted boundaries.But di�erent from the 
ase shown in Figure 1, whi
his generated by moving the verti
es to some di�erentposition intentionally, Figure 4(d) is generated usingadditional dummy verti
es in the interpolating surfa
e
onstru
tion pro
ess.The new interpolation method 
an handle mesheswith large number of verti
es in a matter of less thana se
ond on an ordinary PC (3.2GHz CPU, 512MBof RAM). For example, the meshes shown in Figures1(a), 4(a), 4(
), 6(a) and 6(
) have 320, 9, 194, 354 and66 verti
es, respe
tively, and it takes almost no timeto interpolate these relatively small meshes. Sin
e it isa lo
al blending pro
ess and is performed dire
tly onthe limit surfa
e, our method 
an easily handle mesheswith thousands of or more verti
es. Hen
e our inter-polation method is espe
ially suitable for intera
tiveshape design.10 SummaryA new interpolation method for meshes with arbitrarytopology is presented. The interpolation pro
ess is alo
al pro
ess, it does not require solving a system oflinear equations. Hen
e, the method 
an handle dataset of any size.The interpolating surfa
e is obtained by lo
ally ad-justing the limit surfa
e of the given mesh (viewed asthe 
ontrol mesh of a Catmull-Clark subdivision sur-fa
e) so that the modi�ed surfa
e interpolates all theverti
es of the given mesh. This lo
al adjustment pro-
ess 
an also be used to smooth out the shape of theinterpolating surfa
e. Hen
e, a surfa
e fairing pro
essis not needed in the new method.The new method 
an handle both open and 
losedmeshes. It 
an interpolate not only verti
es, butnormals and derivatives as well. These normals andderivative 
an be anywhere, not just at the verti
esof the given mesh. Test results show that the newmethod leads to good interpolation results even for
ompli
ated data sets.The resulting interpolating surfa
e is not a Catmull-Clark subdivision surfa
e. It does not even satisfy the
onvex hull property [18℄. But the resulting interpo-lating surfa
e is guaranteed to be C2 
ontinuous ev-erywhere ex
ept at some extraordinary points, whereit is C1 
ontinuous. Using a te
hnique similar to theone presented in [18℄, a C2 
ontinuous interpolatingsurfa
e 
an also be a
hieved.ID: papers 18 Page: 9
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