
Loally Adjustable Interpolation for Meshes of Arbitrary TopologyShuhua LaiDepartment of Mathematis & Computer SieneShool of Engineering, Siene and TehnologyVirginia State University, Petersburg, Virginia 23806 Fuhua (Frank) Cheng, Fengtao FanGraphis & Geometri Modeling LabDepartment of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506Abstrat. A new method for onstruting a smoothsurfae that interpolates the verties of an arbitrarymesh is presented. The mesh an be open or losed.Normals spei�ed at verties of the mesh an also beinterpolated. The interpolating surfae is obtainedby loally adjusting the limit surfae of the givenmesh (viewed as the ontrol mesh of a Catmull-Clarksubdivision surfae) so that the modi�ed surfaewould interpolate all the verties of the given mesh.The loal adjustment proess is ahieved throughloally blending the limit surfae with a surfaede�ned by non-uniform transformations of the limitsurfae. This loal blending proess an also be usedto smooth out the shape of the interpolating surfae.Hene, a surfae fairing proess is not needed in thenew method. Beause the interpolation proess doesnot require solving a system of linear equations, themethod an handle meshes with large number ofverties. Test results show that the new method leadsto good interpolation results even for ompliateddata sets. The new method is demonstrated with theCatmull-Clark subdivision sheme. But with someminor modi�ation, one should be albe to apply thismethod to other subdivision shemes as well.CR Categories: I.3.5 [Computer Graphis℄: Com-putational Geometry and Objet Modeling - urve,surfae, solid and objet representations;Keywords: subdivision, subdivision surfaes,Catmull-Clark subdivision surfaes, interpolation1 IntrodutionConstruting a smooth surfae to interpolate the ver-ties of a given mesh is an important task in many ar-eas, inluding geometri modeling, omputer graphis,omputer animation, interative design, and sienti�visualization. The interpolating surfae sometime isalso required to interpolate normal vetors spei�edfor some or all of the mesh verties. Developing ageneral solution for this task is diÆult beause the

required interpolating surfae ould be of arbitrarytopology and with arbitrary genus. Traditional repre-sentation shemes suh as B-spline or B�ezier surfaesan not represent suh a omplex shape with only onesurfae.Subdivision surfaes were introdued as an eÆienttehnique to model omplex shapes [2℄[3℄[10℄. Butbuilding a onnetion between a given mesh and an in-terpolating subdivision surfae has never really beensuessful when the number of verties of the givenmesh is large 1. One exeption is a work publishedreently [11℄. In this paper, an iterative interpolationtehnique similar to the one used in [8℄ for non-uniformB-spline surfaes is proposed for subdivision surfaes.Sine the iterative approah does not require solving asystem of linear equations, it an handle meshes withlarge number of verties. But the paper fails to provethe onvergene of the iterative proess.In this paper we will address the problem of `on-struting a smooth surfae to interpolate the vertiesof a given mesh' and present a new solution to thisproblem. We briey review previous work in this area�rst.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfae: interpolating subdivision[4, 6, 7, 14, 19℄ or global optimization [5, 12℄. In the�rst ase, a subdivision sheme that interpolates theontrol verties, suh as the Buttery sheme [4℄, Zorinet al's improved version [19℄ or Kobbelt's sheme [7℄,is used to generate the interpolating surfae. New ver-ties are de�ned as loal aÆne ombinations of nearbyverties. This approah is simple and easy to imple-ment. It an handle meshes with large number of ver-ties. However, sine no vertex is ever moved oneit is omputed, any distortion in the early stage ofthe subdivision will persist. This makes interpolatingsubdivision very sensitive to irregularity in the given1Interpolating subdivision [4℄ will be addressed shortlyID: papers 18 Page: 1



(a) Given Mesh (b) Interpolating surfae generated with blending areaautomatially seleted

() Interpolating surfae generated with user seletedblending areas around upper portion of the teapot body (d) Interpolating surfae generated with user seletedblending areas around bottom portion of the teapotbodyFigure 1: Example with loal ontrolmesh. In addition, it is diÆult for this approah tointerpolate normals or derivatives.The seond approah, global optimization, usuallyneeds to build a global linear system with some on-straints [13℄. The solution to the global linear sys-tem is a ontrol mesh whose limit surfae interpolatesthe verties of the given mesh. This approah usu-ally requires some fairness onstraints in the interpo-lation proess, suh as the energy funtions presentedin [5℄, to avoid undesired undulations. Although thisapproah seems more ompliated, it results in a tra-ditional subdivision surfae. For example, the methodin [5℄ results in a Catmull-Clark subdivision surfae(CCSS), whih is C2-ontinuous almost everywhereand whose properties are well studied and understood.

The problem with this approah is that a global linearsystem needs to be built and solved. It is diÆult forthis approah to handle meshes with large number ofverties.There are also tehniques that produe surfaesto interpolate given urves or surfaes that near- (orquasi-) interpolate given meshes [9℄. But those teh-niques are either of di�erent natures or of di�erentonerns and, hene, will not be disussed here.1.2 OverviewIn this paper a new method for onstruting a smoothsurfae that interpolates the verties of a given meshis presented. The mesh an be of arbitrary topologyID: papers 18 Page: 2



and an be open or losed. Normal vetors spei�edfor any verties of the mesh an also be interpolated.The basi idea is to view the given mesh as the on-trol mesh of a Catmull-Clark subdivision surfae andloally adjust the limit surfae of the given mesh sothat the resulting surfae would not only interpolateverties of the given mesh, but also possess a satis-fatory smooth shape. The loal adjustment proessis ahieved through blending the limit surfae S witha blending surfae T de�ned by non-uniform transfor-mations of the limit surfae. By performing the blend-ing proess at di�erent seleted points, we are able to(1) ensure the modi�ed surfae would interpolate thegiven mesh, (2) prevent it from generating unnees-sary undulations, and (3) smooth out the shape of theresulting surfae.The new method has two main advantages. First,sine we do not have to ompute the interpolating sur-fae's ontrol mesh, there is no need to solve a systemof linear equations. Therefore, the new method anhandle meshes with large number of verties, and ismore robust and stable. Seond, beause the loalblending proess an be used to smooth out the shapeof the interpolating surfae, a surfae fairing proessis not needed in the new method.An example of this interpolation proess is shownin Figure 1. The surfaes shown in Figures 1(b), 1()and 1(d) all interpolate the mesh shown in Figure 1(a).The blending areas in Figure 1(b) are automatiallyseleted by the system while Figures 1() and 1() haveuser seleted blending areas in the upper portion andlower portion of the teapot body afterward. It is easyto see from Figure 1 that loal ontrol is neessarywhen better quality interpolating surfaes are needed.The new method is demonstrated with Catmull-Clark subdivision surfaes here (by viewing the givenmesh as the ontrol mesh of a Catmull-Clark subdi-vision surfae). But with a minor modi�ation, oneshould be able to apply it to other subdivision shemesas well.The remaining part of the paper is arranged as fol-lows. In Setion 2, the basi idea of our loally on-trollable interpolation tehnique for losed meshes ispresented. The onstrution proess of a blending sur-fae is presented in Setion 3. In Setion 4, a loalparametrization is introdued. The blending proessaround an extraordinary point or an arbitrarily se-leted point is disussed in Setion 5 and Setion 6,respetively. Issues on dealing with normal interpola-tion and handling open meshes are disussed in Setion7 and Setion 8, respetively. Implementation issuesand test results are presented in Setion 9. Conludingmarks are given in Setion 10.

2 Basi IdeaGiven a 3D mesh with n verties: P =fP1;P2; � � � ;Png, the goal here is to onstrut a newsurfae that interpolates P (the verties of P , for now).Contrast to existing interpolation methods, whih ei-ther onstrut a new mesh whose limit surfae interpo-lates P or perform interpolating subdivision shemeson the input mesh, we perform interpolation by manip-ulating the limit surfae S of the given mesh diretly.The basi idea is to push or pull the limit surfae ofthe given mesh in viinity of seleted points so that themodi�ed surfae interpolates the given mesh and, inthe meanwhile, prevent it from generating unneessaryundulations and maintain its smoothness. The push orpull proess is done by onstruting a new surfae T ,and blending T with S. T must be relatively easy toonstrut and interpolating P initially. For example,in Fig. 2(a), T is omposed of �ve separate segments:T01, T02, T03, T04 and T05, and eah of them interpo-lates a point of P = fP1; P2; P3; P4; P5g. T and S mustbe blended in a way suh that the resulting surfae in-terpolates P and is C2-ontinuous almost everywhere.The interpolating surfae an be de�ned as follows:�S = S(u; v)W (u; v) + T (u; v)(1�W (u; v)); (1)where 0 �W (u; v) � 1 is a C2-ontinuous weight fun-tion satisfying the property lim(u;v)!0W (u; v) = 0.The blending proess is done independently on eahof the three oordinates of the surfae S(u; v). Tmust be parametrized so that T (0; 0) = Pi; (1 � i �n) and is C2-ontinuous everywhere exept at (0; 0)(where it is at least C1-ontinuous) and exept atf(u; v) j W (u; v) = 1g (where it is not even neessaryto be C0-ontinuous). Therefore �S is guaranteed tointerpolate P and is C2-ontinuous everywhere exeptat some extraordinary points.Usually during the initial blending proess, qual-ity of the resulting interpolating surfae would not begood enough yet. For example, the blue urve in Fig.2(a), denoted S1, is the resulting urve of the �rstblending proess. As we an see, S1 has a lot of un-desired undulations although it interpolates the givenmesh P exatly.To improve the shape of the interpolating surfaeand to redue unneessary osillations, a seond blend-ing proess an be performed in the viinity of someseleted points. For example, in Fig. 2(b), a seondblending proess is performed in the viinity of all theedge points of the given mesh. To arry out the se-ond blending proess, a di�erent blending surfae T1has to be onstruted. T1 does not have to interpolateID: papers 18 Page: 3
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(b) Seond blendingFigure 2: Basi idea of the new interpolation method.P . However, T1 must not hange the position of theimages of P on the limit surfae. In other words, thedomain involved in onstruting T1 should be smallerthan the domain of S1, so that the images of P wouldnot be involved in the onstrution proess of T1. Forexample, in Fig. 2(b), T1 = fT11; T12; T13; T14; T15gand the images of Pis are not involved in the onstru-tion of T1. One T1 is onstruted, T1 an be blendedwith S1 similarly to get S2 as follows:S2 = S1(u; v)W1(u; v) + T1(u; v)(1�W1(u; v));where W1(u; v) is a blending funtion similar toW (u; v) in Eq. (1), exept W1(u; v) is onstruted forviinity of edge points, whileW (u; v) is onstruted forviinity of vertex points. This means that we have totranslate (u; v) by some onstant so that W1(u; v) = 0at the seleted edge point. Beause the images of Pare not involved in the onstrution proess of T1, theimages of P are not a�eted in the above blendingproess. Hene interpolation requirement still holds.Note that the blending proess is done for individ-ual piees. For example, in Fig. 2(b), it is done for thepiees orresponding to T1i; 1 � i � 5, independently.Beause T1 is not required to interpolate P , not everyT1i; 1 � i � 5, has to be blended with the orrespond-ing piee of S1. A blending proess is performed for aseleted region only if the shape of the surfae is notgood enough in that area. Hene, the blending proessis an optional operation.As we an tell from Fig. 2, the shape of S2 is muhbetter than that of S1. However, if neessary, a thirdor even more blending proesses an be performed on

the resulting surfae to further improve its quality.While the above idea seems to be simple and straight-forward, the key here is how to onstrut a T (u; v) foreah loal blending proess and how to onstrut theorresponding blending weight funtion W (u; v) suhthat the resulting interpolating surfae is smooth andosillation-free. The onstrution proess of T will beshown in the next setion. For onsisteny, we denotethe (i+ 1)st blending surfae T by Ti, and use T as ageneral referene to all possible levels of Ti.3 Constrution of TThe onstrution proess of T must satisfy two re-quirements: it should be intuitive enouh to use andthe result should be easy to obtain. Note that onlyT0 is required to interpolate P , not the subsequent Ti,i � 1. Hene, it is suÆient to show the onstru-tion proess of T0 only. Ti (i � 1) an be onstrutedsimilarly, without the interpolation onstraint. Nev-ertheless, we will show how to onstrut Ti (i � 1)with details in Setion 6 after loal parameterizationof subdivision surfaes is disussed.T an be onstruted in several di�erent ways.In this paper we onstrut T by linearly transform-ing piees of S in 3D objet spae. Note that T0is not neessary to be C0-ontinuous at parameterswhere W (u; v) = 1. The aÆne transformation ma-trix an be hosen in a way suh that T0 interpo-lates P and, in the meanwhile, hanges the originallimit surfae as little as possible. For example, in Fig-ID: papers 18 Page: 4



ure 2(a), to get T for the limit surfae S de�ned byP = fP1; P2; P3; P4; P5g, we simply translate S seg-ment by segment, in the diretion from the image ofPi to Pi, and then sale eah segment with appropriatesaling fators for X , Y and Z omponents suh thatT interpolates P and has an appropriate size. Conse-quently, as it shows in Figure 2(a), T is representedby �ve segments: fT01; T02; T03; T04; T05g and they arenot C0-ontinuous. But after a blending proess us-ing equation (1), we get a surfae S1 whih smoothlyinterpolates P .4 Loal Parameterization ofSubdivision SurfaesThe blending proess de�ned by eq. (1) is performedon regions of the limit surfae. Hene a loal parame-terization is needed for eah region of the limit surfaewhere a blending proess is to be performed. Severalloal parameterization methods have been reported inthe literature [15, 17℄. We follow Reif's approah [17℄here. We assume that for any two extraordinary pointsof P , their orresponding points on the limit surfaeare at least two pathes away. If this is not the ase,simply perform one or two subdivision steps on P toget a new ontrol mesh for the limit surfae. But thetarget of the interpolation proess is still P , not thenew ontrol mesh.Reif's approah maps an extraordinary point to(0; 0) and is based on the harateristi map of asubdivision sheme [17℄. A harateristi map is de-�ned by alulating the limit of subdivision on a 2Dmesh formed by the two sub-dominant eigenvetorsof the loal subdivision matrix [17, 21℄. The har-ateristi map for Catmull-Clark subdivision shemearound an extraordinary vertex of valene n is basedon the topology of the 2-ring neighborhood of vertiesaround the extraordinary vertex. The 2-ring neighbor-hood is enough to determine the limit funtion for then faes adjaent to the extraordinary vertex. Thus,the two sub-dominant eigenvetors have 6n + 1 en-tries eah. Sine they do not depend on the inputmesh, they an be pre-omputed for eah valene n.One we have the two sub-dominant eigenvetors, wean �nd (u; v) parameters orresponding to eah ver-tex of the k-times (k 2 Z and k � 0) re�ned mesh,around the extraordinary point. This is done by ap-plying a 3 � 3 limit mask [18℄ of biubi B-splines tothe orresponding neighborhood of verties in the k-times re�ned mesh. Also as a normalization rule, thetwo sub-dominant eigenvetors should be saled suhthat the parameters (u; v) at the end-points of edges

emanating from the extraordinary vertex have oordi-nates (os(i�); sin(i�)), i = 1 � � �n, where � = 2�=n(see Fig. 3(a)).5 Blending around an extraor-dinary pointWith parametrization available, it is now possible toperform blending proess on regions of the limit sur-fae. To maximize the blending area around an ex-traordinary point (note that a regular point is just aspeial ase of an extraordinary point), we de�ne theblending region in the parameter spae by the ondi-tion: u2 + v2 � 1:This is a irle entered at the extraordinary pointin the parameter spae (See Fig. 3(a)). Note thatsome of the parameters (u; v) in the harateristi mapmight be outside the unit irle [17, 18℄, i.e., u2 +v2 > 1 is possible. Hene the atual blending area issmaller than the whole domain. It should be pointedout that the blending area de�ned here is di�erentfrom the one used in [18℄, whih is de�ned by u2 +v2 � �n with �n being the sub-dominant eigenvalueof the subdivision matrix orresponding to a valene nextraordinary vertex. The reason for this di�erene isbeause we want to maximize the blending areas andoverlapping of blending areas does not matter in ourase.The blending weight funtion W (u; v) must satisfythe ondition 0 � W (u; v) � 1 in the blending regionand has to be at least C2-ontinuous everywhere. Wefollow Levin's approah [18℄ to de�ne W (u; v), i.e.,W (u; v) = (u2 + v2)(3(u2 + v2)� 8p(u2 + v2) + 6)It is easy to see that W (u; v) satis�es 0 �W (u; v) � 1in the region u2 + v2 � 1 and is C2-ontinuous ev-erywhere. At the extraordinary point, W (u; v) ap-proahes zero at the rate of u2 + v2. When near theboundary of the blending region u2 + v2 = 1, W (u; v)approahes 1, with zero partial derivatives up to order2. Hene, the resulting surfae is guaranteed to inter-polate the given mesh and, meanwhile, anels out theirregularity and disontinuity of the blending surfaeT .6 Blending around an arbitrar-ily seleted pointBeause we allow loal adjustment of the interpolat-ing surfae, there should be a way for the system toID: papers 18 Page: 5



(a) Blending around the image of an originalvertex (b) Blending around an arbitrary pointFigure 3: Parameter spae for a vertex of degree 5 and for an arbitrarily seleted point.perform blending proess in regions around arbitrar-ily seleted points of the surfae, not only the imagesof the ontrol verties Pi. With a loal parametriza-tion, suh a task is atually relatively easy to ahieve.For example, in Fig. 3(b), to adjust the interpolatingsurfae in a small area around the seleted point (theone marked with a blak solid irle), we �rst �nd theparameter (u0; v0) of the seleted 3D point in the pa-rameter spae of the loal parametrization that oversthe seleted point, and then �nd the biggest irle inthe parameter spae whose enter is (u0; v0) (the redirle in Fig. 3(b)). This irle de�nes the blendingarea for the seleted point.To speed up the searh of (u0; v0), we an simplyhoose the losest (u0; v0) in the k-times re�ned har-ateristi map (k 2 Z and k � 0). One we have(u0; v0), we still need to �nd the biggest radius forthe blending area. Again we ompare all the distanesfrom the seleted point (u0; v0) to all the boundaryparameter values in the k-times re�ned harateristimap (k 2 Z and k � 0) and the smallest one is the ra-dius of our blending area, denoted r0. In addition, asmentioned above, the blending area should not inludethe parameter point (0,0). So we also need to omparer0 with the distane between (0; 0) and (u0; v0) and thesmaller one is alled r. Therefore the blending area forthe seleted point an be de�ned as follows.(u� u0)2 + (v � v0)2 < r2The orresponding blending weight funtion W (u; v)

is de�ned by the following quarti formula [18℄.W (u; v) = �2(3�2 � 8�+ 6);where � = p(u� u0)2 + (v � v0)2r :It is easy to see � � 1 and W (u; v) satis�es 0 �W (u; v) � 1 in the blending region and is C2-ontinuous everywhere. Note that at the seletedpoint, W (u; v) approahes zero. When near theboundary of the blending region, W (u; v) approahes1, with zero partial derivatives up to order 2. Con-sequently, it an still anel out the irregularity anddisontinuity of the blending surfae T while loallymodify the shape of the interpolating surfae aord-ing to the need of the user.6.1 Revisit Constrution of BlendingSurfae TIn the above setion, we have disussed how to on-strut an initial blending surfae T0 around vertiesto be interpolated. In this setion, we show how toonstrut a blending surfae Ti around an arbitrarilyseleted point. Ti, like T , should also be easy andeÆient to onstrut. Again, we an use aÆne trans-formation to onstrut Ti from Si. The saling fa-tor omponents of the aÆne transformation matrix areeasy to determine, simply ompare the dimensions ofTi and Si. The question is how to determine the o�setomponents of the aÆne transformation matrix. NoteID: papers 18 Page: 6



that, unlike the ase of T0 where the o�set omponentsof the aÆne transformation matrix are determined bythe vertex to be interpolated and its limit point on S,in this ase, there is no point in the given mesh thatorresponds to the seleted point on Si. In an intera-tive environment, suh a point an be spei�ed by theuser. But how should suh a point and, onsequently,the o�set vetor be determined for an automati sys-tem?We propose to determine the o�set vetor for eahseleted 3D point by onstruting a Hermite surfaefor the path that overs the seleted point. For ex-ample, if the o�set vetors for the four verties ofthe path are D1; D2; D3 and D4, then we onstruta Hermite surfae path H(u; v) based on D1; D2; D3and D4. The tangent vetors at the four orners re-quired for the onstrution of H are set to the partialderivatives of the limit surfae S at the four orners.The o�set vetor for a seleted point with parametervalue (u0; v0) in Si, is set to H(u00; v00), where (u00; v00)an be determined by linearly mapping quadrilateral[0; os(2i�=n)℄� [0; sin(2i�=n)℄ to a unit square.
7 Interpolation of Normal Ve-torsDiretion of normal vetors spei�ed at verties of thegiven mesh an also be interpolated. The key is tomodify the onstrution proess of the blending sur-fae T0 so that it would have the same normals (atu-ally the same partial derivatives) at the extraordinarypoints. This an be easily ahieved by rotating eahpiee of T0 with appropriate X , Y and Z rotation fa-tors after the above mentioned translation and salingproess. This is possible beause eah piee of T0 inter-polates one point of P only. Hene we have a blendingsurfae T0 that not only interpolates the given meshP but normals spei�ed at some or all verties of P aswell. Beause the value of W (u; v) and its �rst partialderivatives at (0; 0) are all zero, the resulting interpo-lating surfae �S then satis�es �T (u;v)�u = � �S(u;v)�u and�T (u;v)�v = � �S(u;v)�v . In other words, �S and T0 have thesame normal. Hene, with one more AÆne transfor-mation (atually they an be ombined into a singlematrix to save omputation time), we an onstrutan interpolating surfae that not only interpolates thegiven mesh, but normals at all or some of the vertiesof the mesh as well.
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Figure 5: Handling open meshes8 Handling Open MeshesThe interpolation proess developed in the previoussetions an not be used for open meshes, suh asthe one shown in Fig. 4(), diretly. This is be-ause boundary verties of an open mesh have no or-responding limit points, nor derivatives. Therefore,the AÆne transformation matrix required for the on-strution of T0 annot be built diretly. One way tooverome this problem is to add an additional ring ofverties along the urrent boundary and onnet theverties of this ring with orresponding verties of theurrent boundary to form an additional ring of faes.The newly added verties are alled dummy verties.We then apply the interpolation method to the ex-tended open mesh as to a losed mesh exept thatthere are no ations taken for the dummy verties.This tehnique of extending the boundary of a givenmesh is similar to a tehnique proposed for uniformB-spline surfae representation in [1℄. Note that inthis ase, the interpolation proess is not based on thelimit surfae of the given mesh, but the limit surfaeof the extended mesh. Therefore, the shape of the in-terpolating surfae will be a�eted by loations of thedummy verties as well. Determining the loation ofa dummy vertex, however, is a triky issue, the usershould not be burdened by suh a triky task. In oursystem, this is done by using loations of the urrentboundary verties of the given mesh as the loationsof the dummy verties. Note that our interpolationtehnique is performed diretly on the limit surfae,hene there is no need to are about positions of thedummy verties after interpolation.Another approah to handle open mesh interpola-tion is to modify the proposed interpolation methodID: papers 18 Page: 7



(a) Given Mesh (b) Interpolation Surfae () Given Mesh (d) Interpolation SurfaeFigure 4: Examplesfor losed meshes. Note that our method is loallyadjustable. Hene the limit point of a vertex atuallyan be moved to anywhere, as long as the interpolationrequirement are satis�ed. Consider the mesh shown inFig. 5 where verties marked with irles, like P andQ, are boundary verties and verties marked withsolid irles, suh as V , A and B, are interior verties.The shaded surfae path is the orresponding limitsurfae where S(A) and S(B) are the images of A andB, respetively, S(C) and S(D) are the images of theorresponding edge points, respetively. Aording toour interpolation method, S(A) and S(B) should bemoved to A and B, respetively. However, to inter-polate the boundary points P and Q, we an modifyour approah suh that S(A) and S(B) are moved toP and Q, respetively, and S(C) and S(D) are movedto A and B, respetively. The resulting surfae theninterpolates all the verties of the given open mesh.9 Test ResultsThe proposed tehniques have been implemented inC++ usingOpenGL as the supporting graphis systemon the Windows platform. Quite a few examples havebeen tested with the tehniques desribed here. Allthe examples have extra-ordinary verties. Some ofthe tested results are shown in Figures 1, 4 and 6.From these examples we an see smooth and visuallypleasant shapes an be obtained by loally adjustingthe original limit surfaes.In our implementation, two subdivision steps areperformed on the given mesh for eah example be-

fore the parametrization tehnique [17℄ is applied. Theevaluation of the interpolating surfaes are based onsample parameter values of the 4-times re�ned har-ateristi maps, and we �nd the results to be good formost ases. For bigger pathes one an use more sam-ple points beause pathes do not have to be sampleduniformly.All the interpolation shown in Figures 1, 4 and 6are done with at least two blending proesses. Firstone is done with T0, whih is based on all the givenontrol verties. T1 for the seond blending proess isbased on all edge points of the given mesh. Some �g-ures in the examples went through more blending pro-esses to further improve quality of the interpolatingsurfae. Ti's for those blending proesses are seletedbased on, for example, fae points of all pathes, orparameter values ( 12j ; 12k ), where j and k are integers.User interation is also possible. For example, Figure1(b) and Figure 1() both interpolate the given meshshown in Figure 1(a), but Figure 1() is obtained withmore loal adjustment on the upper part of the teapotbody. The other parts are not adjusted, hene theyare exatly the same as those shown in Figure 1(b).Figure 1 shows, with user loal adjustment, a bettershape an be obtained after some automati blendingproesses.The original Utah teapot onsists of four separateparts: lid, handle, body and spout. The mesh shownin Figure 1(a) is atually a set of four meshes, onefor eah omponent of the original Utah teapot. Eahpart is an open mesh. Although eah of these meshesan be interpolated separately, Figure 1(b) and Fig-ID: papers 18 Page: 8



(a) Given Mesh (b) Interpolating Surfae

() Given Mesh

(d) Interpolating SurfaeFigure 6: Examples

ure 1() are generated by regarding them as a singlemesh. The mesh shown in Figure 6(b) is another ex-ample of an open mesh with disonneted boundaries.But di�erent from the ase shown in Figure 1, whihis generated by moving the verties to some di�erentposition intentionally, Figure 4(d) is generated usingadditional dummy verties in the interpolating surfaeonstrution proess.The new interpolation method an handle mesheswith large number of verties in a matter of less thana seond on an ordinary PC (3.2GHz CPU, 512MBof RAM). For example, the meshes shown in Figures1(a), 4(a), 4(), 6(a) and 6() have 320, 9, 194, 354 and66 verties, respetively, and it takes almost no timeto interpolate these relatively small meshes. Sine it isa loal blending proess and is performed diretly onthe limit surfae, our method an easily handle mesheswith thousands of or more verties. Hene our inter-polation method is espeially suitable for interativeshape design.10 SummaryA new interpolation method for meshes with arbitrarytopology is presented. The interpolation proess is aloal proess, it does not require solving a system oflinear equations. Hene, the method an handle dataset of any size.The interpolating surfae is obtained by loally ad-justing the limit surfae of the given mesh (viewed asthe ontrol mesh of a Catmull-Clark subdivision sur-fae) so that the modi�ed surfae interpolates all theverties of the given mesh. This loal adjustment pro-ess an also be used to smooth out the shape of theinterpolating surfae. Hene, a surfae fairing proessis not needed in the new method.The new method an handle both open and losedmeshes. It an interpolate not only verties, butnormals and derivatives as well. These normals andderivative an be anywhere, not just at the vertiesof the given mesh. Test results show that the newmethod leads to good interpolation results even forompliated data sets.The resulting interpolating surfae is not a Catmull-Clark subdivision surfae. It does not even satisfy theonvex hull property [18℄. But the resulting interpo-lating surfae is guaranteed to be C2 ontinuous ev-erywhere exept at some extraordinary points, whereit is C1 ontinuous. Using a tehnique similar to theone presented in [18℄, a C2 ontinuous interpolatingsurfae an also be ahieved.ID: papers 18 Page: 9
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