
Matrix based Subdivision Depth Computation forExtra-Ordinary Catmull-Clark Subdivision Surfae PathesGang Chen and Fuhua (Frank) ChengGraphis and Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046AbstratA new subdivision depth omputation tehnique forextra-ordinary Catmull-Clark subdivision surfae (CCSS)pathes is presented. The new tehnique improves a pre-vious tehnique by using a matrix representation of theseond order norm in the omputation proess. This en-ables us to get a more preise estimate of the rate of on-vergene of the seond order norm of an extra-ordinaryCCSS path and, onsequently, a more preise subdivi-sion depth for a given error tolerane.Keywords: subdivision surfaes, subdivision depth om-putation1 IntrodutionGiven a Catmull-Clark subdivision surfae (CCSS) path,subdivision depth omputation is the proess of determin-ing how many times the ontrol mesh of the CCSS pathshould be subdivided so that the distane between the re-sulting ontrol mesh and the surfae path is smaller thana given error tolerane. Good subdivision depth ompu-tation tehniques are important beause they allows us tomeet preision requirement in appliations suh as trim-ming, �nite element mesh generation, boolean operations,and tessellation of a CCSS without exessively subdivid-ing its ontrol mesh.A good subdivision depth omputation tehnique re-quires preise estimate of the distane between the on-trol mesh of a CCSS path and its limit surfae. Op-timum distane evaluation tehniques for regular CCSSpathes are available [4, 11℄. Distane evaluation for anextra-ordinary CCSS path is more ompliated. A �rstattempt in that diretion is done in [4℄. The distaneis evaluated by measuring norms of the �rst order for-ward di�erenes of the ontrol points. Sine �rst orderforward di�erenes an not measure the urvature of asurfae but its dimension, the distane omputed by thisapproah is usually bigger than what it really is for re-gions already at enough and, onsequently, leads to over-estimated subdivision depth.An improved distane evaluation tehnique for extra-ordinary CCSS pathes is presented in [5℄. The distane

is evaluated by measuring norms of the seond order for-ward di�erenes (alled seond order norms) of the on-trol points of the given extra-ordinary CCSS path. Sineseond order forward di�erenes an measure both heightand width of a region, the distane omputed by this ap-proah reets urvature of the path and, hene, leadsto reasonable subdivision depths for regions already atenough. However, it has been observed reently that,for extra-ordinary CCSS pathes, the onvergene rateof seond order norm hanges with the subdivision pro-ess, espeially between the �rst subdivision level and theseond subdivision level. Therefore, using a �xed on-vergene rate in the distane evaluation proess for allsubdivision levels would over-estimate the distane and,onsequently, over-estimate the subdivision depth as well.In this paper we present an improved subdivision depthomputation method for extra-ordinary CCSS pathes.The new tehnique uses a matrix representation of themaximum seond order norm in the omputation proessto generate a reurrene formula. This reurrene for-mula allows the smaller onvergene rate of the seondsubdivision level to be used as a bound in the evaluationof the maximum seond order norm and, onsequently,leads to a more preise subdivision depth for the givenerror tolerane.The remaining part of the paper is arranged as follows.A brief review of the bakground is given in Setion 2. Amatrix based subdivision depth omputation tehniquefor extra-ordinary CCSS pathes is presented in setion3. Examples showing the new tehnique improves the oldone are presented in Setion 4. Conluding remarks aregiven in Setion 5.2 Problem Formulation and Bak-groundGiven the ontrol mesh of an extra-ordinary CCSS pathand an error tolerane �, the goal here is to ompute aninteger d so that if the ontrol mesh is iteratively re�ned(subdivided) d times, then the distane between the re-sulting mesh and the surfae path is smaller than �. dis alled the subdivision depth of the surfae path with1



respet to �. Before we show the new omputation teh-nique, we need to de�ne related terms and review theprevious, seond order norm based distane evaluationand subdivision depth omputation tehniques for extra-ordinary CCSS pathes [5℄. Some of these tehniques areneeded in the new tehnique to be presented in Setion 3.2.1 Catmull-Clark Subdivision SurfaesGiven a ontrol mesh, by iteratively applying theCatmull-Clark subdivision sheme [2℄ to re�ne (subdivide)the ontrol mesh, we get a sequene of re�ned ontrolmeshes. The limit surfae of the re�ned ontrol meshes isalled a Catmull-Clark subdivision surfae (CCSS). There�ning proess onsists of de�ning new verties (faepoints, edge points and vertex points) and onneting thenew verties to form new edges and faes of a new on-trol mesh. The ontrol mesh of a CCSS path and thenew ontrol mesh after a re�ning (subdivision) proessare shown in Figures 1(a) and 1(b), respetively. This isa oneptual drawing, the loation shown for a new vertexmight not be its exat physial loation.
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Figure 1: (a) Control mesh of an extra-ordinary path; (b)new verties and edges generated after a Catmull-Clarksubdivision.The limit surfae of the iteratively re�ned ontrolmeshes is alled a subdivision surfae beause the meshre�ning proess is a generalization of the uniform biubiB-spline surfae subdivision tehnique. Therefore, CCSSsinlude uniform B-spline surfaes and pieewise B�eziersurfaes as speial ases. Atually CCSSs inlude non-uniform B-spline surfaes and NURBS surfaes as speialases as well [13℄. The Catmull-Clark mesh re�ning pro-ess sometime will also be alled a Catmull-Clark subdi-vision, or simply a subdivision step. The given ontrolmesh will be referred to as M0 and the limit surfae willbe referred to as �S. For eah positive integer k,Mk refersto the ontrol mesh obtained after applying the Catmull-Clark subdivision k times to M0.2.2 Regular vs. Extra-ordinaryThe power of CCSSs omes from the way mesh vertiesare onneted. If the number of edges inident to a mesh

vertex is alled its valene, then the valene of an inte-rior mesh vertex an be anything � 3, instead of just four.Those mesh verties whose valenes are di�erent from fourare alled extra-ordinary verties to distinguish them fromthe standard or regular mesh verties. Vertex V in Fig-ure 1(a) is an extra-ordinary vertex of valene �ve. Aninterior mesh fae is alled an extra-ordinary mesh faeif it has an extra-ordinary vertex. Otherwise, a standardor regular mesh fae. Mesh fae F in Figure 1(a) is anextra-ordinary mesh fae. Note that after one iterationof the subdivision step, mesh faes of a CCSS are alwaysquadrilaterals and the number of extra-ordinary vertiesremains the same. After at most two iterations of thesubdivision step, eah mesh fae has at most one extra-ordinary vertex. Therefore, without loss of generality, weshall assume all the mesh faes in M0 are quadrilateralsand eah mesh fae ofM0 has at most one extra-ordinaryvertex.For eah interior fae F of Mk, k � 0, there is aorresponding path S in the limit surfae �S. F andS an be parametrized on the same parameter spae
 = [0; 1℄ � [0; 1℄ [14℄. F is a bilinear rule surfae.S is a uniform biubi B-spline surfae path if F is aregular fae. If F is an extra-ordinary fae then S, de-�ned by 2n + 8 ontrol points where n is the valene ofF's extra-ordinary vertex, an not be parametrized as auniform B-spline path. In suh a ase, S is alled anextra-ordinary surfae path. Otherwise, a regular surfaepath or standard surfae path. The ontrol mesh shownin Figure 1(a) is the ontrol mesh of an extra-ordinarysurfae path whose extra-ordinary vertex is of valene�ve.2.3 Distane and Subdivision DepthFor a given interior mesh fae F, let S be the orrespond-ing path in the limit surfae �S. The ontrol mesh of Sontains F as the enter fae. If we perform a subdivisionstep on the ontrol mesh, we get four new mesh faes inthe plae of F. This is the ase no matter F is a regularfae or an extra-ordinary fae. See Figure 1(b) for thefour new faes F00, F10, F01 and F11 in the plae of theextra-ordinary fae F shown in Figure 1(a). Sine eahof these new faes orresponds to a quarter subpath ofS, we shall all these new faes subfaes of F even thoughthey are not pyhsially subsets of F. Therefore, eah sub-division step generates four new subfaes for the enterfae F of the ontrol mesh. Beause the orrespondenebetween F and S is one-to-one, sometime, instead of say-ing performing a subdivision step on S, we simply sayperforming a subdivision step on F.The distane between an interior mesh fae F and theorresponding path S is de�ned as the maximum ofkF(u; v)� S(u; v)k:DF = max (u;v)2
 kF(u; v)� S(u; v)k (1)2



where 
 is the unit square parameter spae of F and S.DF is also alled the distane between S and its ontrolmesh. For a given � > 0, the subdivision depth of F withrespet to � is a positive integer d suh that if F is reur-sively subdivided d times, the distane between eah ofthe resulting subfaes and the orresponding subpath issmaller than �.2.4 Distane Evaluation for a RegularPath
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Figure 2: De�nition of L(u; v) = (1�v)L1(u)+vL2(u) =(1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform biubi B-spline surfae pathde�ned on the unit square 
 = [0; 1℄ � [0; 1℄ with on-trol points Vi;j , 0 � i; j � 3, and let L(u; v) bethe bilinear parametrization of the enter mesh faefV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄+v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:The distane between S(u; v) and L(u; v) satis�es thefollowing relationship [4℄.Lemma 1: The distane between L(u; v) and S(u; v)satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the seond order norm of S(u; v) de�ned asfollowsM = maxi;jf k2Vi;j �Vi�1;j �Vi+1;jk ;k2Vi;j �Vi;j�1 �Vi;j+1k g (2)2.5 Subdivision Depth Computation forExtra-Ordinary PathesThe distane evaluation mehanism of the previous sub-division depth omputation tehnique for extra-ordinaryCCSS pathes utilizes seond order norm as a measure-ment sheme as well [5℄, but the pattern of seond order

forward di�erenes (SOFDs) used in the distane evalua-tion proess is di�erent from (2). We review the de�nitionof SOFD pattern used for an extra-ordinary path anda reurrene formula for the orresponding seond ordernorm �rst.2.5.1 Seond Order Norm and Reurrene For-mula
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Figure 3: (a) Ordering of ontrol points of an extra-ordinary path. (b) Ordering of new ontrol points (soliddots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n+ 8, be the ontrol points of anextra-ordinary path S(u; v) = S00(u; v), with V1 beingan extra-ordinary vertex of valene n. The ontrol pointsare ordered following J. Stam's fashion [14℄ (Figure 3(a)).The ontrol mesh of S(u; v) is denoted � = �00. Theseond order norm of S, denoted M = M0, is de�ned asthe maximum norm of the following 2n+ 10 SOFDs:M = maxff k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng[ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k;k 2V5 �V6 �V2n+6 k; k 2V5 �V4 �V2n+3 k;k 2V6 �V1 �V2n+4 k; k 2V7 �V8 �V2n+5 k;k 2V2n+7 �V2n+6 �V2n+8 k;k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+3 �V2n+2 �V2n+4 k;k 2V2n+4 �V2n+3 �V2n+5 k g g
(3)

By performing a subdividion step on �, one gets2n + 17 new verties V1i , i = 1; :::; 2n + 17 (see Figure3(b)). These ontrol points form four ontrol point sets�10, �11, �12 and �13, representing ontrol meshes of thesubpathes S10, S11, S12 and S13, respetively (see Figure3(b)) where �10 = fV1i j 1 � i � 2n+ 8 g, and the otherthree ontrol point sets �11, �12 and �13 are shown inFigure 4. S10 is an extra-ordinary path but S11, S12 and S13are regular pathes. Therefore, seond order norm similarto the one de�ned in (2) an be de�ned for S11, S12 and S13,while a seond order norm similar to (3) an be de�nedfor the ontrol mesh of S10. We use M1 to denote the3
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Figure 4: Control verties of subpathes S11, S12 and S13.seond order norm of S10. This proess an be iterativelyrepeated on S10, S20, S30, ... et. We have the followinglemma for a general Sk0 and its seond order normMk [5℄.Lemma 2: For any k � 0, if Mk represents the seondorder norm of the extra-ordinary sub-path Sk0 after kCatmull-Clark subdivision steps, then Mk satis�es thefollowing inequalityMk+1 � 8>><>>: 23Mk; n = 31825Mk; n = 5( 34 + 8n�464n2 )Mk; n > 5 :Atually, the lemma works in a more general sense, i.e.,ifMk stands for the seond order norm of the ontrol meshMk, instead of �k0 , the lemma still works. The seondorder norm of Mk is de�ned as follows: for regions notinvolving the extra-ordinary point, use standard SOFDs;for the viinity of the extra-ordinary point, use SOFDsde�ned in (3). The proof is essentially the same.2.5.2 Distane EvaluationTo ompute the distane between the extra-ordinarypath S(u; v) and the enter fae of its ontrol mesh,F = fV1;V6;V5;V4g, we need to parameterize the pathS(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision onS(u; v) = S00, S10, S20, ... et, we get a sequene of reg-ular pathes f Smb g, m � 1, b = 1; 2; 3, and a sequene

of extra-ordinary pathes f Sm0 g, m � 1. The extra-ordinary pathes onverge to a limit point whih is thevalue of S at (0; 0) [8℄. This limit point and the regu-lar pathes f Smb g, m � 1, b = 1; 2; 3, form a parti-tion of S. If we use 
mb to represent the region of theparameter spae that orresponds to Smb then f 
mb g,m � 1, b = 1; 2; 3, form a partition of the unit square
 = [0; 1℄� [0; 1℄ (see Figure 5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄;
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (4)The parametrization of S(u; v) is done as follows. Forany (u; v) 2 
 but (u; v) 6= (0; 0), �rst �nd the 
mb thatontains (u; v). m and b an be omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 vegb(u; v) = 8<: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (5)Then map this 
mb to the unit square with the followingmapping (u; v)! (um; vm)wheretm = (2mt)%1 = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 (6)The value of S(u; v) is equal to the value of Smb at(um; vm), i.e., S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the enterfae of Smb 's ontrol mesh. Sine Smb is a regular path,following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the seond order norm of the ontol meshof Smb . The seond order norm of Smb is smaller thanthe seond order norm of Mm, Mm. Hene, the aboveinequality an be written askLmb (u; v)� Smb (u; v)k � 13Mm: (7)If we use L(u; v) to represent the bilinear parametriza-tion of the enter fae of S(u; v)'s ontrol mesh F =fV1;V6;V5;V4gL(u; v) = (1� v)[(1� u)V1 + uV6℄+v[(1� u)V4 + uV5℄; 0 � u; v � 14



then the maximum distane between S(u; v) and its on-trol mesh an be written ask L(u; v) � S(u; v) k� k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (8)where 0 � u; v � 1 and um and vm are de�ned in (6).The seond term on the right hand side of the inequalityan be evaluated using (7). Hene, one only needs towork with the �rst term on the right hand side of theinequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 forany 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 orresponds to the subpath Sk0 . This means that(2ku; 2kv) is within the parameter spae of Sk0 for 0 �k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk arede�ned in (6). Consequently, we an onsider Lk0(uk; vk)for 0 � k < m where Lk0 is the bilinear parametrizationof the enter fae of the ontrol mesh of Sk0 (with theunderstanding that L00 = L and (u0; v0) = (u; v)). Hene,the �rst term on the right hand side of (8) an be writtenas kL(u; v)� Lmb (um; vm)k�Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k: (9)The following two lemmas are needed in the evaluationof the right side of the above inequality.Lemma 3: If (u; v) 2 
mb where b and m are de�nedin (5) then for any 0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the seond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�nedin (5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k� ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the seond order norm of Mm�1.By applying Lemmas 3 and 4 on (9) and then using(7) on (8), we have the following lemma on the distanebetween an extra-ordinary CCSS path S(u; v) and itsontrol mesh L(u; v) [5℄.

Lemma 5: The maximum of k L(u; v) � S(u; v) ksatis�es the following inequalitykL(u; v)�S(u; v) k � 8>>>>>><>>>>>>: M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (10)where M = M0 is the seond order norm of the extra-ordinary path S(u; v).2.5.3 Subdivision Depth ComputationLemma 5 an be used to estimate the distane between alevel-k ontrol mesh and the surfae path for any k > 0.This is beause the distane between a level-k ontrolmesh and the surfae path is dominated by the distanebetween the level-k extra-ordinary subpath and the or-responding ontrol mesh whih, aoriding to Lemma 5,iskLk(u; v)�S(u; v) k �8>>><>>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the seond order norm of S(u; v)'s level-kontrol mesh Mk. The previous subdivision depth om-putation tehnique for extra-ordinary surfae pathes isobtained by ombining the above result with Lemma 2 [5℄.Theorem 6: Given an extra-ordinary surfae pathS(u; v) and an error tolerane �, if k levels of subdivisionsare iteratively performed on the ontrol mesh of S(u; v),where k = �logwMz� �with M being the seond order norm of S(u; v) de�ned in(3), w =8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5and z =8>>><>>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distane between S(u; v) and the level-k ontrolmesh is smaller than �.5



3 New Subdivision Depth Com-putation Tehnique for Extra-Ordinary PathesThe SOFDs involved in the seond order norm of anextra-ordinary CCSS path (see eq. (3)) an be lassi�edinto two groups: group I and group II. Group I ontainsthose SOFDs that involve verties in the viinity of theextra-ordinary vertex (see Figure 6(a)). These are the�rst 2n SOFDs in (3). Group II ontains the remainingSOFDs, i.e., SOFDs that involve verties in the viinityof the other three verties of S (see Figure 6(b)). Theseare the last 10 SOFDs in (3). It is easy to see that theonvergene rate of the SOFDs in group II is the same asthe regular ase, i.e., 1=4 [4℄. Therefore, to study proper-ties of the seond order norm M , it is suÆient to studynorms of the SOFDs in group I. The maximum of thesenorms will be alled the seond order norm of group I.We will use M = M0 to represent group I's seond ordernorm as well beause norms of group I's SOFDs dominatenorms of group II's SOFDs. For onveniene of referene,in the subsequent disussion we shall simply use the term\seond order norm of an extra-ordinary CCSS path" torefer to the \seond order norm of group I of an extra-ordinary CCSS path".
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Figure 6: (a) Viinity of the extra-ordinary point. (b)Viinity of the other three verties of S.3.1 Matrix based Rate of ConvergeneThe seond order norm of S = S00 an be put in matrixform as follows: M = kAPk1where A is a 2n � (2n+ 1) matrixA = 2666666666664
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3777777777775and P is a ontrol point vetorP = [V1; V2; V3; : : : ; V2n+1℄T :

A is alled the seond order norm matrix for extra-ordinary CCSS pathes. If i levels of Catmull-Clark sub-division are performed on the ontrol mesh of S = S00then, following the notation of Setion 2, we have anextra-ordinary subpath Si0 whose seond order norm anbe expressed as: Mi = A�iP1where � is a subdivision matrix of dimension(2n + 1) � (2n + 1). The funtion of � is to per-form a subdivision step on the 2n + 1 ontrol vertiesaround (and inluding) the extra-ordinary point (seeFigure 6(a)). For example, when n = 3, � is of thefollowing form:� = 2666664 5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4
3777775 :We are interested in knowing the relationship betweenkAPk1 and A�iP1. We need the following importantresult for A�i. The proof of this result is shown in theAppendix.Lemma 7: A�i = A�iA+A, where A+ is the pseudo-inverse matrix of A.With this lemma, we havekA�iPk1kAPk1 = kA�iA+APk1kAPk1 � kA�iA+k1kAPk1kAPk1= A�iA+1Use ri to represent A�iA+1. Then we have the fol-lowing reurrene formula for riri � A�iA+1 = A�i�1A+A�A+1� A�i�1A+1 kA�A+k1= ri�1 r1 (11)where r0 = 1. Hene, we have the following lemmaon the onvergene rate of seond order norm of anextra-ordinary CCSS path.Lemma 8: The seond order norm of an extra-ordinary CCSS path satis�es the following inquality:Mi � ri M0 (12)where ri = A�iA+1 and ri satis�es the reurreneformula (11).The reurrene formula (11) shows that ri in (12) anbe replaed with ri1. However, experiment data show that,6



while the onvergene rate hanges by a onstant ratio inmost of the ases, there is a signi�ant di�erene betweenr2 and r1. The value of r2 is smaller than r21 by a sig-ni�ant gap. Hene, if we use ri1 for ri in (12), we wouldend up with a bigger subdivision depth for a given errortolerane. A better hoie is to use r2 to bound ri, asfollows. ri � 8<: rj2; i = 2jr1rj2; i = 2j + 1 (13)3.2 Distane EvaluationFollowing (8) and (9), the distane between the extra-ordinary CCSS path S(u; v) and the enter fae of itsontrol mesh L(u; v) an be expressed askL(u; v)� S(u; v)k�Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (14)where m and b are de�ned in (5) and (ui; vi) are de�nedin (6). By applying Lemma 3, Lemma 4 and (7) on the�rst, seond and third terms of the right hand side of theabove inequality, respetively, we getkL(u; v) � S(u; v)k � Pm�2k=0 Mk + 14Mm�1 + 13Mm� M0(Pm�2k=0 rk + 14 rm�1 + 13 rm)where  = 1=minfn; 8g. The last part of the above in-equality follows from Lemma 8. Consequently, through asimple algebra, we havekL(u; v)� S(u; v)k�8>>>>>>><>>>>>>>: M0[( 1�rj21�r2 + 1�rj�121�r2 r1)+ r1rj�124 + rj23 ℄; if m = 2jM0[( 1�rj21�r2 + 1�rj21�r2 r1)+ rj24 + r1rj23 ℄; if m = 2j + 1It an be easily proved that the maximum ours atm =1. Hene, we have the following lemma.Lemma 9: The maximum of kL(u; v)�S(u; v)k satis-�es the following inequalitykL(u; v)� S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the seond ordernorm of the extra-ordinary path S(u; v).

3.3 Subdivision Depth ComputationLemma 9 an also be used to evaluate the distanebetween a level-i ontrol mesh and the extra-ordinarypath S(u; v) for any i > 0. This is beause the distanebetween a level-i ontrol mesh and the surfae pathS(u; v) is dominated by the distane between the level-iextra-ordinary subpath and the orresponding ontrolmesh whih, aoriding to Lemma 9, iskLi(u; v)� S(u; v)k � Miminfn; 8g 1 + r11� r2where Mi is the seond order norm of S(u; v)'s level-iontrol mesh, Mi. Hene, if the right side of the aboveinequality is smaller than a given error tolerane �, thenthe distane between S(u; v) and the level-i ontrolmesh is smaller than �. Consequently, we have thefollowing subdivision depth omputation theorem forextra-ordinary CCSS pathes.Theorem 10: Given an extra-ordinary surfae pathS(u; v) and an error tolerane �, ifi � minf2l; 2k + 1glevels of subdivision are iteratively performed on the on-trol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn;8g 1+r11�r2 M0� )e ;k = dlog 1r2 ( r1minfn;8g 1+r11�r2 M0� )ewith ri = kA�iA+k1 and M0 being the seond ordernorm of S(u; v), then the distane between S(u; v) andthe level-i ontrol mesh is smaller than �.4 ExamplesThe new subdivision depth tehnique has been inple-mented in C++ on the Windows platform to ompareits performane with the previous approah. MatLab isused for both numerial and symboli omputation of riin the implementation. Table 1 shows the omparison re-sults of the previous tehnique, Theorem 6, with the newtehnique, Theorem 10. Two error toleranes 0:01 and0:001 are onsidered and the seond order norm M0 is as-sumed to be 2. For eah error tolerane, we onsider �vedi�erent valenes: 3, 5, 6, 7 and 8 for the extra-ordinaryvertex. As an be seen from the table, the new tehniquehas a 30% improvement over the previous tehnique inmost of the ases. Hene, the new tehnique indeed im-proves the previous tehnique signi�antly.To show that the rates of onvergene are indeed dif-ferene between r1 and r2, their values from several typ-ial extra-ordinary CCSS pathes are inluded in Table2. Note that when we ompare r1 and r2, the value of r1should be squared �rst.7



Table 1. Comparison between the old tehniqueand the new tehnique� = 0:01 � = 0:001N Old New Old NewTehnique Tehnique Tehnique Tehnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for someextra-ordinary pathes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.56915 ConlusionsA new subdivision depth omputation tehnique forextra-ordinary CCSS pathes is presented. Like theprevious tehnique, the subdivision depth is omputedbased on norms of the seond order forward di�erenes ofthe ontrol points. However, the omputation proess isperformed on matrix representation of the seond ordernorm, whih gives us a better bound of the onvergenerate and, onsequently, a tighter subdivision depth fora given error tolerane. Test results show that the newtehnique improves the previous tehnique by about 30%in most of the ases. This is a signi�ant result beauseof the exponential nature of the subdivision proess. Weare not sure if the new tehnique an be further improvedthough.6 Appendix A: Proof of Lemma 7It an be shown that when n is odd, i.e, when n = 2k+1for some positivi integer k, A+A is a (2n + 1) � (2n +1) irulant matrix of the following form (see ompleteversion of the paper [3℄ for proof)A+A = H � 12n+ 1 2666664 2n �1 � � � �1 �1�1 2n � � � �1 �1...�1 �1 � � � 2n �1�1 �1 � � � �1 2n
3777775 : (15)When n is an even number of the form n = 4k + 2where k is a positive integer, A+A has the form [3℄A+A = H+E (16)

where H is de�ned in (15) and
E = 1n

26666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

37777777777777775 : (17)
When n = 4k, A+A has the form [3℄A+A = H+E+W+Z (18)where H is de�ned in (15), E is de�ned in (17),

W = 23n
266666666666666666664

0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0
377777777777777777775 ;and

Z = 23n
266666666666666666664

0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2
377777777777777777775 :We prove the lemma for the ase n = 2k + 1 �rst. LetF be a (2n+ 1) � (2n+ 1) Fourier transform matrixF = 1p2n+ 1 2666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2

37777758



where ! = e2�i=(2n+1). It is easy to see from eq.(15) thatF�HF = I� 26664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 37775where I is a (2n + 1) � (2n + 1) identity matrix. Hene,when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF�= A�iF(I� 26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775)F�= A�i �A�iF26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775F�= A�i �A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 :Note that A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 = 0beause the row sum of A is 0 and row sum of � is 1.Hene, we have A�i = A�iA+A when n = 2k + 1.We next prove the lemma for n = 4k+2. Note that inthis ase �E = 14E and AE = 0. With these results wehave A�iE = 14iAE = 0:Hene, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to theprevious ase, we an prove that �W = 12W, AW = 0and �Z = 12Z1, AZ = 0. Therefore, we have A�iW =12iAW = 0 and A�iZ = 12iAZ = 0. Hene, A�iA+A =A�i(H + EW+ Z) = A�i.Referenes[1℄ Biermann H, Kristjansson D, Zorin D, ApproximateBoolean Operations on Free-Form Solids, Proeed-ings of SIGGRAPH 2001, 185-194.[2℄ Catmull E, Clark J, Reursively Generated B-spline Surfaes on Arbitrary Topologial Meshes,Computer-Aided Design 10, 6, 350-355, 1978.
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