
Matrix based Subdivision Depth Computation forExtra-Ordinary Catmull-Clark Subdivision Surfae PathesGang Chen and Fuhua (Frank) ChengGraphis and Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046AbstratA new subdivision depth omputation tehnique for extra-ordinary Catmull-Clark subdivision sur-fae (CCSS) pathes is presented. The new tehnique improves a previous tehnique by using a matrixrepresentation of the seond order norm in the omputation proess. This enables us to get a morepreise estimate of the rate of onvergene of the seond order norm of an extra-ordinary CCSS pathand, onsequently, a more preise subdivision depth for a given error tolerane.Keywords: subdivision surfaes, subdivision depth omputation1 IntrodutionGiven a Catmull-Clark subdivision surfae (CCSS) path, subdivision depth omputation is the proessof determining how many times the ontrol mesh of the CCSS path should be subdivided so that thedistane between the resulting ontrol mesh and the surfae path is smaller than a given error tolerane.Good subdivision depth omputation tehniques are important beause they allows us to meet preisionrequirement in appliations suh as trimming, �nite element mesh generation, boolean operations, andtessellation of a CCSS without exessively subdividing its ontrol mesh.A good subdivision depth omputation tehnique requires preise estimate of the distane between theontrol mesh and the limit surfae. Optimum distane evaluation tehniques for regular CCSS pathesare available [4, 11℄. Distane evaluation for an extra-ordinary CCSS path is more ompliated. A �rstattempt in that diretion is done in [4℄. The distane is evaluated by measuring norms of the �rst orderforward di�erenes of the ontrol points. Sine �rst order forward di�erenes an not measure the urvatureof a surfae but its dimension, the distane omputed by this approah is usually bigger than what it reallyis for regions already at enough and, onsequently, leads to over-estimated subdivision depth.An improved distane evaluation tehnique for extra-ordinary CCSS pathes is presented in [5℄. Thedistane is evaluated by measuring norms of the seond order forward di�erenes (alled seond ordernorms) of the ontrol points of the given extra-ordinary CCSS path. Sine seond order forward di�erenesan measure both height and width of a region, the distane omputed by this approah reets urvatureof the path and, hene, leads to reasonable subdivision depths for regions already at enough. However,it has been observed reently that, for extra-ordinary CCSS pathes, the onvergene rate of seond ordernorm hanges with the subdivision proess, espeially between the �rst subdivision level and the seondsubdivision level. Therefore, using a �xed onvergene rate in the distane evaluation proess for allsubdivision levels would over-estimate the distane and, onsequently, over-estimate the subdivision depthas well.In this paper we present an improved subdivision depth omputation method for extra-ordinary CCSSpathes. The new tehnique uses a matrix representation of the maximum seond order norm in the om-putation proess to generate a reurrene formula. This reurrene formula allows the smaller onvergene1



rate of the seond subdivision level to be used as a bound in the evaluation of the maximum seond ordernorm and, onsequently, leads to a more preise subdivision depth for the given error tolerane.The remaining part of the paper is arranged as follows. A brief review of the bakground is given inSetion 2. A matrix based subdivision depth omputation tehnique for extra-ordinary CCSS pathes ispresented in setion 3. Examples showing the new tehnique improves the old one are presented in Setion4. Conluding remarks are given in Setion 5.2 Problem Formulation and BakgroundGiven a ontrol mesh M = M0, let �S be its Catmull-Clark subdivision surfae (CCSS). For eah interiorfae F of M, there is a orresponding path S in the limit surfae �S. The ontrol mesh of S ontains F asthe enter fae. If we perform a Catmull-Clark subdivision step on the ontrol mesh, we get four new meshfaes in the plae of F. This is the ase no matter F is a regular fae or an extra-ordinary fae. See Figure1(b) for the four new faes F00, F10, F01 and F11 in the plae of the extra-ordinary fae F shown in Figure1(a). Sine eah of these new faes orresponds to a quarter subpath of S, we shall all these new faessubfaes of F even though they are not pyhsially subsets of F. Therefore, eah subdivision step generatesfour new subfaes for the enter fae F of the ontrol mesh. Beause the orrespondene between F and Sis one-to-one, sometime, instead of saying performing a subdivision step on S, we simply say performing asubdivision step on F.
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Figure 1: (a) Control mesh of an extra-ordinary path; (b) new verties and edges generated after aCatmull-Clark subdivision.The distane between an interior mesh fae F and the orresponding path S is de�ned as the maximumof kL(u; v) � S(u; v)k: DF = max (u;v)2
 kL(u; v) � S(u; v)k (1)where 
 is the unit square parameter spae of S and L(u; v) is the bilinear parametrization of F on 
.DF is also alled the distane between S and its ontrol mesh. For a given � > 0, the subdivision depthof F with respet to � is a positive integer d suh that if F is reursively subdivided d times, the distanebetween eah of the resulting subfaes and the orresponding subpath is smaller than �. In the following,we review some of the previous results needed in the new work.2



2.1 Distane Evaluation for a Regular Path
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Figure 2: De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform biubi B-spline surfae path de�ned on the unit square 
 = [0; 1℄ � [0; 1℄with ontrol points Vi;j, 0 � i; j � 3, and let L(u; v) be the bilinear parametrization of the enter meshfae fV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1 � u)V1;1 + uV2;1℄ + v[(1 � u)V1;2 + uV2;2℄; 0 � u; v � 1:Then the distane between S(u; v) and L(u; v) satis�es the following lemma [4℄.Lemma 1: The distane between L(u; v) and S(u; v) satis�es the following inequalitymax0�u;v�1 kL(u; v) � S(u; v)k � 13Mwhere M is the seond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk ; k2Vi;j �Vi;j�1 �Vi;j+1k g (2)2.2 Subdivision Depth Computation for Extra-Ordinary PathesThe distane evaluation mehanism of the previous subdivision depth omputation tehnique for extra-ordinary CCSS pathes utilizes seond order norm as a measurement sheme as well [5℄, but the patternof seond order forward di�erenes (SOFDs) used in the distane evaluation proess is di�erent from (2).Let Vi, i = 1; 2; :::; 2n + 8, be the ontrol points of an extra-ordinary path S(u; v) = S00(u; v), withV1 being an extra-ordinary vertex of valene n. The ontrol points are ordered following J. Stam's fashion[14℄ (Figure 3(a)). The ontrol mesh of S(u; v) is denoted � = �00. The seond order norm of S, denotedM = M0, is de�ned as the maximum norm of the following SOFDs. There are 2n+ 10 of them.M = maxf f k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng [ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k; k 2V5 �V6 �V2n+6 k; k 2V2n+3 �V2n+2 �V2n+4 k;k 2V7 �V8 �V2n+5 k; k 2V6 �V1 �V2n+4 k; k 2V5 �V4 �V2n+3 k; k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+7 �V2n+6 �V2n+8 k; k 2V2n+4 �V2n+3 �V2n+5 k g g (3)
By performing a subdividion step on �, one gets 2n+17 new verties V1i , i = 1; :::; 2n+17 (see Figure3(b)). These ontrol points form four ontrol point sets �10, �11, �12 and �13, representing ontrol meshes3
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Figure 3: (a) Ordering of ontrol points of an extra-ordinary path. (b) Ordering of new ontrol points(solid dots) after a Catmull-Clark subdivision.of the subpathes S10, S11, S12 and S13, respetively (see Figure 3(b)) where �10 = fV1i j 1 � i � 2n + 8 g,and the other three ontrol point sets �11, �12 and �13 are shown in Figure 4. S10 is an extra-ordinary pathbut S11, S12 and S13 are regular pathes. Therefore, seond order norm similar to the one de�ned in (2) anbe de�ned for S11, S12 and S13, while a seond order norm similar to (3) an be de�ned for the ontrol mesh
VV V V V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V V V

1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

8 1 4 2n+7

2 3 2n+8 2n+17

2n+16

2n+15

2n+14

2n+9

7 6 5 2n+6

2n+5 2n+4 2n+3 2n+2

2n+13 2n+12 2n+11 2n+10

Π

Π

Π1

1

1

1

2

3

Figure 4: Control verties of subpathes S11, S12 and S13.of S10. We use M1 to denote the seond order norm of S10. This proess an be iteratively repeated on S10,S20, S30, ... et. We have the following lemma for a general Sk0 and its seond order norm Mk [5℄.Lemma 2: For any k � 0, if Mk represents the seond order norm of the extra-ordinary sub-path Sk0after k Catmull-Clark subdivision steps, then Mk satis�es the following inequalityMk+1 � 8>>><>>>: 23Mk; n = 31825Mk; n = 5(34 + 8n�464n2 )Mk; n > 5 :Atually, the lemma works in a more general sense, i.e., if Mk stands for the seond order norm ofthe ontrol mesh Mk, instead of �k0 , the lemma still works. The seond order norm of Mk is de�ned asfollows: for regions not involving the extra-ordinary point, use standard SOFDs; for the viinity of theextra-ordinary point, use SOFDs de�ned in (3). The proof is essentially the same.4



2.2.1 Distane EvaluationTo ompute the distane between the extra-ordinary path S(u; v) and the enter fae of its ontrol mesh,F = fV1;V6;V5;V4g, we need to parameterize the path S(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision on S(u; v) = S00, S10, S20, ... et, we get a sequeneof regular pathes f Smb g, m � 1, b = 1; 2; 3, and a sequene of extra-ordinary pathes f Sm0 g, m � 1.The extra-ordinary pathes onverge to a limit point whih is the value of S at (0; 0) [8℄. This limit pointand the regular pathes f Smb g, m � 1, b = 1; 2; 3, form a partition of S. If we use 
mb to represent theregion of the parameter spae that orresponds to Smb then f 
mb g, m � 1, b = 1; 2; 3, form a partition ofthe unit square 
 = [0; 1℄ � [0; 1℄ (see Figure 5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄; 
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (4)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6= (0; 0), �rst �nd the 
mbthat ontains (u; v). m and b an be omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 veg; b(u; v) = 8><>: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (5)Then map this 
mb to the unit square with the following mapping(u; v)! (um; vm)where tm = (2mt)%1 = ( 2mt; if 2mt � 12mt� 1; if 2mt > 1 (6)The value of S(u; v) is equal to the value of Smb at (um; vm), i.e.,S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the enter fae of Smb 's ontrol mesh. Sine Smb is a regularpath, following Lemma 1, we have kLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the seond order norm of the ontol mesh of Smb . The seond order norm of Smb is smallerthan the seond order norm of Mm, Mm. Hene, the above inequality an be written askLmb (u; v) � Smb (u; v)k � 13Mm: (7)5



If we use L(u; v) to represent the bilinear parametrization of the enter fae of S(u; v)'s ontrol meshF = fV1;V6;V5;V4gL(u; v) = (1� v)[(1 � u)V1 + uV6℄ + v[(1 � u)V4 + uV5℄; 0 � u; v � 1then the maximum distane between S(u; v) and its ontrol mesh an be written ask L(u; v)� S(u; v) k � k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (8)where 0 � u; v � 1 and um and vm are de�ned in (6). The seond term on the right hand side of theinequality an be evaluated using (7). Hene, one only needs to work with the �rst term on the right handside of the inequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 orresponds to the subpath Sk0. This means that (2ku; 2kv) is within the parameter spae of Sk0 for0 � k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk are de�ned in (6). Consequently, we an onsiderLk0(uk; vk) for 0 � k < m where Lk0 is the bilinear parametrization of the enter fae of the ontrol meshof Sk0 (with the understanding that L00 = L and (u0; v0) = (u; v)). Hene, the �rst term on the right handside of (8) an be written askL(u; v)�Lmb (um; vm)k � m�2Xk=0 kLk0(uk; vk)�Lk+10 (uk+1; vk+1)k+kLm�10 (um�1; vm�1)�Lmb (um; vm)k: (9)The following two lemmas are needed in the evaluation of the right side of the above inequality.Lemma 3: If (u; v) 2 
mb where b and m are de�ned in (5) then for any 0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the seond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�ned in (5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � 8<: 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the seond order norm of Mm�1.By applying Lemmas 3 and 4 on (9) and then using (7) on (8), we have the following lemma on thedistane between an extra-ordinary CCSS path S(u; v) and its ontrol mesh L(u; v) [5℄.Lemma 5: The maximum of k L(u; v)� S(u; v) k satis�es the following inequalityk L(u; v)� S(u; v) k � 8>>>>>>><>>>>>>>:
M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (10)where M = M0 is the seond order norm of the extra-ordinary path S(u; v).6



2.2.2 Subdivision Depth ComputationLemma 5 an be used to estimate the distane between a level-k ontrol mesh and the surfae path forany k > 0. This is beause the distane between a level-k ontrol mesh and the surfae path is dominatedby the distane between the level-k extra-ordinary subpath and the orresponding ontrol mesh whih,aoriding to Lemma 5, isk Lk(u; v) � S(u; v) k � 8>>><>>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the seond order norm of S(u; v)'s level-k ontrol mesh Mk. The previous subdivision depthomputation tehnique for extra-ordinary surfae pathes is obtained by ombining the above result withLemma 2 [5℄.Theorem 6: Given an extra-ordinary surfae path S(u; v) and an error tolerane �, if k levels ofsubdivisions are iteratively performed on the ontrol mesh of S(u; v), wherek = �logwMz� �with M being the seond order norm of S(u; v) de�ned in (3),w = 8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>>><>>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distane between S(u; v) and the level-k ontrol mesh is smaller than �.3 New Subdivision Depth Computation Tehnique for Extra-OrdinaryPathesThe SOFDs involved in the seond order norm of an extra-ordinary CCSS path (see eq. (3)) an belassi�ed into two groups: group I and group II. Group I ontains those SOFDs that involve verties inthe viinity of the extra-ordinary vertex (see Figure 6(a)). These are the �rst 2n SOFDs in (3). Group IIontains the remaining SOFDs, i.e., SOFDs that involve verties in the viinity of the other three vertiesof S (see Figure 6(b)). These are the last 10 SOFDs in (3). It is easy to see that the onvergene rateof the SOFDs in group II is the same as the regular ase, i.e., 1=4 [4℄. Therefore, to study propertiesof the seond order norm M , it is suÆient to study norms of the SOFDs in group I. The maximum ofthese norms will be alled the seond order norm of group I. We will use M = M0 to represent group I'sseond order norm as well beause norms of group I's SOFDs dominate norms of group II's SOFDs. Foronveniene of referene, in the subsequent disussion we shall simply use the term \seond order norm ofan extra-ordinary CCSS path" to refer to the \seond order norm of group I of an extra-ordinary CCSSpath".3.1 Matrix based Rate of ConvergeneThe seond order norm of S = S00 an be put in matrix form as follows:M = kAPk17



(b)(a)

1

2
3

4

5
6

7

8

9

10

11 . . .

2n+1

1

2
3

4

5
6

7

8

2n+2
2n+3

2n+4

2n+5

2n+6

2n+7

2n+8

S

S

Figure 6: (a) Viinity of the extra-ordinary point. (b) Viinity of the other three verties of S.where A is a 2n � (2n+ 1) matrix
A =

266666666666666664
2 �1 0 0 0 �1 0 0 � � � 0 02 0 0 �1 0 0 0 �1 � � � 0 02 0 0 0 0 �1 0 0 � � � 0 0...2 0 0 �1 0 0 0 0 � � � �1 00 2 �1 0 0 0 0 0 � � � 0 �10 0 �1 2 �1 0 0 0 � � � 0 0...0 0 0 0 0 0 0 0 � � � 2 �1

377777777777777775and P is a ontrol point vetor P = [V1; V2; V3; : : : ; V2n+1℄T :A is alled the seond order norm matrix for extra-ordinary CCSS pathes. If i levels of Catmull-Clarksubdivision are performed on the ontrol mesh of S = S00 then, following the notation of Setion 2, we havean extra-ordinary subpath Si0 whose seond order norm an be expressed as:Mi = A�iP1where � is a subdivision matrix of dimension (2n + 1) � (2n + 1). The funtion of � is to perform asubdivision step on the 2n+1 ontrol verties around (and inluding) the extra-ordinary point (see Figure6(a)). For example, when n = 3, � is of the following form:
� = 266666666664

5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4
377777777775 :We are interested in knowing the relationship between kAPk1 and A�iP1. We need two lemmas forthis relationship. The �rst one shows the expliit form of A+A where A+ is the pseudo-inverse of A. The8



seond one shows that A+A an at as a right identity matrix for A�i.Lemma 7: The produt of the seond order norm matrix A and its pseudo-inverse matrix A+ an beexpressed as follows: A+A = 8><>: H; n = 2k + 1H+ E; n = 4k + 2H+ E+W+ Z; n = 4k (11)where k is a positive integer, and H, E, W and Z are (2n+1) � (2n+1) matries of the following form withH being a irulant matrix:
H � 12n+1 26666664 2n �1 � � � �1 �1�1 2n � � � �1 �1... ...�1 �1 � � � 2n �1�1 �1 � � � �1 2n

37777775 ; E = 1n
2666666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

3777777777777777775 ;

W = 23n
266666666666666666666664
0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0

377777777777777777777775
; Z = 23n

266666666666666666666664
0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2

377777777777777777777775
:

Proof We prove that if n = 2k+1 for some positive integer k then A+A = H where H is de�ned above.From properties of pseudo-inverse matries [2℄, we know thatA+A = ALAwhere AL is a left weak generalized inverse matrix of A, i.e., AL is a matrix satisfying the followingonditions AALA = AALAAL = AL(ALA)T = ALA (12)Thus, to prove A+A = H, we just need to show that there exists a left weak generalized matrix AL of Asuh that ALA = H. We �rst prove that there exists a (2n+ 1) � (2n) matrix C suh thatC A = H: (13)9



(13) is equivalant toATCT = AT [C1 C2 � � � C2n+1℄ = HT = H = [H1 H2 � � � H2n+1℄where CTi are row vetors of C and Hi are olumn vetors of H. This is a system of 2n+1 linear equations:ATCi = Hi, i = 1; 2; :::; 2n + 1. Eah of these systems has a solution Ci beauserank(AT ) = rank(ATi ) < 2n+ 1where ATi = hAT Hii. Hene, there is at least one solution for C in (13) when n = 2k + 1.It an be proved that there is no solution for CA = H when n = 4k + 2 beause for some Ci wewould have rank(AT ) < rank(ATi ). However, there is at least one solution for CA = H + E. Same forCA = H+ E+W+ Z when n = 4k.It is easy to verify that, when n = 2k + 1, the matrix C satis�es onditions 1 and 3 in (12), i.e.,ACA = AH = A and (CA)T = CA:As far as the seond ondition is onerned, there are two possibilities for CAC:Case 1: CAC = CIn this ase, C is a left weak generalized inverse of matrix A. Hene, we have A+A = CA = H.Case 2: CAC = C+D, where D 6= 0.We laim, in this ase, C+D is a left weak generalized matrix of A and C+D is also a solution of (13).We �rst show that C + D is also a solution of (13). Note that H2 = H. Hene, we have:(C + D)A = CACA = H2 = H = CA:This also shows that DA = 0. To prove that C + D is a left weak generalized matrix of A, note thatA(C + D)A = ACA +ADA = ACA = A; and(C + D)A(C + D) = CA(C +D) + DA(C +D) = CA(C +D)= CAC +CAD = CAC = C+DThe seond equation is true beauseCAC = CACAC = CA(C +D) = CAC+CAD:Therefore, the �rst and seond onditions of (12) are satis�ed. We also have ((C + D)A)T = (C + D)Abeause (C+D)A = H and H is a symmetri matrix. Hene, C+D is indeed a left weak generalized matrixof A. Consequently, we have A+A = (C +D)A = H.The other two ases n = 4k + 2 and n = 4k an be proved similarly. 2Lemma 8: A+A is a right identity matrix of A�i, i.e., A�iA+A = A�i, for any i.Proof We prove the ase n = 2k + 1 �rst. Let F be a (2n+ 1) � (2n+ 1) Fourier transform matrixF = 1p2n+ 1 26666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2
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where ! = e2�i=(2n+1). It is easy to see thatF�HF = I� 266664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 377775where I is a (2n+ 1) � (2n+ 1) identity matrix. Hene, when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF� = A�iF(I� 266664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 377775)F�= A�i �A�iF266664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 377775F� = A�i �A�i 266664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 377775 :Note that A�i 266664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 377775 = 0beause the row sum of A is 0 and row sum of � is 1. Hene, we have A�i = A�iA+A when n = 2k + 1.We next prove the lemma for n = 4k + 2. Note that in this ase �E = 14E and AE = 0. With theseresults we have A�iE = 14iAE = 0:Hene, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to the previous ase, we an prove that �W = 12W,AW = 0 and �Z = 12Z1, AZ = 0. Therefore, we have A�iW = 12iAW = 0 and A�iZ = 12iAZ = 0. Hene,A�iA+A = A�i(H + E +W+ Z) = A�i. 2With this lemma, we haveA�iP1kAPk1 = A�iA+AP1kAPk1 � A�iA+1 kAPk1kAPk1 = A�iA+1Use ri to represent A�iA+1. Then, for any 0 < j < i, we have the following reurrene formula for riri � A�iA+1 = A�i�jA+A�jA+1 � A�i�jA+1 A�jA+1 = ri�j rj (14)where r0 = 1. Hene, we have the following lemma on the onvergene rate of seond order norm of anextra-ordinary CCSS path.Lemma 9: The seond order norm of an extra-ordinary CCSS path satis�es the following inquality:Mi � ri M0 (15)11



where ri = A�iA+1 and ri satis�es the reurrene formula (14).The reurrene formula (14) shows that ri in (15) an be replaed with ri1. However, experiment datashow that, while the onvergene rate hanges by a onstant ratio in most of the ases, there is a signi�antdi�erene between r2 and r1. The value of r2 is smaller than r21 by a signi�ant gap. Hene, if we use ri1for ri in (15), we would end up with a bigger subdivision depth for a given error tolerane. A better hoieis to use r2 to bound ri, as follows.ri � 8><>: rj2; i = 2jr1rj2; i = 2j + 1 (16)3.2 Distane EvaluationFollowing (8) and (9), the distane between the extra-ordinary CCSS path S(u; v) and the enter fae ofits ontrol mesh L(u; v) an be expressed askL(u; v) � S(u; v)k �Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (17)where m and b are de�ned in (5) and (ui; vi) are de�ned in (6). By applying Lemma 3, Lemma 4 and (7)on the �rst, seond and third terms of the right hand side of the above inequality, respetively, we getkL(u; v)� S(u; v)k � m�2Xk=0 Mk + 14Mm�1 + 13Mm �M0(m�2Xk=0 rk + 14rm�1 + 13rm)where  = 1=minfn; 8g. The last part of the above inequality follows from Lemma 8. Consequently,through a simple algebra, we havekL(u; v) � S(u; v)k � 8>><>>: M0[(1�rj21�r2 + 1�rj�121�r2 r1) + r1rj�124 + rj23 ℄; if m = 2jM0[(1�rj21�r2 + 1�rj21�r2 r1) + rj24 + r1rj23 ℄; if m = 2j + 1It an be easily proved that the maximum ours at m =1. Hene, we have the following lemma.Lemma 10: The maximum of kL(u; v) � S(u; v)k satis�es the following inequalitykL(u; v) � S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the seond order norm of the extra-ordinary path S(u; v).3.3 Subdivision Depth ComputationLemma 9 an also be used to evaluate the distane between a level-i ontrol mesh and the extra-ordinarypath S(u; v) for any i > 0. This is beause the distane between a level-i ontrol mesh and the surfaepath S(u; v) is dominated by the distane between the level-i extra-ordinary subpath and the orrespond-ing ontrol mesh whih, aoriding to Lemma 9, iskLi(u; v) � S(u; v)k � Miminfn; 8g 1 + r11� r212



where Mi is the seond order norm of S(u; v)'s level-i ontrol mesh, Mi. Hene, if the right side of theabove inequality is smaller than a given error tolerane �, then the distane between S(u; v) and the level-iontrol mesh is smaller than �. Consequently, we have the following subdivision depth omputation theo-rem for extra-ordinary CCSS pathes.Theorem 11: Given an extra-ordinary surfae path S(u; v) and an error tolerane �, ifi � minf2l; 2k + 1glevels of subdivision are iteratively performed on the ontrol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn; 8g 1 + r11� r2 M0� )e ; k = dlog 1r2 ( r1minfn; 8g 1 + r11� r2 M0� )ewith ri = kA�iA+k1 and M0 being the seond order norm of S(u; v), then the distane between S(u; v)and the level-i ontrol mesh is smaller than �.4 ExamplesThe new subdivision depth tehnique has been inplemented in C++ on the Windows platform to ompareits performane with the previous approah. MatLab is used for both numerial and symboli omputationof ri in the implementation. Table 1 shows the omparison results of the previous tehnique, Theorem 6,with the new tehnique, Theorem 10. Two error toleranes 0:01 and 0:001 are onsidered and the seondorder norm M0 is assumed to be 2. For eah error tolerane, we onsider �ve di�erent valenes: 3, 5,6, 7 and 8 for the extra-ordinary vertex. As an be seen from the table, the new tehnique has a 30%improvement over the previous tehnique in most of the ases. Hene, the new tehnique indeed improvesthe previous tehnique signi�antly.To show that the rates of onvergene are indeed di�erene between r1 and r2, their values from severaltypial extra-ordinary CCSS pathes are inluded in Table 2. Note that when we ompare r1 and r2, thevalue of r1 should be squared �rst.Table 1. Comparison between the old tehnique and the new tehnique� = 0:01 � = 0:001N Old New Old NewTehnique Tehnique Tehnique Tehnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for some extra-ordinary pathes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.569113
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