
Adaptive Rendering of Catmull-Clark Subdivision SurfaesShuhua Lai and Fuhua (Frank) ChengGraphis & Geometri Modeling Lab, Department of Computer SieneUniversity of KentukyLexington, Kentuky 40506-0046AbstratA new adaptive rendering method for Catmull-Clarksubdivision surfaes is presented. The new methodis based on diret evaluation of the limit surfae togenerate an insribed polyhedron of the limit surfae.The new method an preisely measure error for ev-ery point of the limit surfae. Hene, it has ompleteontrol of the auray of the rendering result. Craksare avoided by using a reursive olor marking proessto ensure that adjaent pathes or subpathes use thesame limit surfae points in the onstrution of theshared boundary. The new method performs limit sur-fae evaluation only at points that are needed for the�nal rendering proess. Therefore it is both omputa-tion and memory eÆient.CR Categories: I.3.5 [Computer Graphis℄: Compu-tational Geometry and Objet Modelling - urve, sur-fae, solid and objet representations;Keywords: subdivision, Catmull-Clark surfaes,adaptive rendering, surfae evaluation1 IntrodutionThere are two possible approahes for the adaptivetessellation of a subdivision surfae. One is a mesh-re�nement-based (MRB) approah. It approximatesthe limit surfae by adaptively re�ning the ontrolmesh of the surfae. The resulting mesh usually doesnot interpolate the limit surfae. The other one isa surfae-evaluation-based (SEB) approah. This ap-proah approximates the limit surfae by generatingan insribed polyhedron of the limit surfae, with ver-ties of the polyhedron taken (evaluated) adaptivelyfrom the limit surfae. The MRB approah needs asubdivision sheme, suh as the Catmull-Clark methodor the Doo-Sabin method, to re�ne the input mesh.Most methods proposed in the literature for adap-tive tessellation of subdivision surfaes belong to thisategory. The seond approah needs a parametriza-tion/evaluation method for the limit surfae. With

the availability of diret evaluation methods of subdivi-sion surfaes [2, 3, 4, 6℄, the seond approah ould bemore appealing for adaptive tessellation of subdivisionsurfae beause of its simpliity in nature. Currentlythere is only one paper published in this ategory [9℄.This paper works parametrization of Loop subdivisionsheme that reprodues linear funtions [16℄. Nothinghas been done for parametrization of Catmull-Clarksubdivision sheme [2, 6℄ yet.In this paper we will present an SEB approah foradaptive tessellation of Catmull-Clark subdivision sur-faes. The new method an preisely measure error forevery point of the limit surfae. Hene, it has om-plete ontrol of the auray of the rendering result.Craks are avoided by using a reursive olor markingproess to ensure that adjaent pathes or subpathesuse the same limit surfae points in the onstrution ofthe shared boundary. The new method performs limitsurfae evaluation only at points that are needed forthe �nal rendering proess. Therefore it is both om-putation and memory eÆient.The remaining part of the paper is arranged as fol-lows. A brief review of previous works related to thisone is given in Setion 2. A desription of the basi ideaof our adaptive rendering tehnique is given in Setion3. The issue of rak elimination is disussed in Se-tion 4. Algorithms of our tehnique are presented inSeiton 5. Test results are shown in Setion 6. Theonluding remarks are given in Setion 7.2 Previous Work2.1 Catmull-Clark Subdivision Sur-faesGiven a ontrol mesh, a Catmull-Clark subdivision sur-fae (CCSS) is generated by iteratively re�ning (sub-dividing) the ontrol mesh [1℄ to form new ontrolmeshes. The subdividing proess onsists of de�ningnew verties (fae points, edge points and vertex points)and onneting the new verties to form new edges and1
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Figure 1: Control verties of an extra-ordinary pathand their labeling.faes of a new ontrol mesh. A CCSS is the limit sur-fae of the sequene of re�ned ontrol meshes. Thelimit surfae is alled a subdivision surfae beause themesh re�ning proess is a generalization of the uniformB-spline surfae subdivision tehnique. The valene ofa mesh vertex is the number of mesh edges adjaent tothe vertex. A mesh vertex is alled an extra-ordinaryvertex if its valene is di�erent from four. Vertex Vin Figure 1 is an extra-ordinary vertex of valene �ve.A mesh fae with an extra-ordinary vertex is alledan extra-ordinary fae. 1 The valane of an extra-ordinary fae is the valene of its extra-ordinary ver-tex. Given an extra-ordinary fae, if the valene of itsextra-ordinary vertex is n, then the surfae path or-responding to this extra-ordinary fae is inuened by2n+ 8 ontrol verties. The ontrol verties shown inFigure 1 are the ones that inuene the path markedwith an \S". Reent work [2, 3, 4, 6℄ shows that anypoint in the limit surfae of a CCSS an be exatly anddiretly evaluated from its 2n+8 ontrol points. Heneontrol mesh subdivision is not absolutely neessary forthe rendering of a CCSS.2.2 Adaptive TessellationA number of adaptive tessellation methods for subdi-vision surfaes have been proposed [5, 7, 8, 9, 12, 13℄.Most of them are mesh re�nement based, i.e., approxi-mating the limit surfae by adaptively re�ning the on-trol mesh. This approah requires the assignment of asubdivision depth to eah region of the surfae �rst.In [5℄, a subdivision depth is alulated for eah pathof the given Catmull-Clark surfae with respet to agiven error tolerane �. In [7℄, a subdivision depth isestimated for eah vertex of the given Catmull-Clarksurfae by onsidering fators suh as urvature, visi-bility, membership to the silhouette, and projeted size1Here, without loss of generality, we assume eah path hasat most one extra-ordinary vertex

of the path. The approah used in [5℄ is error ontrol-lable. An error ontrollable approah for Loop surfaeis proposed in [9℄, whih alulates a subdivision depthfor eah path of a Loop surfae by estimating the dis-tane between two bounding linear funtions for eahomponent of the 3D representation.Several other adaptive tessellation shemes havebeen presented as well [8, 13, 12℄. In [8℄, two methodsof adaptive tessellation for triangular meshes are pro-posed. The adaptive tessellation proess for eah pathis based on angles between its normal and normals ofadjaent faes. A set of new error metris tailored tothe partiular needs of surfaes with sharp reases isintrodued in [12℄.In addition to various adaptive tessellation shemes,there are also appliations of these tehniques. D. Roseet al. used adaptive tessellation method to render ter-rain [15℄ and K. M�uller et al. ombined ray traingwith adaptive subdivision surfaes to generate realistisenes [11℄. Adaptive tessellation is suh an importanttehnique that an API has been designed for its generalusage [14℄. Atually hardware implementation of thistehnique has been reported reently as well [10℄.A problem with the mesh-re�nement-based, adap-tive tessellation tehniques is the so alled gap-prevention requirement. Beause the number of newverties generated on eah boundary of the ontrolmesh depends on the subdivision depth, gaps (or,raks) ould our between the ontrol meshes of adja-ent pathes if these pathes are assigned di�erent sub-division depths. Hene, eah mesh-re�nement-basedadaptive tessellation method needs some speial meh-anism to eliminate gaps. This is usually done by per-forming additional subdivision or splitting steps on thepath with lower subdivision depth. As a result, manyunneessary polygons are generated in the tessellationproess. In this paper, we will adaptively tessellate asubdivision surfae by taking points from the limit sur-fae to form an insribed polyhedron of the limit sur-fae, instead of re�ning the ontrol mesh. Our methodsimpli�es the proess of gap deteting and elimination.It does not need to perform extra or unneessary eval-uations either.2.3 Evaluation of a CCSS PathSeveral approahes [2, 3, 4, 6℄ have been presented forexat evaluation of an extraordinary path at any pa-rameter point (u; v). In this paper, we will follow theparametrization tehnique presented in [6℄. This teh-nique is numerially stable, employs less eigen basisfuntions, and an be used to evaluate both positionand normal of any point in the limit surfae exatly2



and expliitly. Some related results of [6℄ are summa-rized below.The parametrization/evaluation approah of [6℄ ispresented for general Catmull-Clark subdivision sur-fae. That is, the new vertex point V0 of V after onesubdivision is omputed as follows:V0 = �nV + �n nXi=1 Ei + n nXi=1 Fiwhere �n, �n and n are positive numbers and �n +�n + n = 1. In a general Catmull-Clark subdivisionsurfae, new fae points and edge points are omputedthe same way as in an ordinary Catmull-Clark sub-division surfae [1℄. The parametrization/evaluationapproah of [6℄ is based on an 
� partition of the pa-rameter spae [2, 6℄. After a detoured subdivision pathand some spei� transforms [6℄, every point in the pa-rameter spae of a path an be expliitly and preiselyevaluated as follows.S(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valane of the extraordinary path, 2W is a vetor ontaining the 16 B-spline power basisfuntions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3;u3v; u2v2; uv3; u3v2; u2v3; u3v3℄ ;with 0 � u; v � 1, K is a diagonal matrix:K = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64);and m and b are de�ned as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) = 8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 ;�j , 0 � j � n+5, are eigenvalues of the Catmull-Clarksubdivision metrix and Mb;j , 1 � b � 3, 0 � j � n+5,are matries of dimension 16� (2n + 8). �j and Mb;jare independent of (u; v) and their exat expressionsare given in [6℄. G is the vetor of ontrol points (SeeFig. 1 for their labeling):G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄One an ompute the derivatives of S(u; v) to anyorder by di�erentiating W (u; v) in Eq. (1) aordingly.For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2)2Eq. (1) works for regular pathes as well, i.e., when n = 4.

(a) Cirumsribed (b) InsribedFigure 2: Insribed and Cirumsribed Approximation.With the expliit expression of S(u; v) and its par-tial derivatives, one an easily get the limit point of anextraordinary vertex in a general Catmull Clark sub-division surfae:S(0; 0) = [1; 0; � � � ; 0℄ �Mb;n+1 �G (3)and the �rst derivatives:Du(0; 0) = [0; 1; 0; 0; � � � ; 0℄ �Mb;2 �GDv(0; 0) = [0; 0; 1; 0; � � � ; 0℄ �Mb;2 �Gwhere Du and Dv are the diretion vetors of �S(0;0)�uand �S(0;0)�v , respetively. The normal at (0; 0) is theross produt of Du and Dv.3 Basi Idea3.1 Insribed ApproximationOne way to approximate a urve (surfae) is to useits ontrol polygon (mesh) as the approximating poly-line (polyhedron). For instane, in Figure 2(a), at thetop are a ubi B�ezier urve and its ontrol polygon.For a better approximation, we an re�ne the ontrolpolygon using midpoint subdivision. The solid polylineat the bottom of Fig. 2(a) is the approximating on-trol polygon after one re�nement. This method relieson performing iterative re�nement of the ontrol poly-gon or ontrol mesh to approximate the limit urve orsurfae. Beause this method approximates the limitshape from ontrol polygon or ontrol mesh \outside"(more or less) the limit shape, we all this method ir-umsribed approximation.Another possible method is insribed approximation.Instead of approximating the limit urve (surfae) byperforming subdivision on its ontrol polygon (mesh),one an approximate the limit urve (surfae) by in-sribed polygons (polyhedra) whose verties are taken3



from the limit urve (surfae) diretly. The easiest ap-proah to get verties of the insribed polygons (poly-hedra) is to perform uniform midpoint subdivision onthe parameter spae and use the evaluated verties ofthe resulting subsegments (subpathes) as verties ofthe insribed polylines (polyhedra). For instane, inFigure 2(b), at the top are a ubi B�ezier urve andits approximating polygon with verties evaluated atparameter points 0, 1/2 and 1. Similarily, the solidpolygon at the bottom of Figure 2(b) is an approximat-ing polygon with verties evaluated at �ve parameterpoints.Beause insribed approximation uses points di-retly loated on the limit urve or surfae, in mostases, it has faster onvergent rate than the irum-sribed appromimation. As one an see from Fig. 2that the insribed polygon at the bottom of Fig. 2(b)is loser to the limit urve than the irumsribed poly-gon shown at the bottom of Fig. 2(a) even though theinsribed polygon atually has less segments than theirumsribed polygon.However, the problem with both approahes is that,with uniform subdivision, no matter it is performed onthe ontrol mesh or the parameter spae, one wouldget unneessarily small and dense polygons for surfaepathes that are already at enough and, onsequently,slow down the rendering proess. To speed up therendering proess, a at surfae path should not betessellated as densely as a surfae path with big ur-vature. The adaptive tessellation proess of a surfaepath should be performed based on the atness of thepath. This leads to our adaptive insribed approxi-mation.3.2 Adaptive Insribed ApproximationFor a path of S(u; v) de�ned on u1 � u � u2 andv1 � v � v2, we try to approximate it with the quadri-lateral formed by its four verties V1 = S(u1; v1),V2 = S(u2; v1), V3 = S(u2; v2) and V4 = S(u1; v2). Ifthe distane (to be de�ned below) between the pathand its orresponding quadrilateral is small enough,then the path is onsidered at enough and will be(for now) replaed with the orresponding quadrilat-eral in the rendering proess. Otherwise, we perform amidpoint subdivision on the parameter spae by settingu12 = u1 + u22 and v12 = v1 + v22to get four subpathes: [u1; u12℄ � [v1; v12℄, [u12; u2℄ �[v1; v12℄, [u12; u2℄� [v12; v2℄, [u1; u12℄� [v12; v2℄, and re-peat the atness testing proess on eah of the sub-pathes. The proess is reursively repeated until the

distane between all the subpathes and their orre-sponding quadrilaterals are small enough. The vertiesof the resulting subpathes are then used as verties ofthe insribed polyhedron of the limit surfae. For in-stane, if the four retangles in Figure 3(a) are the pa-rameter spaes of four adjaent pathes of S(u; v), andif the retangles shown in Figure 3(b) are the parame-ter spaes of the resulting subpathes when the aboveatness testing proess stops, then the limit surfaewill be evaluated at the points marked with small solidirles to form verties of the insribed polyhedron ofthe limit surfae.
1 2

3 4

(b)(a)Figure 3: Basi idea of the onstrution of an insribedpolyhedron.In the above atness testing proess, to measurethe di�erene between a path (or subpath) and itsorresponding quadrilateral, we need to parametrizethe quadrilateral as well. The quadrilateral an beparametrized using a simple bilinear interpolation, asfollows:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3) (4)where u1 � u � u2, v1 � v � v2. The di�erenebetween the path (or subpath) and the orrespondingquadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2= (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T(5)where k � k is the seond norm and AT is the transposeof A. The distane between the path (or subpath)and the orresponding quadrilateral is the maximumof all the di�erenes:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g:To measure the distane between a path (or subpath)and the orresponding quadrilateral, we only need tomeasure the norms of all loal minima and maximaof d(u; v). Note that Q(u; v) and S(u; v) are bothC1-ontinuous, and d(V1), d(V2), d(V3) and d(V4)4
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Extra−ordinary pointFigure 4: Partitioning of the unit square.are equal to 0. Therefore, by Mean Value Theorem,the loal minima and maxima must lie either inside[u1; u2℄ � [v1; v2℄ or on the four boundary urves. Inother words, they must satisfy at least one of the fol-lowing three onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u28<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v28<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2)

(6)
For a path (or subpath) that is not adjaent to anextraordinary point (i.e., (u1; v1) 6= (0; 0)), m is �xedand known (m(u; v) = minfdlog 12 ue; dlog 12 veg). HeneEq. (6) an be solved expliitly. With the valid solu-tions, we an �nd the di�erene for eah of them usingEq. (5). Suppose the one with the biggest di�ereneis (û; v̂). Then (û; v̂) is also the point with the biggestdistane between the path (or subpath) and its or-responding quadrilateral. The path (or subpath) issaid to be at enough ifD =pd ( û; v̂) � � (7)where � is a given error tolerane. In suh a ase, thepath (or subpath) is replaed with the orrespondingquadrilateral in the rendering proess. If a path (orsubpath) is not at enough yet, i.e., if Eq. (7) doesnot hold, we perform a midpoint subdivision on thepath (or subpath) to get four new subpathes andrepeat the atness testing proess for eah of the newsubpathes. This proess is reursively repeated untilall the subpathes satisfy Eq. (7).
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CFigure 5: Crak prevention.For a path (or subpath) that is adjaent to an ex-traordinary point (i.e. (u1; v1) = (0; 0) in Eq. (6)),m is not �xed and m tends to 1 (see Figure 4). Asa result, Eq. (6) an not be solved expliitly. Oneway to resolve this problem is to use nonlinear numer-ial method to solve these equations. But numerialapproah annot guarantee the error is less than � ev-erywhere. For preise error ontrol, a better hoieis needed. In the following, an alternative method isgiven for that purpose.Eq. (3) shows that S(u; v) and Q(u; v) both on-verge to S(0; 0). Hene, for any given error tolerane �,there exists an integerm� suh that ifm � m�, then thedi�erene between S(u; v) and S(0; 0) is smaller than�=2 for any (u; v) 2 [0; 1=2m℄� [0; 1=2m℄, and so is thedi�erene between Q(u; v) and S(0; 0). Consequently,when (u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, the di�erene be-tween S(u; v) and Q(u; v) is smaller than �. The valueofm�, in most of the ases, is smaller than 12. For otherregions of the unit square with dlog 12 u2e � m < m�, eq.(6) an be used to �nd the di�erene between S(u; v)and Q(u; v) (see Figure 4). Therefore, by ombiningall these di�erenes, we have the distane between thegiven extra-ordinary path (or subpath) and the orre-sponding quadrilateral. If this distane is smaller than�, we onsider the given extra-ordinary path (or sub-path) to be at, and use the orresponding quadrilat-eral to replae the extra-ordinary path (or subpath)in the rendering proess. Otherwise, repeatedly subdi-vide the path (or subpath) and perform atness test-ing on the resulting subpathes until all the subpathessatisfy Eq. (7).4 Crak EliminationDue to the fat that adjaent pathes might be approx-imated by quadrilaterals orresponding to subpathesfrom di�erent levels of the midpoint subdivision pro-ess, raks ould our between adjaent pathes. For5



instane, in Figure 3, path 2 is approximated by onequadrilateral but path 4 is approximated by 4 quadri-laterals and path 1 is approximated by 7 quadrilat-erals. Consider the boundary shared by path 1 andpath 2. On the path 2 side, that boundary is a linesegment de�ned by two verties : S(D) and S(G). Buton the path 1 side, the boundary is a polyline de�nedby four verties : S(D), S(E), S(F), and S(G). Theywould not oinide unless S(E) and S(F) lie on the linesegment de�ned by S(D) and S(G). But that usuallyis not the ase. Hene, raks would appear betweenpath 1 and path 2.Fortunately Craks an be eliminated simply by re-plaing eah boundary of a path or subpath withthe one that ontains all the evaluated points forthat boundary. For example, in Figure 5, all thedashed lines should be replaed with the orrespond-ing polylines. In partiular, boundary A2A5 of pathA1A2A5A6 should be replaed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is re-plaed with polygon A1A2C4B4A5A6 in the render-ing proess. For rendering purpose this is �ne be-ause graphis systems like OpenGL an handle poly-gons with non-o-planar verties and polygons with anynumber of verties. The points shown in Figure 5 arepoints of the limit surfae, not points in the parameterspae of the limit surfae.A potential problem with this proess is the newpolygons generated by the rak elimination algorithmmight not satisfy the atness requirement. To ensurethe atness requirement is satis�ed everywhere whenthe above rak elimination method is used, we needto hange the test ondition in Eq. (7) to the followingone: pd ( �u; �v) +pd ( û; v̂) � � (8)where (û; v̂) and (�u; �v) are solutions of Eq. (6) and theysatisfy the following onditions:� Among all the solutions of Eq. (6) that are loatedon one side of Q(u; v), i.e. solutions that satisfyQ(u; v) � 0, d(û; v̂) is the biggest.� Among all the solutions of Eq. (6) that are loatedon the other side of Q(u; v), i.e. solutions thatsatisfy Q(u; v) < 0, d(�u; �v) is the biggest.From the de�nition of (û; v̂) and (�u; �v), we an see thatsatisfying Eq. (8) means that the path being tested isloated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limitsurfae. Hene, in Fig. 5, points A2;C4;B4 and A5 ofpathA2A3A4A5 are also points of pathA1A2A5A6.With the new test ondition in Eq. (8), we know that apath or subpath is at enough if it is loated between

two quadrilaterals that are � away. Beause pointsA2;C4;B4 and A5 are on the limit surfae, they areloated between two quadrilaterals that are � away. Sois the polygon A1A2C4B4A5A6. Now the path (orsubpath) and its approximating polygon are both lo-ated inside two quadrilaterals that are � away. Henethe overall error between the path (or subpath) andits approximating polygon is guaranteed to be smallerthan �.In previous methods for adaptive tessellation of sub-division surfaes [7, 5, 8, 12℄, the most diÆult part israk prevention. Yet in our method, this part is thesimplest part to handle and implement. The resultingsurfae is error ontrollable and guaranteed to be rakfree.5 AlgorithmsIn this setion, we disuss the important steps of theadaptive tessellation proess and present the orre-sponding algorithms.5.1 Global Index IDAll urrently available subdivision surfae parametriza-tion and evaluation tehniques are path based [2, 4, 6℄.Hene, no matter whih method is used in the adaptivetessellation proess, a path, from its own (loal) stru-ture, annot see verties generated by adjaent pathes,even the verties are generated on a ommon bound-ary. For example, in Figure 5, verties C4 and B4 areon the shared boundary of pathes A1A2A5A6 andA2A3A4A5. But path A1A2A5A6 annot see theseverties from its own struture beause these vertiesare not generated by this path. To make ativitiesof adjaent pathes visible to eah other and, onse-quently, make rak detetion unneessary, one shouldassign a global index ID to eah evaluated vertex sothat� all evaluated verties with the same 3D positionhave the same index ID;� the index ID's are sorted in v and then in u, i.e., if(ui; vi) � (uj ; vj), then IDi � IDj , unless IDi orIDj has been used in previous path evaluation.With a global index ID, rak prevention is not a prob-lem even with a path based approah. Atually, sub-sequent proessing an all be done with a path basedapproah and still performed eÆiently. For example,in Figure 5, path A1A2A5A6 an see both C4 andB4 even though they are not evaluated by this path.In the subsequent rendering proess, the path simply6



output all the marked verties (to be de�ned below) onits boundary that it an see to form a polygon for therendering purpose, i.e., A1A2C4B4A5A6.5.2 Adaptive MarkingThe purpose of adaptive marking is to mark thosepoints in uv spae where the limit surfae shouldbe evaluated. With the help of the global index ID,this step an be done on an individual path basis.Initially, all (u; v) points are marked white. If surfaeevaluation should be performed at a point and theresulting vertex is needed in the rendering proess,then that point is marked in blak. This proessan be easily implemented as a reursive funtion. Apseudo ode for this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBlak(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the param-eter spae of path P. Funtion `Evaluate' evaluateslimit surfae at the four orners of path or subpathP de�ned on [u1; u2℄� [v1; v2℄. Funtion `FlatEnough'uses the method given in setion 3 and Eq. (7) to tellif a path or subpath is at enough. Funtion `Mark-Blak' marks the four orners of path or subpath Pde�ned on [u1; u2℄ � [v1; v2℄ in blak. All the markedorner points will be used in the rendering proess.5.3 Adaptive Rendering a Single PathThe purpose of this step is to render the limit surfaewith as few polygons as possible, while preventing theourrene of any raks. Note that the limit surfaewill be evaluated only at the points marked in blak,and the resulting verties are the only verties thatwill be used in the rendering proess. To avoid raks,eah marked points must be rendered properly. Henespeial are must be taken on adjaent pathes orsubpathes. With the help of adaptive marking, thisproess an easily be implemented as a reursive fun-tion as well. A pseudo ode for this step is given below.

AdaptiveRendering(P, u1, u2, v1, v2)1. if (NoMarkedPointInside(P, u1, u2, v1, v2))2. RenderPolygon(P, u1, u2, v1, v2)3. else4. u12 = (u1 + u2)=25. v12 = (v1 + v2)=26. AdaptiveRendering(P, u1, u12, v1, v12)7. AdaptiveRendering(P, u12, u2, v1, v12)8. AdaptiveRendering(P, u12, u2, v12, v2)9. AdaptiveRendering(P, u1, u12, v12, v2)This routine adaptively renders marked points inpath or subpath P. Funtion `NoMarkedPointInside'tests if none of the points inside [u1; u2℄ � [v1; v2℄,exluding the boundary points, are marked. If all theinterior points are in white (i.e. not marked), it returnsTRUE. Funtion `RenderPolygon' is de�ned as follows.RenderPolygon(P, u1, u2, v1, v2)1. glBegin(RenderModel)2. Output all the marked points between3. (u1; v1)! (u2; v1)4. (u2; v1)! (u2; v2)5. (u2; v2)! (u1; v2)6. (u1; v2)! (u1; v1)7. glEnd()6 Test ResultsThe proposed approah has been implemented in C++using OpenGL as the supporting graphis system onthe Windows platform. Some of the tested results areshown in Figure 6. We also summarize those tested re-sults in Table 1. The olumn underneath AjU in Table1 indiates the type of tessellation tehnique (Adaptiveor Uniform) used in the rendering proess. The termA/U ratio means the ratio of number of polygons inan adaptively tessellated CCSS to its ounter part ina uniformly tessellated CCSS with the same auray.From Table 1 we an see that all the adaptively tes-sellated CCSS's have relatively low A/U ratios. Theerror in the last olumn is absolute error. We an eas-ily see that, for the same model, the smaller the error,the lower the A/U ratio. For example, Fig. 6(g) haslower A/U ratio than Fig. 6(h) and Fig. 6(i). Thesame holds for Fig. 6(l) and Fig. 6(m). An interestingfat is that Fig. 6(f) uses many more polygons thanFig. 6(g) does, while the former is less aurate thanthe latter. This shows the presented adaptive tessella-tion method is apable of providing a higher auraywith less polygons. However, for di�erent models, om-paring their absolute errors might not make pratial7



sense beause absolute error is not AÆne transforma-tion invariant.Table 1: Extra information of Fig. 6Figure AjU polygons A/U Ratio ErrorFig. 6(a) U 20480 100.00% 0.1Fig. 6(b) A 4688 22.89% 0.1Fig. 6() A 8017 8.26% 0.015Fig. 6(f) U 6912 100.00% 0.105Fig. 6(g) A 2068 7.48% 0.050Fig. 6(h) A 1432 20.72% 0.105Fig. 6(i) A 412 23.84% 0.250Fig. 6(k) U 22656 100.00% 1.0Fig. 6(l) A 3048 13.45% 1.0Fig. 6(m) A 2238 39.51% 1.5Fig. 6(o) A 6654 28.15% 0.0003Fig. 6(p) U 17088 100.00% 0.02Fig. 6(q) A 11544 4.22% 0.01
7 SummaryAn adaptive rendering method based on insribed ap-proximation for general Catmull-Clark subdivision sur-faes is presented. The new method only evaluatesthose limit surfae points that are needed in the �-nal rendering proess, and it takes almost no e�ort forthe new method to eliminate raks in the resultinginsribed polyhedron of the limit surfae. Hene thenew mthod is both omputation eÆient and memoryeÆient.Currently, all the methods for adaptive renderingwork on a path by path basis. One of our futureworks is to take the whole surfae into onsideration,so that not only the inner-path redundany, but theinter-path redundany, an be eliminated as well.Aknowledgement. Data set for Fig. 6(o) was down-loaded from the following web sitehttp://graphis.s.uiu.edu/�garland/researh/quadris.html.The pakage qslim was used to redue the number offaes in this model to 500.Referenes[1℄ Catmull E, Clark J. Reursively generated B-splinesurfaes on arbitrary topologial meshes, Computer-Aided Design, 1978, 10(6):350-355.[2℄ Stam J, Exat Evaluation of Catmull-Clark Subdivi-sion Surfaes at Arbitrary Parameter Values, Proeed-ings of SIGGRAPH 1998:395-404.
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(o) Adaptive Evaluation (p) Uniform Evaluation (q) Adaptive EvaluationFigure 6: Adaptive rendering of surfaes with arbitrary topology.9


