Constructing Parametric Triangular Patcheswith Boundary Conditions
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Abstract was proposed. The triangular patch is constructed using the

Boolean sum schemé&regory [2] used theonvex combi-
The problem of constructing a parametric triangular nation methodo construct a triangular patch. The trian-
patch to smoothly connect three surface patches is stud-gular patch is formed by the convex combination of three
ied. Usually, these surface patches are defined on differ-interpolation operators, each of which satisfies the imterp
ent parameter spaces. Therefore, it is necessary to deation conditions on two sides of a triangle. The idea [2]
fine interpolation conditions, with values from the given was further extended in papers [3, 4]. Nielson [5] presented
surface patches, on the boundary of the triangular patch a side-vertex methotb construct a curved triangular patch
that can ensure smooth transition between different param-using combination of three interpolation operators, eath s
eter spaces. In this paper we present a new method toisfying the given boundary conditions at a vertex and its
define boundary conditions. Boundary conditions defined opposite side. Hagen [6] extended Nielson’s approach to
by the new method have the same parameter space if theonstructgeometric patchesThese results have been gen-
three given surface patches can be converted into the sameralized to triangular patches with first and second order
form through affine transformation. Consequently,any of geometric continuity [7, 8]. The problem of constructing
the classic methods for constructing functional triangula non-four-sided patches including curved triangular pasch
patches can be used directly to construct a parametric tri- was also studied in [9, 10]. In [11] a method to construct
angular patch to connect the given surface patches @ith  a curved triangular patch by combining four interpolation
continuity. The resulting parametric triangular patch pre  operators: ainterior interpolation operatoand threeside-
serves precision of the adopted classic method. vertex operatorfb] is presented. The constructed triangular
patch reproduces polynomial surfaces of degree four. An-
other method proposed recently [12] constructs a triamgula
1 Introduction patch by aasic approximation operatand aninterpola-
tion operator The constructed triangular patch satisfigs
Construction of surfaces plays an important role in com- boundary condition and reproduces polynomial surfaces of
puter aided geometric design (CAGD), free-form surface degree five.
modeling and computer graphics (CG). To make the pro- The above methods all work on the assumption that the
cess of constructing complex surfaces simple, piecewiseinterpolation conditions on the boundary of the triangke ar
techniques are frequently used, with four-sided and trian- defined on the same parameter space. In practice, how-
gular patches being the most popular choices. This paperever, this is usually not the case. It is therefore necessary
studies the problem of boundary condition determination in to have a method to determine suitable interpolation con-
the process of constructing parametric triangular patthes ditions so that the methods [1]-[12] can be used directly to
smoothly connect three given surface patches. These sureonstruct parametric triangular patches. In [13], a method
face patches can be of any form. Therefore, the problempresented to construct the cross-boundary conditions. The
addressed here can also be viewed as an infinite interpolaconstructed cross-boundary conditions have suitable mag-
tion on triagles. nitudes, but not suitable directions on the boundary of the
Infinite interpolation on triangles was first studied by triangle. This paper overcomes this problem by presenting
Barnhill, Birkhoff and Gordon [1], and a curved triangu- a simple but efficient method to construct cross-boundary
lar patch that interpolates boundary conditions of any form conditions which have both suitable magnitudes and di-



rections. The combination of the new method and any of spacee; denote the opposite side of andr; is the unit
the classic functional triangular patch construction mdth ~ outward normal vector of;, as shown in Figure 2. Let;
[1]-[12] can be used to construct@ parametric triangu-  denote the unit vector from, to v;. 05 andos are defined
lar patch to connect three given surface patches. The consimilarly. The sideg;, i = 1,2, 3, can be parameterized as
structed parametric triangular patch has the same intrpol follows:

tion precision as the adopted classic methods [1]-[12].

ei(u) = (1 —u)vs + uws,

2 Problem description ex(u) = (I—wvr+uvs, 0<u<l (1)
es3(u) = (1 —u)vy + uws,

SupposePi(si, t:) = (wi(si 1), yi(si, ti), 2i(si, 1)), The parametric triangular patcPr(s,t) to be con-
(0 < siti < 1),4 = 1,2,3, are three given surface gy cted will be defined on the equilateral triangle as
patches, defined on differenft;-parametric planes. The  gshown in Figure 2. On the three sides Bf the bound-

three patches are of any form. The three patches meetin they curve and cross-boundary slope conditions given by the
way shown in Figure 1. The goal is to construct a triangular iree surfacesP;(s;, t;), i = 1,2, 3 are as follows

patch Pr(s,t) to connect the three patchdB;(s;,t;),
i = 1,2,3, with G! continuity. Pr(s,t) and P;(s;,t;),

i = 1,2,3, beingG' continuous means that they have a Pi(ei(u)), s, (ei(u)), i=1,2,3 (2)

common boundary and the normal vectors of them on the

common boundary have the same direction. where e;(u)’s are defined in Eq. (1),P;(e;(u)) and
oP;

3 (ei(u)) denote the boundary value and the cross-
S

bandary slope oP;(s;, t;) on the sidez;, respectively.

As the boundary conditions (2) cannot be used directly
to construct the triangular patch @h we will use them to
define the new boundary conditions. Let the new boundary
conditions be

OPr

Pr(ei(u)), s

(ei(u)), i=1,2,3. €))

The new boundary conditions (3) should be defined in a way
so that if the three patchdB; (s;, t;),i = 1,2, 3 are defined
by the same surfac®(s, t), but with different parameter

spaces, thelPr(e;(u)), —T(ei(u)), i = 1,2,3 on the

Figure 1. Three surfaces meet

If these three patches are defined on the same parametrif €€ sides of " in Figure 2 can be defined b (s, ), i.e.,
st-plane, then the methods for constructing functional trian by

gular patches can be used directly to construct a parametric Pr(ei(u)) = P(e;i(u)),
triangular patch to connect these patches w@thcontinu- OPp P ,1=1,2,3 4)
ity. In most applications of CAGD, CG and related areas, W(ei(“)) = o (ei(u))

however, these three patches usually are not defined on the
same parameter space. In this case, one needs to d&fine
boundary conditions by the three patches so that the con3  Constructing the boundary Conditions
structed parametric triangular patch can smoothly connect
these patches with a "visually pleasing shape” suggested by . oP;
these three patches. After tii# boundary conditions are We show how to determin®z (ei(u)), ——(ei(u)),
defined, the functional methods of constructing triangular ; — 1 2 3, in this section. As shown in Fialure 3, sup-
patches can be used to construct parameter triangular patcRose that the surface patd (si,t;) is defined on the
directly. As Pr(s,t) and Py(si,t:), i = 1,2,3, are de-  parallelogram regiom,vsv,vs, Pa(s2, 1) and Ps (ss, ts)
fined on different parameter spac#y (s, t), satisfyingC* are similarly defined. ThePr(s,t) and P;(s;,t;) are
boundary conditions, will connect these three patches with g1 continuous on the common boundary, tHs (e; (1)),
G' continuity. OPr , _

LetT be an equilateral triangle with vertices = (0, 0), 3—72,(6’?(“))' @ = 1,2,3 can be defined byPi(si, 1),
vy = (1,0) andws = (1/2,4/3/2) in the st-parametric i = 1,2, 3 as follows:
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Figure 2. Three patches meet on T

Pr(e;(u)) = Pi(e;(u)),
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whereq;(e;(u)) andg;(e;(u)) are functions of; to be con-
structed, respectively.
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Figure 3. Three patches meet on 7T'.

. . oP
Now, constructing the boundary conditions becomes a ( s L(v,) -
1

problem of defining the functions;(e;(«)) andg;(e;(u))
(5), i = 1,2,3. For simplicity, we shall show the con-
struction process of; (e; (u)) andf;1(e;(u)) only. The
a;(e;(u)) andg;(e;(u)), i = 2,3 can be constructed simi-
larly.

As vectorso; andt; are same, see Figure 3, so vec-
oP
tors m and t; are orthonormal, thusa—T(el(u)) and
T1

0Pt
oty

(e1(u)) satisfy

OPr
(G (er ()

where(a - b) denotes the dot product of vectarandb.
It follows from (5) that

OPr
a—tl(el(u))) =0

Arai(er(u)) + Bipi(er(u)) =0 (6)
where
Ay = (G e ) - s (),
By = (G ea(u) - S ea(w)

If 51 angtl are orthorbormal,
P P
Ay = (G ea(w) - G e (w)) =0,

oty
thus the function relation betweeny;(e;(u))
B1(e1(u)) is taken as

Bi(er(u)) = —Arai(er(u))/B: (7

The Eq. (7) shows that i, (e;(u)) is defined, then
a;i(e1(u)) is defined. In the following we show how to
constructf (e1(u)). We first determine the values of
a1(er(u)) andpi(er (u)) at pointsvs andwvs, respectively.
At pointv,, we have

and

oP oP oP
o (v2) = 01(02) 5= (v2) + fr(v2) 5= (v2). (8)
The angléd; between vectors, andts is 30°, thus
0P (0g) = L2OPr () 10Pr )
8t3 02 2 6’7’1 02 2 60’1 v2)-
From aP oP
T o 1
60'1 ('UQ) - atl ('UQ),
we have
OPr, . 2V/30P;3 V3P,
on ") = 73 g, )t Ty, ) O

It follows from Eq. (8) and Eq. (9) that; (ve) andf (vs)
in Eq. (5), denoted) and3?, can be determined by the
following equations.

6P1 0 6P]_ 6P1 0 __
7y " 3y (v2))af + {5 (02) 52 (02))]
(T (v2) - ——(v2)),
e a5 oP oP
g-1 Rhdalt ) 0 g1 1 0 _
(Gor(02) - G (wa))ald + (ot (va) - - (@2))6) = 0



On the other hand, at; we have

oP oP 0P,

o (v3) = 01(03) 5 = (v3) + B (v3) 5~ (v3).
oPp . 23 9P, V3oP,

on U8 = Ty gy, (V) T g gy, (e

(11)
Thusas (v3) andpi (v3) in Eqg. (5), denoted] andj;, can
be determined by the following equations.

8P1 8P1 1 8P1 8P1 1
S1 S1 1 S1
OPr oP;
( 67-]_ (’03) ’ 651 (v3)>=
oP oP . aP oP
< 8511 (U3) : 6t11 (/1)3)>(J(1 + < 6t11 (US) : 8t11 (/v3)>51 =0.
(12)

Fora(e; (u)), two valuesy§ andai are computed, thus
a suitable choice is that; (e1(u)) is defined by a linear
interpolation as follows:

ar(er(u)) = (1—u)ad +ua; 0<u<1 (13)
wherea§ andaj are defined by (10) and (12).
Based on (7) and (13} (e1(u)) andf; (e1(u)) are de-

fined by

ai(er(u)) = (1 —u)ad +uaj
pi(er(u)) = —Arai(ei(u))/Br. ’

whereA; andB; are defined by (6).
Similarly, one can definey;(e;(u)) and g;(e
i = 2,3 as follows:

0<u<1 (14)

i(u)) for

as(ea(u)) = (1 —u)al + ual
52 (62(7/,)) = 7142(12(62(“))/32.
0<u<1. (15)
az(ez(u)) = (1 —u)al + ual
Ps(es(u)) = —Asasz(es(u))/Bs.

The above construction process Gf boundary con-
ditions shows that when the methods for constructitig
functional triangular patch are directly applied to the hdu
ary conditions in Eq. (5), a parameter patEty(s,t) is
constructed, which connect®;(s;, t;), i = 1,2, 3 with G*
continuity and smooth shape.

4 Discussion

In this section, we will show that the cross-boundary

slopes defined by Eqgs. (5), (14) and (15) are well defined.

To do this, one only needs to prove that if the three sur-
facesP;(s;,t;),i = 1,2, 3, are defined by the same surface
P(s,t) but in different forms, which are formed by apply-
ing affine transformations oR (s, t), then the new bound-
ary conditions are defined by (4), i.e., B®(s,t). This

means that if a method reproduces polynomials of degree
n when it is used to construct functional triangular patches,
then when it is used with the boundary conditions (5) to
construct a parametric triangular patEty (s, t), Pr(s,t)
will reproduce parametric polynomials of degree

Theorem 1 If surface patched;(s;,t;), 1 = 1,2,3,
are defined by the same surfal¥¢s, t), i.e, P(m1,01) , and
the transformations from coordinate systehto coordinate
systems;t; are affine, then there exist unique constants
andd; satisfying the following conditions

047;:1/01',

Bi = —di/c;

wherea; and g; satisfya;(ei(u)) = «a; and8;(e;(u))
Bi, which meansy;(e;(u)) and §;(e;(u)) in Eq. (5) are
constants in this case.

Proof Only the casé = 1 will be considered. The other
two cases can be handled similarly. étbe any point in
parametric space, ino; ands;¢; coordinate systems, the
coordinates oV be(r1,01) and(sy,t1), respectively. As
the transformation from coordinate systetrto coordinate
systems; ¢, is affine, vectors; and#; are same, as shown
in Figure 3, the relationship betweén ,o1) and(s:,t1)
can be written as

(16)

T1 = C181,

g = dlSl + tl. (17)

As P;(s1,t1) is defined byP(r;,01), it follows from Eqg.
(17) thatP (s1,t1) can be expressed as

Pl(Sl,tl) = P(clsl,dlsl +t1) = P(Tl,O'l).

Now
8P1(Sl.t1) 8P(T1.(7'1) (9P(T1,0'1)
d =c ’ d
681 “ 67’1 + 60’1
8P1(Sl,t1) _ aP(Tl,O'l)
6t1 801
Thus
8P(T1,(7'1) _ 1 (9P(51,t1) B dl 8P(81,t1)
67’1 h C1 881 C1 6t1 '
8P(T1,(7'1) _ BP(sl,tl)
60’1 o 6t1

and this completes the proof of the theorem.

In CAGD and CG applications, the curves and surfaces
are generally defined on normalized domains, [0,1] for
curves and0, 1] x [0,1] for surfaces. In most cases, the
domains of curves and surfaces are normalized by affine
transformations, thus in Theorem 1, that the transforma-
tion froms P(s,t) to P;(s;,t;), i = 1,2, 3, are restricted
as affine transformations is reasonable Theorem 1 shows
that if surfacesP;(s;,t;), i = 1,2,3, are defined by the



same surface, them) and3? in Eq.(10) andx} and/3; in

Eg. (12) satisfyn) = ol andB? = pBi, so the functions
a;(e;(u)) andg;(e;(w)) in Eq.(5),i = 1,2, 3, are uniquely
determined, i.e., determined by Eq.(4). Consequently, the
interpolation conditions are determined uniquely, thies th
triangular patch to be constructed is determined uniquely.
Therefore the following theorem follows.

Theorem 2 If the method of constructing functional tri- (a)
angular patch reproduces polynomials of degre@nd the
method is directly applied on the interpolation conditions
in Eq.(5), then the constructed parametric triangular gatc
Pr(s,t) reproduces parametric polynomials of degree

5 Experiment

Experiment results presented in this section are carried
out by constructing a parametric triangular patch to con-
nect three patches. The first experiment is to construct a
triangular patch to connect three surfacBs(s;, t;), (0 <
si, t; < 1), =1,2 3, as shown in Figure 4. The triangular =
patches are produced by Nielson’s method [5]. In Figure
5, the triangular patch in (a) is produced by directly apply-

ing Nielson’s method [5] on the boundary curves and cross- (c)
boundary slopes defined by the three rectangle patches. The ]
triangular patches in (b) and (c) are produced by using the Figure 6. Example 4

method presented in [13] and the technique presented in this
paper, respectively, to redefine the cross-boundary slopes
taken from the three given rectangular patches, then apply-. N , I
ing Nielson’s method [5] on the boundary curves and the re- f|:I1ets tc:: ttht(; surfaces 'trr]] F(;gur? 5b t'!['he f|gu|;esﬂ:n F;%uretg
defined cross-boundary slopes. In Figure 5, some portionsS owfhat In€ hew method gets better results than the other

of the surfaces on the common boundary of the triangulartwo methads.

patch with the three rectangular patches are visually not  The second experiment is to test the new method using
very smooth. This is the result of Mach band phenomenon.the two functions presented by Franke [15] are used in the
Figures 5 show that surfaces in (c) have less Mach bandcomparison process. They are

phenomenon than those of (b).

/\ Fy(z,y) = 5.2exp|—81((z — 0.5)% + (y — 0.5)?)/16]/3,

3(83,13

Pr(si.t1) \ Fy(z,y) = 5.2exp[—81((z — 0.5)2 + (y — 0.5)2)/4]/3

Po(s, 1) The set of data points (including 33 points) presented ih [15

' is used to produce triangles for comparison. The triangula-
tion of the data set is performed using the max-min criterion
proposed by Lawson [16] (see Figure 7).

The new method is compared by applying it to Niel-
son’s method (Theorem 3.1 of [5]), ZC's method[11]
Figure 4. Three surfaces meet and ZJY’s method[12]. Nielson’s method, ZC's method
and ZJY's method have the polynomial interpolation
Highlight lines [14] have been proved to be effective tool precision of degree three, four and five, respectively.
in assessing the quality of a surface. In Figure 6, the high-The new method is tested by expressing the two func-
lightline model is used to compare the above three methodstions Fy(z,y) and F;(z,y) above by parametric form,
The figures in Figure 6 are highlight lines of the horizontal Py(u,v) = (z(u,v),y(u,v), Fi(u,v)) and Ps(u,v) =




(@) (b) ()

Figure 5. Example 2

Figure 7. Triangulation of 33 points.

(z(u,v),y(u,v), F5(u,v)), which are defined by

Figure 8. (A) Nielson’'s method, (B) ZC's
Fy(u,v) = 5.2exp[~81((u — 0.5)* + (v - 0.5)*) /16]/3, method, (C) ZJY’s method, (D) Fy(z,y).
Fs(u,v) = 5.2exp[—81((u — 0.5)2 + (v — 0.5)2)/4]/3,
z(u,v) = u,
y(u,v) = v
(18)

Two surfaces defined by (18) are used to define the
boundary curves and cross-boundary slopes on the sides
of the triangles in Figure 7, for each side of the triangles,
the cross-boundary slopes defined by (18) is multiplied by
0.8 to simulate it to be of any form. For the interpolation
conditions on the triangles, the surfaces by directly using
the three methods,respectively, are shown in Figures 8-9.
While for the interpolation conditions on the trianglesg th
cross-boundary conditions are first redefined by the new
method, then the surfaces by directly using the three meth-
ods,respectively, are shown in Figures 10-11.

6 Conclusions

Figure 9. (A) Nielson's method, (B) ZC's
A new method that uses functional triangular patch con-  method, (C) ZJY’s method, (D) F5(z,y).
struction methods to construct parametric triangulartpegc
is presented. The new method improves previous methods
in both surface shape and surface quality. This is testified



Figure 10. (A) Nielson’'s method, (B) ZC's
method, (C) ZJY’'s method, (D) Ps(u,v).

b}

Figure 11. (A) Nielson’'s method, (B) ZC's
method, (C) ZJY's method, (D) Ps(u,v).

by examining Mach band effect and highlight line models
of the resulting surface patches. The key in achieving the
improvement is a technique to define the cross-boundary
conditions. The resulting cross-boundary conditions have
not only suitable magnitudes but suitable directions as wel

With the new method, one can directly apply any of the
classic functional triangular patch construction methimds
construct aC'! parametric triangular patch to smoothly con-
nect three surface patches. The new method preserves pre-
cision of the adopted classic method. If the adopted classic
method has a precision of polynomials of degigethen the
constructed parametric triangle patches have a precigion o
parametric polynomials of degree
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