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Abstract
An elegant and efficient mesh clustering algorithm is presented. The faces of a polygonal mesh are divided into
different clusters for mesh coarsening purpose by approximating the Centroidal Voronoi Tessellation of the mesh.
The mesh coarsening process after clustering can be done in an isotropic or anisotropic fashion. The presented
algorithm improves previous techniques in local geometricoperations and parallel updates. The new algorithm is
very simple but is guaranteed to converge, and comes out better approximating meshes with the same computation
cost. Moreover, the new algorithm is suitable for the variational shape approximation problem with L2,1 distortion
error metric and the convergence is guaranteed. Examples demonstrating efficiency of the new algorithm are also
included in the paper.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Mesh Clustering, Cen-
troidal Voronoi Tessellation, Shape Approximation

1. Introduction

3D mesh models are used in many important areas such as
geometric modeling, computer animation, and CAD. With
the availability of powerful laser scanners, large and dense
meshes are easily acquired from physical world. However,
since the full complexity of such models is not always re-
quired, coarsening a dense mesh, i.e., replacing the original
mesh with a simpler but close enough mesh, is a necessary
pre-processing step in many applications. Many mesh
coarsening techniques have been presented, including the
global optimization method [HDD∗93,LT00] and remeshing
for mesh coarsening [Tur92,LSS∗98,KVLS99,GVSS00].

Mesh clustering is to partition the faces or vertices of the
mesh into different regions. Generally, these regions are re-
quired to be nonoverlapping and connected. One major ap-
plication of the clustering technique is for mesh coarsening.
Such a method builds the approximating mesh based on the
clustering of the dense mesh. In mesh coarsening, clustering
may not be explicitly required in a greedy clustering tech-
nique, like mesh decimation. A decimation method creates
implicit partitionings of the mesh through greedy and repeat-
edly collapsing mesh faces or vertices [GH98,Hop96,LT98].
The resulting mesh is always sub-optimal [CSAD04]. The
other clustering method for mesh coarsening is to construct
the mesh clusters explicitly. The new mesh clustering tech-

nique, also designed for mesh coarsening, falls into this cat-
egory.

There are quite a few papers discussing mesh approx-
imation based on explicitly constructing clusters. Cluster-
ing by approximating the Centroidal Voronoi Tessellation
(CVT) [DFG99] on triangular meshes is first discussed in
[VC04]. After constructing the clusters, the mesh is uni-
formly coarsened based on the clusters. Adaptive coarsening
of a mesh based on clustering from Centroidal Voronoi Tes-
sellation is presented in [VKC05]. An extension from uni-
form mesh coarsening [VC04] to anisotropic mesh coars-
ening is discussed in [VCP08]. A theoretical framework
of variational shape approximation based on optimal mesh
clustering with respect to some distortion error metric is
presented in [CSAD04]. Especially, optimal clustering us-
ing L2,1 metric faithfully captures the anisotropic nature
of the mesh. A hierarchy face clustering technique is de-
veloped in [MGH01]. Many applications such as collision
detection, surface simplification and multiresolution radios-
ity benefit from this hierarchy clustering technique. Clus-
tering faces in a set of characteristic regions to build a
higher-level description of mesh geometry is explored in
[KT96, She01, LPRM02, GS01]. Accelerating general iter-
ative clustering algorithms for meshes on GPU is discussed
in [JDH04].

This paper is inspired by the work presented in [VC04,
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Figure 1: Clustering and approximation results on a hand model: the left-most figure shows the 500 clusters generated by
approximating CVT on the mesh; the second from left figure is the uniformly coarsened mesh; the third from left figure has 98
clusters in different colors while using L2,1 metric for clustering; the right-most figure is the approximating polygonal mesh.

VCP08,CSAD04]. The goal here is to build a clustering by
approximating constrained Centroidal Voronoi Tessellation
[DGJ02] or Centroidal Voronoi Tessellation [DFG99] on a
polygonal mesh. Starting with an initial partitioning of the
mesh, the new algorithm iteratively tests the boundary edges
between different clusters to update the cluster configura-
tion until the boundary edges do not change any more. This
boundary test algorithm is also discussed in [VC04,VCP08].
But we derive a simpler algorithm by presenting a more rig-
orous mathematical analysis. The new algorithm is intuitive
in that it only needs to compare the distances from one face
centroid to centroids of adjacent clusters. The new algorithm
is also extended for optimal geometric partitioning with re-
spect toL2,1 in [CSAD04]. The exciting result is that the
new algorithm is guaranteed to converge while the algorithm
based on Lloyd in [CSAD04] is not. In summary, the contri-
butions of this paper include:

1. a simpler algorithm which only needs to compare dis-
tances is derived for constructing clustering on a polyg-
onal mesh by approximating Constrained Centroidal
Voronoi Diagram or Centroidal Voronoi Diagram;

2. the new algorithm updates clustering configurations after
comparing all boundary edges, not after comparing each
boundary edge. This updating scheme improves the qual-
ity of the output coarse mesh.

3. the new algorithm for clustering withL2,1 metric is guar-
anteed to converge. Sharing the same advantages of the
clustering with Centroidal Voronoi Tessellation methods,
the new algorithm is fast.

The remaining part of the paper is organized as follows:
Section 2 gives some basics on Centroidal Voronoi Tessel-
lation and its extension; Section 3 presents an analysis and
the new clustering algorithm; Section 4 discusses the bound-
ary test algorithm for clustering withL2,1 metric; Section 5
proposes some strageties to make implementation more ef-
ficient; Section 6 gives applications of the new algorithm;
test results are shown in Section 7; the conclusion is given in
Section 8.

2. Centroidal Voronoi Tessellation

Voronoi diagramsor Voronoi tessellationare essential struc-
tures in computational geometry and have been used in many
important applications [OBS92]. Given a domainΩ in ℜn

and a set of points{zi}
k
i=1, the correspondingVoronoi dia-

gram{Vi}
k
i=1 is a partition ofΩ such that:

(1)Vi ∩Vj = ∅ and∪k
i=1V̄i = Ω̄ , and

(2)Vi = {x ∈ Ω | |x− zi | < |x− z j | for j = 1,2, ..,k, j 6= i}

{zi}
k
i=1 are called thegenerators and{Vi}

k
i=1 the Voronoi

regions.

Centroidal Voronoi Tessellation(CVT) is an extension of
Voronoi Tessellation by requiring that the generators are also
the mass centroids of the Voronoi regions. Given a density
functionρ(x) onV, the mass centroidz∗ of V is defined as

z∗ =

R

V xρ(x)dx
R

V ρ(x)dx

Specifically, CVT ofΩ is a minimizer of the energy func-
tional [DFG99] :

F(z) =
n

∑
i=1

Z

Vi

ρ(x)|x− zi |
2dx (1)

wherezi ∈ Ω.

Constrained Centroidal Voronoi Tessellation[DGJ02] is
the restriction of CVT to a surface. If a density functionρ(x)
is defined on a surfaceS, we can define theconstrained mass
centroidzc of a regionV ⊆Sas the solution to the following
minimization problem:

min
z∈S

Z

V
ρ(x)|x− z|2dx (2)

A Voronoi Tessellation on a surfaceS is a Constrained Cen-
troidal Voronoi Tessellation (CCVT) if and only if the gen-
eratorszi associated with each Voronoi regionVi are also
the constrained mass centroid ofVi . Several applications of
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CCVT can be found in [DGJ02]. Furthermore, CCVT of sur-
faceS is also the minimizer of an energy functional similar
to the one defined in (1) except nowzi ∈ S [DGJ02]. Note
that althoughx and zi are points of the surfaceS, CCVT
uses the Euclidean distance instead of the geodesic distance.
This minimization property is very important. We will take
a deeper look of it in a later section. Several algorithms for
constructing CVT and CCVT, such as the Lloyd method and
k-means method, are presented in [DFG99,DGJ02].

In this paper, we will show how to construct discrete
CCVT and CVT on a polygonal mesh. Discrete CVT was
thoroughly investigated in [VC04, VCP08]. Here, we will
give a rigorous analysis of constructing CCVT on a polygo-
nal mesh. We choose analyzing discrete CCVT because dis-
crete CVT can be viewed as a special case of discrete CCVT.
In fact, most of the examples presented in this paper are im-
plemented to construct discrete CVT on triangular meshes.
We first present our derivations below, then point out the dif-
ferences from those in [VC04,VCP08].

3. Discrete Constrained Centroidal Voronoi Tessellation
on a Polygonal Mesh

Given a polygonal meshM and a cluster numbern, we will
try to divide the faces ofM into n connected sets of faces
Vi (i = 1,2, . . . ,n) by constructing a CCVT onM. These
clusters{Vi} form a discrete CCVT on the meshM. Al-
though discrete CCVT can be defined for any polygonal
mesh, we will concentrate on triangular meshes in this pa-
per.

In the continuous setting, CCVT is the minimizer of an
energy functional similar to the one defined in (1). For the
discrete version of CCVT on a triangular meshM, the region
Vi is a connected collection of triangles. We can rewrite the
energy functional as

F(z) =
n

∑
i=1

(

∑
Tik∈Vi

Z

Tik

ρ(x)|x− zi |
2dx

)

whereTik ’s are triangles inVi . In this paper, we only consider
the uniform case, i.e.,ρ(x) = 1. Then the energy functional
is

F(z) =
n

∑
i=1

(

∑
Tik∈Vi

Z

Tik

|x− zi |
2dx

)

(3)

In fact, the following equation holds

Z

Tik

|x− zi |
2dx = |xik − zi|

2|Tik|+
|Tik|

12

3

∑
j=1

|x j
ik − xk|

2 (4)

where|Tik| is the area of triangleTik with verticesx j
ik( j =

1,2,3) andxik is the centroid ofTik. The derivation of this
formula is shown in the appendix. Note that the second term
on the right hand side is a constant for each triangle. We will
useσik to denote this term. Substituting the integral in (3)

with (4), we have

F(z) =
n

∑
i=1

(

∑
Tik∈Vi

|xik − zi |
2|Tik|

)

+ ∑
Tik∈M

σik (5)

The last constant item is not essential in subsequent work,
hence, will be omitted forF(z). The constrained mass cen-
troid zi of Vi on a continuous surfaceS is defined as a solu-
tion to the minimization problem defined in (2) with V re-
placed withVi . For discrete CCVT onM, we can use the
same argument as in reformulatingF(z) to rewrite the mini-
mization problem as:

min
z∈M

(

∑
Tik∈Vi

|xik − z|2|Tik|+ ∑
Tik∈Vi

σik

)

The last constant item is not essential in the minimization
process and, hence, will be omitted too. Furthermore, the
above equation without the constant can be simplified as

min
z∈M

(

∑
Tik∈Vi

|xik − z̄i |
2|Tik|+ ∑

Tik∈Vi

| z̄i − z|2|Tik|

)

(6)

where z̄i =
∑Tik∈Vi

|Tik|xik

∑Tik∈Vi
|Tik|

is the mass centroid ofVi .

A proof of (6) can be found in the appendix. Thus the con-
strained mass centroid ofVi is the point onM that is closest
to its mass centroid̄zi . Eqs. (5) and (6) are the counterparts
of (1) and (2) in the discrete case. Before we describe the
algorithm, two important properties have to be highlighted
first.

Property 3.1 Let {(Vi ,zi)} be the current cluster configura-
tion wherezi is the constrained mass centroid ofVi , and for
each triangleTik ∈Vi let xik be its centroid. If|xpk − zq|

2 <

|xpk − zp|
2 for someVq adjacent toVp, then

F ′(z) < F(z)

where

F ′(z) =
n

∑
i=1

(

∑
Tik∈V′

i

|xik − z′ i |
2|Tik|

)

, (7)

z′ i is the constrained mass center ofV′
i and

V′
i =







Vi i 6= p,q
Vp−{Tpk} i = p
Vq∪{Tpk} i = q .

¶

Note that since|xpk − zq|
2 < |xpk − zp|

2, it is clear that

∑
Tp j∈Vp−{Tpk}

|xp j − zp|
2|Tp j|+ ∑

Tq j∈Vq∪{Tpk}

|xq j − zq|
2|Tq j|

< ∑
Tp j∈Vp

|xp j − zp|
2|Tp j |+ ∑

Tq j∈Vq

|xq j − zq|
2|Tq j|.

From the minimization property of the constrained mass
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Figure 2: Illustration of 4 cases in distance comparison. The presence of an arrow indicates direction of the movement after
the comparison. These are cases1, 2, 3 and4 from left to right in that order.

centroidzi , the following inequality holds:

∑
Tt j∈V′

t

|xt j − z′t |
2|Tt j | ≤ ∑

Tt j∈V′
t

|xt j − zt |
2|Tt j | , t = p,q

Combining these two steps,F ′(z) < F(z) follows readily.

Property 3.2 Let {(Vi ,zi)} be the current cluster configura-
tion, and trianglesTpk ∈Vp andTqs∈Vq with centroidsxpk

andxqs, respectively, share a common edge. If|xpk−zp|
2 >

|xpk− zq|
2, |xqs− zq|

2 > |xqs− zp|
2 and|xpk− zp|

2|Tpk|+

|xqs− zp|
2|Tqs| < |xpk− zq|

2|Tpk|+ |xqs− zq|
2|Tqs| then

F ′(z) < F(z)

whereF ′(z) is defined in (7). ¶

This property can easily be proved following an arguement
similar to that of3.1. In fact, reassigning eitherTpk or Tqs

will lower the value of the energy functionalF(z). In a
greedy spirit, we simply choose the smaller one, which is
reflected by the third given inequality. One can not simply
assignTpk to Vq andTqs to Vp because the result could vio-
late the connectivity requirement for clusters.

3.1. Energy minimization

Recall that a discrete CCVT of a triangular meshM is a min-
imizer of the discrete energy functional (5). In the following
we propose an algorithm to iteratively reduce the value of
F(z) until a limit point is reached. The main idea of the
algorithm is to update the clusters by comparing distances
from triangle centroids of a cluster to mass centroids of ad-
jacent clusters. The triangles that have to be considered are
just boundary triangles, i.e., triangles sharing acluster edge.
A mesh edge is called acluster edgeif it is shared by two
triangle faces of different clusters. The distance comparing
procedure is stated below.

Let edgeelr be acluster edgein the current cluster config-
uration{(Vi ,zi)}. elr is shared by trianglesTl andTr , where
Tl ∈ Vp andTr ∈ Vq are in different clusters. Letxl andxr

be the centroids ofTl andTr , respectively. Denote|xl −zp|
2,

|xl −zq|
2, |xr −zp|

2 and|xr −zq|
2 with dl p, dlq, drp anddrq,

respectively. We need to comparedl p with dlq, anddrp with
drq, totally four cases. Figure2 illustrates these 4 cases.

1. dl p ≤ dlq anddrp ≥ drq.
Do nothing. This is exactly what the convergent state
should be.

2. dl p ≤ dlq anddrp < drq .
Move Tr to Vp. According to3.1, this movement lowers
the value of the energy functionalF(z).

3. dl p > dlq anddrp ≥ drq .
Move Tl to Vq. The new value of the energy functional
F(z) will be lower, according to3.1.

4. dl p > dlq anddrp < drq .
One more test is needed to decide which triangle should
be moved.

- If dl p|Tl |+drp|Tr | < dlq|Tl |+drq|Tr |, moveTr toVp.
- Otherwise, moveTl to Vq.

The value of the energy functionalF(z) will be lower
after the movement, according to3.2.

Based on this distance comparison process for a single it
cluster edge, one can derive an algorithm which updates the
mass centroids of the clusters immediately after finishing the
above comparison process for eachcluster edge. This algo-
rithm should work because the energy functional decreases
after the distance comparison process for eachcluster edge.
The problem with this algorithm is, it involves too many
mass centroid updating steps for clusters. Instead, we pro-
pose an algorithm which would update the mass centroids of
the clusters only after we finish distance comparison for all
thecluster edgesin the current cluster configuration. We call
such a schemeconfiguration-wise updating. Correctness of
such an approach is verified below.

Let {(Vi ,zi)} be the current cluster configuration. Before
the distance comparison process starts, two triangle setsV+

i
andV−

i are attached to each clusterVi to record informa-
tion during the distance comparsion process.V+

i records
triangles not belonging toVi initially but are moved toVi

somewhere during the comparison process.V−
i records tri-

angles belonging toVi initially but are moved to other clus-
ters somewhere during the comparison process. Note that if
Tk ∈V+

i then there exists aj such that|xk−zi |
2 < |xk−z j |

2.
And if Tk ∈ V−

i then there exists aj such that|xk − z j |
2 <

|xk − zi |
2. It is clear thatV+

i ∩V−
i = ∅. After the distance

comparison process is done for allcluster edges, the new
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Figure 3: The left figure has 500 clusters. The right figure is a coarsened mesh by CVT.

clusterV′
i can be written as

V′
i = (Vi ∪V+

i )−V−
i

We claim that the new energy functional is smaller, i.e.,
F ′(z) < F(z). This is shown below:

F ′(z) =
n

∑
i=1

(

∑
Tk∈V′

i

|xk− z′ i |
2|Tk|

)

<
n

∑
i=1

(

∑
Tk∈V′

i

|xk− zi |
2|Tk|

)

=
n

∑
i=1

(

∑
Tk∈Vi−V−

i

|xk− zi |
2|Tk|+ ∑

Tk∈V+
i

|xk − zi |
2|Tk|

)

<
n

∑
i=1

(

∑
Tk∈Vi−V−

i

|xk− zi |
2|Tk|+ ∑

Tk∈V−

i

|xk− zi |
2|Tk|

)

= F(z)

wherez′ i is the constrained mass centroid ofV′
i andzi is the

constrained mass centroid ofVi . The first inequality follows
from optimality of the constrained mass centroid, and the
second inequality follows from properties ofV+

i andV−
i .

Thus the new energy functional decreases after the one-time
updating.

The constrained mass centroidzi of the clusterVi is the
closest point fromM to the mass centroid̄zi . z̄i plays an
important role in gettingzi . In the following we derive a re-
cursive formula to update the mass centroidz̄i :

z̄′i =
∑Tj∈V′

i
|Tj |x j

∑Tj∈V′
i
|Tj |

=
∑Tj∈Vi

|Tj |x j +∑Tj∈V+
i
|Tj |x j−∑

Tj∈V−

i
|Tj |x j

∑Tj∈V′
i
|Tj |

=
∑Tj∈Vi

|Tj |

∑Tj∈V′
i
|Tj |

z̄i +
∑Tj∈V+

i
|Tj |−∑

Tj∈V−

i
|Tj |

∑Tj∈V′
i
|Tj |

var( z̄i )

(8)
where

var( z̄i ) =
∑Tj∈V+

i
|Tj |x j −∑Tj∈V−

i
|Tj |x j

∑Tj∈V+
i
|Tj |−∑Tj∈V−

i
|Tj |

is the variation of the mass centroidzi . This is what we will
record during the distance comparison process forcluster
edges.

The above comprehensive analysis induces an efficient
clustering algorithm. With a valid initial cluster configura-
tion, we perform distance comparison for eachcluster edge
and record the centroid variations of adjacent clusters at the
same time. After completing the distance comparison pro-
cess for allcluster edges, we update the mass centroids
of clusters using eq. (8) and update thecluster edgeset.
This process is iterated until thecluster edgeset no longer
changes.

It is obvious that the energy functionalF(z) has a global
minimum on the triangular meshM. As F(z) decreases
strictly after each configuration-wise updating, it is guar-
anteed to converge to a limit point. But the "minimum" it
achieves might not be the global minimum ofF(z). For our
clustering goal, it doesn’t matter much. The limit cluster
configuration always gives a very good clustering ofM.

Remark: Although our results are for discrete CCVT onM,
there are parallel results for discrete CVD onM ⊂ ℜn. Be-

cause the mass centroid̄zi =
∑Tk∈Vi

|Tk|xk

∑Tk∈Vi
|Tk|

of a clusterVi on

a triangular meshM can also be viewed as a solution to the
minimization problem

min
z∈ℜn ∑

Tk∈Vi

|xk − z|2|Tk|

This is true because we have

∑
Tk∈Vi

|xk− z|2|Tk| = ∑
Tk∈Vi

|xk− z̄i |
2|Tk|+ ∑

Tk∈Vi

| z̄i − z|2|Tk|

Thus it is obvious that̄zi is the solution to this minimiza-
tion problem. We present the approximated results by CCVT
and CVT on the bunny model in Figure3. The discrete CVT
method runs much faster than the discrete CCVT method
because the CCVT method needs to find the closest points
in each iteration. Our examples in this paper are mainly the
results from the discrete CVT method.

Approximation of CVT on triangular meshes is also thor-
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oughly discussed in [VC04,VCP08]. Especially, anisotropic
approximation of CVT is also presented in [VCP08]. The
new algorithm is different from those in [VC04, VCP08]
in two folds. First, the new algorithm has a simpler local
geometric operation for cluster boundary test, namely, dis-
tance comparison. The methods in [VC04, VCP08] involve
computation of certain terms of the energy functional, i.e.
Liso,i = |zi |

2 ∑Tk∈Vi
|Tk| − 2zT

i ∑Tk∈Vi
|Tk|xk for each cluster

Vi in [VCP08]. Their algorithm forLiso,i works as follows.
For eachcluster edgewhose adjacent triangles areTi ∈ Vp

and Tj ∈ Vq, their algorithm computesLiso,p + Liso,q for 3
cases: 1)Ti ∈ Vp and Tj ∈ Vq; 2) Ti ∈ Vp and Tj ∈ Vp; 3)
Ti ∈ Vq andTj ∈ Vq. The algorithm does the reassignment
according to the minimumLiso,p +Liso,q of the 3 cases. The
involved computation is less intuitive and lack of geomet-
ric meanings. Second, the new algorithm updates the clus-
ter configuration after comparing all thecluster edges, while
those algorithms in [VC04, VCP08] update the clusters af-
ter comparing eachcluster edge. The experimental differ-
ences will be discussed in Section 6 (Applications). In addi-
tion to the above two differences, the new algorithm is also
applicable to the variational shape approximation problem
in [CSAD04], which will be discussed in the next section.

4. Boundary testing algorithm for clustering with L2,1

metric

A novel metricL2,1 is introduced for geometric partitioning
of a triangular meshM in [CSAD04]. A geometric partition
of M consists of a set of connected collections of triangles
{Ri}

n
i=1 such thatRi ∩Rj = ∅ (i 6= j), ∪n

i=1Ri = M andRi is
connected. For each regionRi , we can define a proxy plane
Pi = (X̄ i , N̄i), whereX̄ i is the average point of the centroids
andN̄i is the average normal of the triangles inRi . Given a
regionRi and its associated proxy planePi , theL2,1 for Ri is
defined as :

L2,1(Ri ,Pi) =

Z Z

x∈Ri

|n(x)− N̄i |
2dx

wheren(x) is the normal ofx ∈ Ri . For triangular mesh, it
can be precisely written as

L2,1(Ri ,Pi) = ∑
Tk∈Ri

|nk−Ni |
2|Tk|

wherenk is the unit normal of triangleTk andNi is the nor-
malized vector of∑Tk∈Ri

nk|Tk|.

Based on theL2,1 metric, an optimal geometric partition
of M and a given partition numbern can be defined as the
minimizer of the distortion error:

E(M,P) =
n

∑
i=1

L2,1(Ri ,Pi)

The advantage of usingL2,1 metric for shape approximation
is thoroughly discussed in [CSAD04], i.e. anisotropy cap-
turing. An algorithm for constructing an optimal geometric
partition is also proposed in [CSAD04]. This algorithm al-
ways produces a good partition ofM, but it is pointed out

in [CSAD04] that it is not guaranteed to converge. Here, we
develop a different algorithm for constructing an optimal ge-
ometric partition which minimizes the distortion error. This
algorithm is based on boundary testing and distance compar-
ison. It is very fast and convergent.

Before proving convergence of the algorithm, we explore
the minimization property ofNi of the proxy plane first. Pre-
cisely,Ni is the solution to the minimization problem:

min
|N|=1

∑
Tk∈Ri

|nk−N|2|Tk|

Note that, similar to eq. (6), we have

∑
Tk∈Ri

|nk−N|2|Tk|= ∑
Tk∈Ri

|nk−N̄i |
2|Tk|+ ∑

Tk∈Ri

|N̄i −N|2|Tk|

whereN̄i =
∑Tk∈Ri

nk|Tk|

∑Tk∈Ri
|Tk|

. And it is obivious that

|Ni − N̄i|
2 = min

|N|=1
|N− N̄i|

2

Thus the minimization property ofNi follows. As far as a ge-
ometric partition is concerned, a region of a geometric par-
tition is nothing but a cluster as we have discussed in the
previous section. Thus boundary edges between different re-
gions are just likecluster edgesbetween different clusters.
We will use the termcluster edgehere too. Then for each
cluster edge, there are also two properties similar to proper-
ties3.1and3.2for discrete CCVT.

Property 4.1 Let {(Ri ,Ni)} be the current geometric par-
tition, and triangleTk ∈ Rp with the unit normalnk. If
|nk−Np|

2 < |nk−Nq|
2 for someRq adjacent toRp, then

E(M,R′) < E(M,R)

whereE(M,R′) = ∑n
i=1

(

∑Tk∈R′
i
|nk − N′

i |
2|Tk|

)

, N′
i is

the normalized vector of̄Ni of R′
i and

R′
i =







Ri i 6= p,q
Rp−{Tk} i = p
Rq∪{Tk} i = q

¶

Property 4.2 Let {(Ri ,Ni)} be the current cluster config-
uration, and trianglesTk ∈ Rp andTs ∈ Rq, with centroids
nk andns, respectively, share an edgeeks. If |nk −Np|

2 >
|nk−Nq|

2, |ns−Nq|
2 > |ns−Np|

2 and

|nk−Np|
2|Tk|+ |ns−Np|

2|Ts|

< |nk−Nq|
2|Tk|+ |ns−Nq|

2|Ts|

then

E(M,R′) < E(M,R)

whereE(M,R′) is the same as that in4.1. ¶

The correctness of4.1 and 4.2 can be easily verified like
3.1and3.2because of the optimality ofNi . Besides, we can
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also update the unit normalNi of the proxy planePi only af-
ter distance comparison for allcluster edges. The validty of
such a configuration-wise updating is again based on the op-
timality of Ni , same as the discrete CCVT. Another parallel
result from discrete CCVT is that theseNi can be computed
recursively.Ni of each proxy plane is of unit length. We can
get it by normalizing the weighted normal̄Ni for each re-
gion. We keep recording thesēNi for regions. Then we can
updateN̄i using a similar formula as8 by introducing the
variation normal ¯var(N)i for each region during the distance
comparison process.

Now we can deduce a convergent iterative algorithm for
computing the optimal geometric partition with respect to
the L2,1 metric. This algorithm is similar to the boundary
testing algorithm for CCVT. Starting with a valid initial ge-
ometric partition ofM, we perform distance comparison for
eachcluster edgeand record the variation normalvar(N̄i)
for each region at the same time. We then update the proxy
unit normalN̄i by var(N̄i) and update the cluster edge sets.
This process iterates until the cluster edge set doesn’t change
any more.

Note that this algorithm converges to a "minimum" of the
distortion errorE(M,R). But it might not be the global min-
imizer of E(M,R). Nevertheless, test results show that this
algorithm always converges to a near-optimal result quickly.
For geometric partitioning, it would not be a problem to get a
near-optimal partition. The theoretical advantage of the new
algorithm is that it is guaranteed to convergent. We will dis-
cuss practical performance of this algorithm in the applica-
tion section.

5. Acceleration Strategies for Implementation

Several strategies can be used to accelerate the clustering
process. We will explore several possibilities here, such as
the ones considered in [VCP08].

5.1. Initialization

Our iterative algorithm always begins with a valid initial
cluster configuration, i.e., the clusters are connected and
non-overlapping. A good initialization can reduce the clus-
tering time significantly. We apply the hierarchy face cluster-
ing idea in [MGH01] to design our cluster initialization. Hi-
erarchy face clustering respects the connected requirement
of clusters strictly. In the following we introduce a different
edge contraction criterion for each distortion metric.

The hierarchy face clustering is to partition the faces of
a triangular mesh into different connected sets of faces. It
builds such a hierarchy structure on the dual graph of the
mesh. The dual graph is constructed by mapping each trian-
gle in the mesh to a vertex in the dual graph, and generating
an edge to connect two vertices if the corresponding trian-
gles in the original mesh are adjacent. Then edge contraction
is applied on the dual graph iteratively. An edge contraction

merges two dual vertices into a single vertex. Figure4 il-
lustrates this concept. This means group two sets of faces
into a single cluster. After each contraction, the dual graph
is updated by replacing the two vertices with one vertex and
associating edges adjacent to these two vertices to the new
vertex. The edge chosen for contraction is based on a cost
function. In [MGH01], the cost function is the planarity cri-
terion. For our algorithm, we define the cost function for an
edgeei j that connects(Vi ,zi , |Vi |) and(Vj ,z j , |Vj |) as:

F(ei j ) =
|zi j − zi |

2|Vi |+ |zi j − z j |
2|Vj |

|Vi |+ |Vj |

where|Vp| = ∑Tk∈Vp
|Tk| (p = i, j), zi andz j are the "mass

centroids" ofVi andVj , respectively, andzi j =
zi |Vi|+z j |Vj |
|Vi|+|Vj |

.

zi depends on our distortion error metric. It is the mass cen-
troid for the CVT constructing case and is the unit normal of
the proxy plane for the optimal geometric partitioning case.
The edge cost functionF(ei j ) is just the energy functional
F(z) when there are only two facesVi andVj .

Given the cluster numbern, we first decide an num-
ber k such that the face numberN f of the mesh satisfies
n2k < N f ≤ n2k+1. Then we carry outk+ 1 levels of edge
contraction on the dual graph. For the initial level, we will
contractN f −n2k edges to reduce the nodes in dual graph to
n2k. For the nextk levels of edge contraction, we will con-
tract half of of edges in current dual graph to reduce half of
the nodes. In the end, we will get exactlyn clusters. It is al-
ways possible to sort the dual edges according to the value
of its cost function. In order to speed the initialization pro-
cess, we only sort the dual edges in the last few levels which
have mush less edges. Our hierarchy initialization generates
exactlyn connected clusters and accelerates the clustering
convergence.

5.2. Accelerators

Our algorithm convergs. Thus only a fewcluster edgesneed
to be modified when the limit point is close. As pointed out
in [VCP08], one highly efficient strategy is to keep tracking
whether a cluster is about to settle down. If it become static,
then we don’t do the distance comparison forcluster edges
adjacent to this cluster any more. Another accelerating strat-
egy is to trace potentialcluster edgeswhile doing distance
comparison for currentcluster edges. Precisely speaking, if
a currentcluster edgeis not modified, it means the two tri-
angles sharing this edge are not reassigned. Then we simply
take itself as a potential edge. If it is modified, then we con-
sider (the five) edges of the two adjacent triangles as poten-
tial edges. This potential edge tracking strategy also acceler-
ates the clustering process.

5.3. Validty of clusters

: As stated before, a valid cluster must be connected, but
our algorithm does not guarantee that the resulting clusters
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Figure 4: Illustration of edge contraction in dual graph (defined by solid edges) [MGH01]. Left: dual graph before edge
contraction; Right: dual graph after edge contraction, where two nodes in shade area are merged into a single node.

are connected. In practice, a cluster might end up consist-
ing of several distinct connected clusters. Once such a situ-
ation happens, we keep the largest non-isolated cluster and
reassign triangles in other clusters that are closest to them.
Another exception is that a cluster may be isolated, which
means it is adjacent to a single cluster only. In such a sit-
uation, we just reassign the triangles to their closest clus-
ters. In our experiments, these exceptions rarely happened
when clustering by discrete CCVT or CVT. But they hap-
pened quite often when clustering byL2,1 metric.

6. Applications

Depending on the clustering criteria, a meshM can either
be uniformly coarsened after the construction of a discrete
CVT or CCVT, or be approximated in an anisotropic fashion
following the construction of an optimal geometric partition
with respect to anL2,1 metric. Uniform mesh coarsening and
anisotropic approximation forL2,1 metric are discussed in
details in [VC04, VCP08] and [CSAD04], respectively. We
will explore both techniques in our applications as well.

6.1. Uniform Mesh Coarsening

Once clustering of a meshM by approximating CVT or
CCVT is done, the following work of geting a coarsened
triangular mesh is relatively simple. The process is like a
Delauney triangulation, with each cluster treated as a logical
vertex. The process is illustrated below.

First, a vertex is created for each cluster. Several tech-
niques can be used here. One approach is, for each cluster,
take the vertex that is closest to its mass centroid [VC04]. A
second choice is to use the Quadric Error Metic to compute
a vertex [VCP08]. The first approach is used here since it
conforms more with the spirit of CCVT on a mesh.

The second step is to triangulate the vertices created in
the above step. Delauney triangulation is used here. Two ver-
tices are connected with an edge in the coarsened mesh if the
corresponding clusters of these vertices are adjacent to each
other. Thus a vertex point that is shared by three clusters
corresponds to a triangle in the coarsened mesh. Degener-
ate cases, however, would arise if a vertex point is shared by

more than 3 clusters. The solution to such degenerate cases
is quite simple. If a vertex point is shared byn (≥ 4) clus-
ters, then there would be ann-side polygon in the coarsened
mesh corresponding to this vertex point. We simply trian-
gulate this polygon to getn−2 triangles. Hence the output
coarsened mesh is always a triangular mesh. Examples are
shown in the next section.

6.2. Anisotropic Shape Approximation

After getting an optimal geometric partition with respect
to theL2,1 error metric, one can use the strategy presented
in [CSAD04] to construct an anisotropic polygonal mesh to
approximate the original mesh.

The first step isanchor vertexcreation. Ananchor vertex
corresponds to a vertex in the original mesh that is shared
by more than 3 clusters. The position of the anchor vertex
is the average of the projections of the corresponding ver-
tex to its shared clusters. The next step isedge extraction.
A vertex corresponding to an anchor vertex is connected to
other such vertices bycluster edgesin the original mesh. We
connect two anchor vertices if their corresponding vertices
are linked withcluster edgesand there are no other such
vertices between them. Because of anisotropic property, an
edge between two anchor vertices may not faithfully capture
the geometry on the original mesh. Therefore, sometime it is
necessary to insert new anchor vertices between two anchor
vertices to get more edges according to some criteria such
as: d · sin(Ni ,N j)/‖(a,b)‖ is less than a threshold, where
‖(a,b)‖ is the distance betweena and b, d is the largest
distance from the vertices on the boundary arc in the orig-
inal mesh to(a,b) and (Ni ,N j) is the angle between the
two adjacent clustersRi andRj . After edge contraction,tri-
angulationis performed. A multi-source Djisktra’s shortest
path algorithm is applied to do the pseudo-Constrained De-
launay Triangulation, which will preserve the edges on the
boundary in the final triangulation. In this algorithm, each
anchor vertex represents a color. This algorithm first col-
ors vertices in the original mesh which are on the boundary
with the color of the closest anchor vertex. Then do color
assignment for interior points in each cluster. Then for each
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Figure 5: Results of uniform coarsening on a statue and a head model. The left most and the second from right figures are
meshes with 800 clusters and 1000 clusters, respectively. The second from left and the right most figures are coarsened results.

Models #F (org) #V (org) #V (approx) time(s) min6 Ave. min6 6 < 30◦ Qmin Qave

hand 72.9k 36.6k 1000 0.102 31.177 49.5895 0 0.580444 0.868164
head 214k 107k 1000 2.11 34.3362 52.1764 0 0.597016 0.903267
bunny 69.4k 34.8k 500 0.095 31.3123 50.321 0 0.581436 0.879907
sphere 131k 65.5k 200 0.388 38.549 53.329 0 0.640395 0.915695
horse 354k 177k 1.5k 6.24637 36.6344 51.6152 0 0.615523 0.897908
statue 272k 136k 800 1.457 32.0611 51.9163 0 0.541623 0.900297

Table 1: Results for uniform mesh coarsening

triangle in the original mesh whose three vertices have dis-
tinct colors, we create a triangle in the approximating mesh
whose edges are connected according to the colors in the re-
ferring triangle. More on postprocessing is discussed in de-
tail in [CSAD04]. To clearly show the anisotropic effect, we
only show polygonal mesh representaions of the examples
used in this paper.

7. Results

The algorithms presented in this paper are implemented on
a laptop computer with 1G memory and Intel Core 2 CPU
T7200 under Windows. Performance data for uniform mesh
coarsening applications are collected in Table 1. Experimen-
tal data for anisotropic shape approximation are gathered in
Table 2. Notice that the new algorithms run very fast. It takes
only a few seconds to get the job done for a mesh with more
than 200k faces.

For the uniform mesh coarsening application, the qual-
ity of the output meshM is measured in several aspects, as
listed in Table 1. ’min6 ’ stands for the minimum angle de-
gree of the triangle faces inM. Similarly, ’Ave. min6 ’ com-
putes the average minimum angle degree. ’6 < 30◦ ’ counts
the number of angles smaller than 30 degrees. ’Qmin’ (min-
imal quality) and ’Qave’ (average quality) measure the tri-
angle shapes. Both terms are defined in [FB97]. The exam-
ples have also been tested using the program provided by the
authors of [VC04,VCP08]. The execution times for models
bunny and hand are 0.328s and 0.266s, respectively, which
are slower than the new algorithm. However, the execution

times on the statue model and the horse model are 0.954s
and 1.547s, respectively, which are better than the new al-
gorithm. But the output meshes of the new algorithms al-
ways have better mesh quality. For instance, for the sphere
model, the data generated by the program of [VC04,VCP08]
are min6 = 37.7732, Ave. min6 = 52.8697, 6 < 30◦ = 0,
Qmin = 0.710607 andQave= 0.9096. Data generated by the
new algorithm are better.

From Table 2, one can see that the new algorithm runs
very fast and gives good approximation results. This shows
that the new algorithm is practical. The new algorithm con-
tracts one face for each cluster. Then the number of clusters
in the clustering result for each mesh is just the ’#F (approx)’
in Table 2, such as 32 clusters for the fandisk model. The
anisotropic nature of theL2,1 error metric is demonstrated in
these examples.

8. Conclusions

In this paper we propose a novel clustering algorithm for
a polygonal meshM by approximating CVT or CCVT on
M. The new clustering algorithm is also suitable for clus-
tering construction with respect to theL2,1 error metric. We
present a rigorous mathematical analysis for the new algo-
rithm. Our algorithm possesses the intrinsic distance com-
parison as the local geometric operation, which is simpler
and more intuitive than those used in [VC04,VCP08]. More-
over, our algorithm updates the cluster configuration only
after comparing allcluster edges. The proposed algorithm
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Models #F (org) #V (org) #F (approx) time(s)
hand 72.9k 36.6k 98 1.542
face 98.4k 49.3k 119 1.084
fandisk 12.9k 6.4k 32 0.032
monster 130k 65k 120 1.8327

Table 2: Results for anisotropic mesh approximation

based on Lloyd method for constructing the optimal geo-
metric partition in [CSAD04] is not guaranteed to converge.
But the new algorithm is proved to converge for constructing
discrete CCVT and CVT onM or clustering withL2,1 met-
ric. Although the new algorithm runs more or less as those
in [VCP08], the coarse mesh produced by the new algorithm
has a better mesh quality. Depending on the clustering cri-
teria, we show examples for both isotropic and anisotropic
mesh approximations. The anisotropic mesh approximation
by using CVT is also investigated in [VCP08]. It seems an
interesting problem to generalize the new algorithm for the
anisotropic case. This will be investigated in the future.

Appendix

Integration over a triangle

Suppose the triangleTk has three verticesx1, x2, x3. Let x ∈
Tk. Then we havex = λ1(x)x1 + λ2(x)x2 + λ3(x)x3, where
λi(x)(i = 1,2,3) are the barycentric coordinates ofx. We
have∑3

i=1 λi(x) = 1. Then
Z

Tk

|x− zi |
2dx =

Z

Tk

|λ1(x)x1 +λ2(x)x2 +λ3(x)x3− zi |
2dx

=
Z

Tk

|λ1(x)(x1− zi)+λ2(x)(x2− zi)

+λ3(x)(x3− zi)|
2dx

=
3

∑
j=1

Z

Tk

λ j (x)2|x j − zi |
2dx

+2
Z

Tk

λ1(x)λ2(x) < x1− zi ,x2− zi > dx

+2
Z

Tk

λ1(x)λ3(x) < x1− zi ,x3− zi > dx

+2
Z

Tk

λ2(x)λ3(x) < x2− zi ,x3− zi > dx

Using the fact that
R

Tk
λi(x)λ j (x)dx = |Tk|/12 (i 6= j) and

R

Tk
λi(x)2dx = |Tk|/6 (i = 1,2,3) (see [Che05]), we have

Z

Tk

|x−zi |
2dx =

|Tk|

6

( 3

∑
j=1

|x j −zi |
2+ ∑

1≤r<s≤3
< xr −zi ,xs−zi >

)

Consequently we have a special case of [LA01] as follow:
Z

Tk

|x− zi |
2dx =

|Tk|

12

( 3

∑
j=1

|x j − xk +xk− zi |
2
)

+
|Tk|

12

( 3

∑
j=1

|x j − zi |
2 + ∑

1≤r<s≤3
2 < xr − zi ,xs− zi >

)

=
|Tk|

12

( 3

∑
j=1

|x j − xk|
2 +3|xk− zi |

2
)

+
9|Tk|

12
|xk − zi|

2

=
|Tk|

12

( 3

∑
j=1

|x j − xk|
2
)

+ |xk− zi |
2|Tk|

wherexk = ∑3
i=1 xi

3 .

Expansion with the mass centroid

Let z̄i =
∑Tk∈Vi

|Tk|xk

∑Tk∈Vi
|Tk|

be the mass centroid ofVi . z̄i satisfies

the following equation

∑
Tk∈Vi

|Tk|(xk − z̄i) = 0

Consequently,

∑
Tk∈Vi

|xk − z|2|Tk| = ∑
Tk∈Vi

|xk − z̄i + z̄i − z|2|Tk|

= ∑
Tk∈Vi

(

|xk− z̄i |
2 +2 < xk− z̄i, z̄i − z >

+| z̄i − z|2
)

|Tk|

= 2 < ∑
Tk∈Vi

|Tk|(xk− z̄i), z̄i − z >

+ ∑
Tk∈Vi

|xk− z̄i |
2|Tk|+ ∑

Tk∈Vi

| z̄i − z|2|Tk|

= ∑
Tk∈Vi

|xk − z̄i |
2|Tk|+ ∑

Tk∈Vi

| z̄i − z|2|Tk|

Figure 6: Clustering and coarsening results for a sphere
model. Left: a sphere with 200 clusters. Right: coarsened
mesh.
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