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Abstract

An elegant and efficient mesh clustering algorithm is pregbriThe faces of a polygonal mesh are divided into
different clusters for mesh coarsening purpose by appratiitg the Centroidal VVoronoi Tessellation of the mesh.
The mesh coarsening process after clustering can be done iso#ropic or anisotropic fashion. The presented
algorithm improves previous techniques in local geomeiperations and parallel updates. The new algorithm is
very simple but is guaranteed to converge, and comes owrtagiproximating meshes with the same computation
cost. Moreover, the new algorithm is suitable for the vadaal shape approximation problem witfL distortion
error metric and the convergence is guaranteed. Examplemdstrating efficiency of the new algorithm are also
included in the paper.

Categories and Subject Descript@ascording to ACM CCS) 1.3.3 [Computer Graphics]: Mesh Clustering, Cen-
troidal Voronoi Tessellation, Shape Approximation

1. Introduction nigue, also designed for mesh coarsening, falls into this ca

. . egory.
3D mesh models are used in many important areas such as
geometric modeling, computer animation, and CAD. With There are quite a few papers discussing mesh approx-
the availability of powerful laser scanners, large and dens imation based on explicitly constructing clusters. Cluste
meshes are easily acquired from physical world. However, ing by approximating the Centroidal Voronoi Tessellation
since the full complexity of such models is not always re- (CVT) [DFG99 on triangular meshes is first discussed in
quired, coarsening a dense mesh, i.e., replacing the atigin [VCO04]. After constructing the clusters, the mesh is uni-
mesh with a simpler but close enough mesh, is a necessaryformly coarsened based on the clusters. Adaptive coargenin
pre-processing step in many applications. Many mesh of a mesh based on clustering from Centroidal Voronoi Tes-
coarsening techniques have been presented, including thesellation is presented i'VKCO05]. An extension from uni-
global optimization methodHDD*93,LT00] and remeshing form mesh coarseningv[C04] to anisotropic mesh coars-
for mesh coarseningrira2 LSS 98, KVLS99, GVSS0Q. ening is discussed inV[CP0§. A theoretical framework
of variational shape approximation based on optimal mesh
clustering with respect to some distortion error metric is
presented inCSADO4. Especially, optimal clustering us-
ing L%1 metric faithfully captures the anisotropic nature
of the mesh. A hierarchy face clustering technique is de-
veloped in MGHO1]. Many applications such as collision
detection, surface simplification and multiresolutioniosel
ity benefit from this hierarchy clustering technique. Clus-
tering faces in a set of characteristic regions to build a
higher-level description of mesh geometry is explored in
[KT96, She01LPRMO02 GSO01. Accelerating general iter-
ative clustering algorithms for meshes on GPU is discussed
in [JDHO4.

Mesh clustering is to partition the faces or vertices of the
mesh into different regions. Generally, these regions@&re r
quired to be nonoverlapping and connected. One major ap-
plication of the clustering technique is for mesh coarsgnin
Such a method builds the approximating mesh based on the
clustering of the dense mesh. In mesh coarsening, clugterin
may not be explicitly required in a greedy clustering tech-
nigue, like mesh decimation. A decimation method creates
implicit partitionings of the mesh through greedy and repea
edly collapsing mesh faces or vertic€&H98 Hop96 LT98].

The resulting mesh is always sub-optim@gAD04. The
other clustering method for mesh coarsening is to construct
the mesh clusters explicitly. The new mesh clustering tech-  This paper is inspired by the work presented WCP4,
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Figure 1: Clustering and approximation results on a hand model: thHerwost figure shows the 500 clusters generated by
approximating CVT on the mesh; the second from left figuredauniformly coarsened mesh; the third from left figure has 98
clusters in different colors while using’-*E metric for clustering; the right-most figure is the approziting polygonal mesh.

VCP08 CSADO04. The goal here is to build a clustering by
approximating constrained Centroidal Voronoi Tesselfati
[DGJOT or Centroidal Voronoi TessellatioDFG99 on a
polygonal mesh. Starting with an initial partitioning ofeth
mesh, the new algorithm iteratively tests the boundary dge
between different clusters to update the cluster configura-
tion until the boundary edges do not change any more. This
boundary test algorithm is also discussedvep4,VCPO0§.

But we derive a simpler algorithm by presenting a more rig-
orous mathematical analysis. The new algorithm is inteitiv

2. Centroidal Voronoi Tessellation

Voronoi diagramsor Voronoi tessellatiorare essential struc-

tures in computational geometry and have been used in many

important applications@BS93. Given a domainQ in 3"
and a set of point$zi}=‘:1, the correspondinyoronoi dia-
gram{V; }K, is a partition ofQ such that:

(LViNV; =0 andUk Vi = Q, and
@Vi={xeQ||x—z|<|x—z|forj=12.kj#i}

in that it only needs to compare the distances from one face {Zi}g(:l are called thegenerators and {V; }!‘:l the Voronoi

centroid to centroids of adjacent clusters. The new allgorit

is also extended for optimal geometric partitioning with re
spect toL?>! in [CSADO4. The exciting result is that the
new algorithm is guaranteed to converge while the algorithm
based on Lloyd inCSADO04 is not. In summary, the contri-
butions of this paper include:

1. a simpler algorithm which only needs to compare dis-
tances is derived for constructing clustering on a polyg-
onal mesh by approximating Constrained Centroidal
Voronoi Diagram or Centroidal Voronoi Diagram;

2. the new algorithm updates clustering configurationg afte
comparing all boundary edges, not after comparing each

boundary edge. This updating scheme improves the qual-

ity of the output coarse mesh.
. the new algorithm for clustering witt?* metric is guar-

regions

Centroidal Voronoi TessellatiofCVT) is an extension of
Voronoi Tessellation by requiring that the generators &e a
the mass centroids of the Voronoi regions. Given a density
functionp(x) onV, the mass centroid” of V is defined as

- _ hox)ox
v pxdx

Specifically, CVT ofQ is a minimizer of the energy func-
tional [DFG99 :

Haaiémmwifm

wherez; € Q.

)

anteed to converge. Sharing the same advantages of the Constrained Centroidal Voronoi TessellatippGJ03 is

clustering with Centroidal Voronoi Tessellation methods,
the new algorithm is fast.

The remaining part of the paper is organized as follows:

Section 2 gives some basics on Centroidal Voronoi Tessel-
lation and its extension; Section 3 presents an analysis and

the new clustering algorithm; Section 4 discusses the bound
ary test algorithm for clustering with®! metric; Section 5

proposes some strageties to make |mplementat|on more ef-troidal Voronoi Tessellation (CCVT)

ficient; Section 6 gives applications of the new algorithm;
test results are shown in Section 7; the conclusion is given i
Section 8.

the restriction of CVT to a surface. If a density functipfx)
is defined on a surfacg we can define theonstrained mass
centroidz® of a regionV C Sas the solution to the following
minimization problem:

: 2
rzrgg/vp(X)lx Z|°dx

)

A Voronoi Tessellation on a surfa&is a Constrained Cen-
if and only if the gen-
eratorsz; associated with each Voronoi regidh are also

the constrained mass centroid\6f Several applications of

(© 2009 The Author(s)
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CCVT can be found inPGJ0J. Furthermore, CCVT of sur- with (4), we have

faceS is also the minimizer of an energy functional similar N

to the one defined inlj except nowz; € S[DGJ0Z. Note F(z) = Z( |XikZi|2|Tik|) +S ok ()
that althoughx and z; are points of the surfac§, CCVT i TV TZm

uses the Euclidean distance instead of the geodesic distanc
This minimization property is very important. We will take
a deeper look of it in a later section. Several algorithms for
constructing CVT and CCVT, such as the Lloyd method and
k-means method, are presentedG99 DGJO0J.

The last constant item is not essential in subsequent work,
hence, will be omitted foF (z). The constrained mass cen-
troid z; of V; on a continuous surfacis defined as a solu-
tion to the minimization problem defined i2)(with V re-
placed withV;. For discrete CCVT oM, we can use the

In this paper, we will show how to construct discrete same argument as in reformulatifgz) to rewrite the mini-
CCVT and CVT on a polygonal mesh. Discrete CVT was mization problem as:
thoroughly investigated in\[C04, VCP0§. Here, we will
give a rigorous analysis of co_nstru_cting CCVTona polygo? min ( IXik — Z|2|Tik| + zv Gik)
nal mesh. We choose analyzing discrete CCVT because dis- ZeM \ t2v eV
crete CVT can be viewed as a special case of discrete CCVT.
In fact, most of the examples presented in this paper are im-
plemented to construct discrete CVT on triangular meshes.
We first present our derivations below, then point out the dif
ferences from those inv/fC04, VCPO0§.

The last constant item is not essential in the minimization
process and, hence, will be omitted too. Furthermore, the
above equation without the constant can be simplified as

. =2 - 2

min ( [Xik — 2| Ti| + |2—2] |Tik|> (6)
Ti i Ti i

3. Discrete Constrained Centroidal Voronoi Tessellation ke ke

on a Polygonal Mesh Yricey |Tiw [

oy [T
Given a polygonal meskl and a cluster number, we will Freu [ . )
try to divide the faces oM into n connected sets of faces A.proof of () can b,e foupd in the fippendlx. Thus the con-
Vi (i = 1,2....,n) by constructing a CCVT oM. These strglned mass cen_trmdkifls the point orM that is closest
clusters{Vi} form a discrete CCVT on the mesil. Al- to its mass ce_ntrod. !Eqs. 6) and @) are the counterparts
though discrete CCVT can be defined for any polygonal of (1) and @) in the discrete case. Before we describe the

mesh, we will concentrate on triangular meshes in this pa- :Irg;)rithm, two important properties have to be highlighted
per. :

where'z = is the mass centroid &f.

Property 3.1 Let {(Vi,z)} be the current cluster configura-
tion wherez; is the constrained mass centroidpf and for
each triangIeTk €V letxi be its centroid. lxpk —zg|* <

In the continuous setting, CCVT is the minimizer of an
energy functional similar to the one defined it).(For the
discrete version of CCVT on a triangular medhthe region
Vi is a connected collection of triangles. We can rewrite the [Xpk — zp|? for someVg adjacent to/p, then
energy functional as

F'(2) < F(2)
n
F(2) = p(X)|x — zi|?dx where
i; (T,kz\/ Tik I n
TiN . /12T
whereT;, s are triangles iV;. In this paper, we only consider Fi(2) = iZ (T ZV, ik = Zil |T'k|) ’ ™
the uniform case, i.ep(x) = 1. Then the energy functional WEW
is Z'i is the constrained mass centeMsfand
Vi i#pq
F(z) / X — z;|“dx ?3) ! . '
@ (Tk€| |k| 0 > W=1¢ Vp—{Ta} i=p q
VqUA{Tpk i=q.
In fact, the following equation holds 4V {Toic a
B |T|k 3 , ) by
|X zif%dx = [xi — zi[?|Tie| + %' z 2 (4 Note that sincéxpx — zq|° < |Xpk — zp|°, it is clear that

2 2
Xpj = 2zpl“[Tpjl+ Y IXqj—2a|"[Tqjl

where|Ty| is the area of triangld; with vertlcesx W= T Ve~ {Tu} T EVAO{ T}
1,2,3) andx is the centroid ofTy. The derlvatlon of this P P
formula is shown in the appendix. Note that the second term < Z\/ Xpj — Zp|*[Tpj| + z\/ Xqj — Zq|"[Tajl-

on the right hand side is a constant for each triangle. We will
useaik to denote this term. Substituting the integral 8) ( From the minimization property of the constrained mass

(© 2009 The Author(s)
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Figure 2: lllustration of 4 cases in distance comparison. The presasfcan arrow indicates direction of the movement after
the comparison. These are cade®, 3 and4 from left to right in that order.

centroidz;, the following inequality holds:

2 2
2‘/ Xtj — 2't] [ Tyj| < 2‘/ IXtj— 2T, t=pq
T EV T EVY

Combining these two stepB! (z) < F(z) follows readily.

Property 3.2 Let {(Vi,z)} be the current cluster configura-
tion, and triangledk € Vp andTgs € Vg with centroidsxpk
andxgs, respectively, share a common edgex}i — zp|2 >
Xpk — 2a|?, Xas— Zal* > [Xqs — Zp|? and |Xpk — Zp|?|Tpk| +
IXgs — Zp|?[Tas| < |Xpk — Za|*| Tpk| + [Xqs — zq|?[Tas| then

F'(2) <F(2)
whereF’(z) is defined in7).

This property can easily be proved following an arguement

similar to that of3.1 In fact, reassigning eithéF,y or Tgs
will lower the value of the energy function&(z). In a

greedy spirit, we simply choose the smaller one, which is
reflected by the third given inequality. One can not simply

assignTp to Vg and Tgs to Vp because the result could vio-
late the connectivity requirement for clusters.

3.1. Energy minimization

Recall that a discrete CCVT of a triangular médlis a min-
imizer of the discrete energy function&l)(In the following

we propose an algorithm to iteratively reduce the value of

F(2) until a limit point is reached. The main idea of the

algorithm is to update the clusters by comparing distances
from triangle centroids of a cluster to mass centroids of ad-
jacent clusters. The triangles that have to be considered ar

just boundary triangles, i.e., triangles sharinguster edge
A mesh edge is called duster edgef it is shared by two
triangle faces of different clusters. The distance conmgari
procedure is stated below.

Let edgeq, be acluster edgen the current cluster config-
uration{(Vi,z)}. a is shared by triangle§ andT;, where
T € Vp and Ty € Vq are in different clusters. Leq andxy
be the centroids of; andT, respectively. Denotg — Zp|2,
x| —2q|?, [%r —2zp|? and|xr — zq|? with dip, dig, drp anddrg,
respectively. We need to compatig with dig, anddrp with
drq, totally four cases. Figur2illustrates these 4 cases.

1. d|p < d|q anddrp > drq.
Do nothing. This is exactly what the convergent state
should be.

2. d|p < d|q anddrp < drq .
Move Ty to Vp. According t03.1, this movement lowers
the value of the energy functionBlz).

3. dip > dig anddrp > drq .
Move T to Vy. The new value of the energy functional
F(z) will be lower, according t@.1

4, d|p > d|q anddrp < drq .
One more test is needed to decide which triangle should
be moved.

- If d|p|T| | +drp|Tr| < d|q|T| | +drq|Tr|, moveT; tOVp.
- Otherwise, movd] to Vg.

The value of the energy function&(z) will be lower
after the movement, according 302

Based on this distance comparison process for a single it
cluster edge, one can derive an algorithm which updates the
mass centroids of the clusters immediately after finishieg t
above comparison process for eathster edgeThis algo-
rithm should work because the energy functional decreases
after the distance comparison process for edabter edge
The problem with this algorithm is, it involves too many
mass centroid updating steps for clusters. Instead, we pro-
pose an algorithm which would update the mass centroids of
the clusters only after we finish distance comparison for all
thecluster edge# the current cluster configuration. We call
such a schemeonfiguration-wise updatingCorrectness of
such an approach is verified below.

Let {(Vi,z)} be the current cluster configuration. Before
the distance comparison process starts, two trianglé/s*em
andV,” are attached to each clustérto record informa-
tion during the distance comparsion proceeﬁé. records
triangles not belonging t¥; initially but are moved tov;
somewhere during the comparison proc&s.records tri-
angles belonging tW; initially but are moved to other clus-
ters somewhere during the comparison process. Note that if
Tk € V;" then there exists asuch thatxy —zi|? < [xc —z;|*.
And if Tg € V.~ then there exists @asuch thatxy — zj|? <
i — zi|%. It is clear thatv," NV,~ = (. After the distance
comparison process is done for aluster edgesthe new

(© 2009 The Author(s)
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Figure 3: The left figure has 500 clusters. The right figure is a coardenesh by CVT.

clusterVi’ can be written as is the variation of the mass centraid This is what we will
V= (V u\/-*) Ve record during the distance comparison processcfoster
PR ' edges

We claim that the new energy functional is smaller, i.e.,

L The above comprehensive analysis induces an efficient
F'(z) < F(2). This is shown below: v P V ysis Incu 'c!

clustering algorithm. With a valid initial cluster configur

, n o tion, we perform distance comparison for eathster edge
F2) = 21 > D=zl and record the centroid variations of adjacent clusterseat t
=LATEY same time. After completing the distance comparison pro-

of clusters using eq.8] and update theluster edgeset.
This process is iterated until thduster edgeset no longer

) changes.

It is obvious that the energy functionBlz) has a global
. minimum on the triangular mesM. As F(z) decreases
2 2 strictly after each configuration-wise updating, it is guar
< S —zP+ Y -zl Y grira onwse peening. L 1s 91
i& _ _ anteed to converge to a limit point. But the "minimum” it
TeVi—V, eV, . . -
achieves might not be the global minimumFefz). For our
F(2) clustering goal, it doesn’t matter much. The limit cluster
whereZ'; is the constrained mass centroid¥§fandz; is the configuration always gives a very good clusterindvbf

constrained mass centroid 4 The first inequality follows Remark: Although our results are for discrete CCVT bh

from optimality of the constrained mass centroid, and the there are parallel results for discrete CVD ihc R". Be-

second inequality follows from properties \z!if+ andV,". Sreev [Tl

Thus the new energy functional decreases after the one-time Sy [Tl

updating. a triangular mesiM can also be viewed as a solution to the
minimization problem

) cess for allcluster edgeswe update the mass centroids

n
2
< Z( > xe—zil [Tl
=1 \ eV
A 2 2
= Z > =zl M+ Y xie—zl [T
i=

TEVi—V,~ Tev”

cause the mass centrogl= of a clusterV; on

The constrained mass centraidof the clusten is the

; - ; 2
closest point fromM to the mass centroi. z plays an ng}?n 2\/ Xk — 2|7 Tkl
important role in getting;. In the following we derive a re- TEV
cursive formula to update the mass centrgid This is true because we have
X 2 =2 - 2
_ZI _ Trjew [Tilxi Z/ Xk —2|°|Tk| = Z/ Xk — 2|7 T| + |7 —z|°|Tk|
szevi/ [Tl TkEV: TkEV: TkEV:

v | Ti|X+ Ti|xj— — |Ti|x o . — . . .
ey TilXi+ 3 ey ITilX; 21ey ITi i Thus it is obvious tha® is the solution to this minimiza-

Zrey [Tl tion problem. We present the approximated results by CCVT

_ ZyevlTl 3 Zrjeyt Tl =2y ey ‘Tj‘var(i) and CVT on the bunny model in Figuge The discrete CVT
o Iney [Tl Zrev; ITil method runs much faster than the discrete CCVT method
®) because the CCVT method needs to find the closest points
where in each iteration. Our examples in this paper are mainly the
_ Irevr ITilxj— Stev- ITj|x] results from the discrete CVT method.
var(3) 2Tevt ITj| — ZTJ. evi™ ITijl Approximation of CVT on triangular meshes is also thor-

(© 2009 The Author(s)
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oughly discussed iMC04, VCPO0§. Especially, anisotropic
approximation of CVT is also presented MQP0§. The
new algorithm is different from those ivV{C04, VCP0g

in two folds. First, the new algorithm has a simpler local
geometric operation for cluster boundary test, namely, dis
tance comparison. The methods WJo04, VCP0§ involve
computation of certain terms of the energy functional, i.e.
Lisoi = |zi|* Y r.ev [Tkl — 227 S1.ev |TklXk for each cluster

Vj in [VCPO0g. Their algorithm forLisoj works as follows.
For eachcluster edgewhose adjacent triangles afee Vp
andT; € Vg, their algorithm computesiso p + Liso,q for 3
cases: 1)l € Vp andTj; € Vg; 2) Ty € Vp and Tj € Vp; 3)

Ti € Vg andTj € V. The algorithm does the reassignment
according to the minimurhjse p + Lisoq Of the 3 cases. The
involved computation is less intuitive and lack of geomet-
ric meanings. Second, the new algorithm updates the clus-
ter configuration after comparing all ticuster edgeswhile
those algorithms in\JC04, VCP0§ update the clusters af-
ter comparing eackluster edge The experimental differ-
ences will be discussed in Section 6 (Applications). In addi
tion to the above two differences, the new algorithm is also
applicable to the variational shape approximation problem
in [CSADO04, which will be discussed in the next section.

4. Boundary testing algorithm for clustering with L%*

metric

A novel metricL?? is introduced for geometric partitioning
of a triangular mesiv in [CSADO04. A geometric partition

of M consists of a set of connected collections of triangles
{Ri}L1suchthaRNR; =0 (i # j), UL R =M andR is
connected. For each regiét, we can define a proxy plane
P = (Xi,Nj), whereX; is the average point of the centroids
andN; is the average normal of the trianglesRn Given a
regionR; and its associated proxy plaRe theL?! for R is
defined as :

21m _ N2
LAR.R) = [ [ 0o~ NiPax

wheren(x) is the normal ofx € R;. For triangular mesh, it
can be precisely written as
21 2
L™ (R,R) = 5 Imc—Nif [T
TkER
whereny is the unit normal of triangl@, andN; is the nor-
malized vector ofy 1, cg N Tk|-

Based on the.>* metric, an optimal geometric partition
of M and a given partition number can be defined as the
minimizer of the distortion error:

E(M,P) = _iszl(Ri, R)

The advantage of usirtgzv1 metric for shape approximation
is thoroughly discussed iIrC[SADO04, i.e. anisotropy cap-
turing. An algorithm for constructing an optimal geometric
partition is also proposed irCSAD04. This algorithm al-
ways produces a good partition bf, but it is pointed out

in [CSADO04 that it is not guaranteed to converge. Here, we
develop a different algorithm for constructing an optimed g
ometric partition which minimizes the distortion error.igh
algorithm is based on boundary testing and distance compar-
ison. It is very fast and convergent.

Before proving convergence of the algorithm, we explore
the minimization property df; of the proxy plane first. Pre-
cisely,N; is the solution to the minimization problem:

min Y [ng—NJ?[Ty]
INJ=11.%%

Note that, similar to eq.6), we have

Ik —N|?|Ti| = 2R|nkfﬁi|2m|+ 2R|NifN|2|Tk|
TER TcER

Y7 er Mk[Tk]
Sricer [Tkl

TER

whereN; = . And it is obivious that

IN; — Ni|? = min [N —N;|?

IN|=1

Thus the minimization property of; follows. As far as a ge-
ometric partition is concerned, a region of a geometric par-
tition is nothing but a cluster as we have discussed in the
previous section. Thus boundary edges between different re
gions are just likecluster edgedbetween different clusters.
We will use the terntluster edgenere too. Then for each
cluster edgethere are also two properties similar to proper-
ties3.1and3.2for discrete CCVT.

Property 4.1 Let {(R;,N;)} be the current geometric par-
tition, and triangleT, € Rp with the unit normalny. If
Ink — Np|? < |nk — Ng|? for someRq adjacent tRp, then

E(M,R) <E(M,R)

whereE(M,R) = 313 | Yrer Ik — N/i|2|Tk|> . N’ is

the normalized vector df; of R/ and

R i #p,q
R={ Ro—{T} i=p q
ReU{Tk} i=g¢g

Property 4.2 Let {(R,N;)} be the current cluster config-
uration, and triangleSy € Rp and Ts € Rq, with centroids
nk andns, respectively, share an edggs. If |nk — Np|2 >
Ink — Ngl?, [ns — Ng|? > |ns— Np|2 and
Nk — Npl?[Ty| +2|n5* Np?|Ts| i
< Ing — Ng|“[Ti| 4 [ns — Ng| “|Ts|

then

E(M,R) <E(M,R)

whereE(M,R) is the same as that hl

The correctness of.1 and 4.2 can be easily verified like
3.1and3.2because of the optimality &f;. Besides, we can

(© 2009 The Author(s)
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also update the unit normbl; of the proxy plané> only af-
ter distance comparison for aluster edgesThe validty of

merges two dual vertices into a single vertex. Figding
lustrates this concept. This means group two sets of faces

such a configuration-wise updating is again based on the op- into a single cluster. After each contraction, the dual grap

timality of N;, same as the discrete CCVT. Another parallel
result from discrete CCVT is that theBk can be computed
recursively.N; of each proxy plane is of unit length. We can
get it by normalizing the weighted normbl; for each re-
gion. We keep recording the$ for regions. Then we can
updateN; using a similar formula a8 by introducing the
variation normakar (N); for each region during the distance
comparison process.

Now we can deduce a convergent iterative algorithm for
computing the optimal geometric partition with respect to
the L>1 metric. This algorithm is similar to the boundary
testing algorithm for CCVT. Starting with a valid initial ge
ometric partition oM, we perform distance comparison for
eachcluster edgeand record the variation normaér(N;)

is updated by replacing the two vertices with one vertex and
associating edges adjacent to these two vertices to the new
vertex. The edge chosen for contraction is based on a cost
function. In MGHO1], the cost function is the planarity cri-
terion. For our algorithm, we define the cost function for an
edgeg; that connectgV, z;, |Vi|) and(Vj, zj,|Vj|) as:

2 2
_zj =z M|+ |zij — zj |7V

F(aj) =
. Vil + Vil
whereVp| = Sqev, [Tkl (P=1,]), zi andz; are the "mass
i AR/ : ; Mz |V
centroids” ofv; andVj, respectively, and;; = W

z; depends on our distortion error metric. It is the mass cen-
troid for the CVT constructing case and is the unit normal of
the proxy plane for the optimal geometric partitioning case

for each region at the same time. We then update the proxy The edge cost functioR (g;) is just the energy functional

unit normalN; by var(N;) and update the cluster edge sets.
This process iterates until the cluster edge set doesmnigeha
any more.

Note that this algorithm converges to a "minimum" of the
distortion errofE (M, R). But it might not be the global min-
imizer of E(M, R). Nevertheless, test results show that this
algorithm always converges to a near-optimal result qyickl
For geometric partitioning, it would not be a problem to get a
near-optimal partition. The theoretical advantage of tiw n
algorithm is that it is guaranteed to convergent. We wilt dis
cuss practical performance of this algorithm in the applica
tion section.

5. Acceleration Strategies for Implementation

F(z) when there are only two fac&s andV;.

Given the cluster numben, we first decide an num-
ber k such that the face numbéif of the mesh satisfies
n2¢ < Nf < n2*1, Then we carry ouk+ 1 levels of edge
contraction on the dual graph. For the initial level, we will
contractN f —n2¥ edges to reduce the nodes in dual graph to
n2¥. For the nexk levels of edge contraction, we will con-
tract half of of edges in current dual graph to reduce half of
the nodes. In the end, we will get exactiylusters. It is al-
ways possible to sort the dual edges according to the value
of its cost function. In order to speed the initializatioropr
cess, we only sort the dual edges in the last few levels which
have mush less edges. Our hierarchy initialization geasrat
exactlyn connected clusters and accelerates the clustering

Several strategies can be used to accelerate the clusteringtonvergence.

process. We will explore several possibilities here, such a
the ones considered iWCPO0g.

5.1. Initialization

Our iterative algorithm always begins with a valid initial
cluster configuration, i.e.,
non-overlapping. A good initialization can reduce the €lus
tering time significantly. We apply the hierarchy face chust
ing idea in MGHO1] to design our cluster initialization. Hi-

erarchy face clustering respects the connected requitemen

of clusters strictly. In the following we introduce a diféant
edge contraction criterion for each distortion metric.

The hierarchy face clustering is to partition the faces of

5.2. Accelerators

Our algorithm convergs. Thus only a feluster edgeseed
to be modified when the limit point is close. As pointed out
in [VCPOg, one highly efficient strategy is to keep tracking

the clusters are connected and whether a cluster is about to settle down. If it become static

then we don't do the distance comparison ¢brster edges
adjacent to this cluster any more. Another acceleratirag-str
egy is to trace potentialuster edgesvhile doing distance
comparison for currentluster edgesPrecisely speaking, if

a currentcluster edgds not modified, it means the two tri-
angles sharing this edge are not reassigned. Then we simply
take itself as a potential edge. If it is modified, then we con-
sider (the five) edges of the two adjacent triangles as poten-

a triangular mesh into different connected sets of faces. It tial edges. This potential edge tracking strategy alsolacce
builds such a hierarchy structure on the dual graph of the ates the clustering process.

mesh. The dual graph is constructed by mapping each trian-
gle in the mesh to a vertex in the dual graph, and generating
an edge to connect two vertices if the corresponding trian-
gles in the original mesh are adjacent. Then edge contractio : As stated before, a valid cluster must be connected, but
is applied on the dual graph iteratively. An edge contractio our algorithm does not guarantee that the resulting clsister

5.3. Validty of clusters

(© 2009 The Author(s)
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Figure 4: lllustration of edge contraction in dual graph (defined byidedges) MGHO1]. Left: dual graph before edge
contraction; Right: dual graph after edge contraction, whéwvo nodes in shade area are merged into a single node.

are connected. In practice, a cluster might end up consist- more than 3 clusters. The solution to such degenerate cases
ing of several distinct connected clusters. Once such a situ is quite simple. If a vertex point is shared hy(> 4) clus-

ation happens, we keep the largest non-isolated cluster andters, then there would be arside polygon in the coarsened
reassign triangles in other clusters that are closest to.the mesh corresponding to this vertex point. We simply trian-
Another exception is that a cluster may be isolated, which gulate this polygon to get— 2 triangles. Hence the output
means it is adjacent to a single cluster only. In such a sit- coarsened mesh is always a triangular mesh. Examples are
uation, we just reassign the triangles to their closest-clus shown in the next section.

ters. In our experiments, these exceptions rarely happened

when clustering by discrete CCVT or CVT. But they hap-

pened quite often when clustering b§* metric. 6.2. Anisotropic Shape Approximation

After getting an optimal geometric partition with respect
to the L>! error metric, one can use the strategy presented
Depending on the clustering criteria, a medhcan either in [CSADO04 to construct an anisotropic polygonal mesh to
be uniformly coarsened after the construction of a discrete approximate the original mesh.

CVT or CCVT, or be approximated in an anisotropic fashion

following the construction of an optimal geometric paditi ' - .
with respect to ah2! metric. Uniform mesh coarsening and corresponds to a vertex in the original mesh that is shared

anisotropic approximation fae2! metric are discussed in py more than 3 clusters. .The. position of the ancholr vertex
details in MC04, VCPOg and [CSADO4, respectively. We is the average of the projections of the corresponding ver-

will explore both techniques in our applications as well. tex to its shared clusters. The next stedtge extraction
A vertex corresponding to an anchor vertex is connected to

) ) other such vertices bgluster edge the original mesh. We

6.1. Uniform Mesh Coarsening connect two anchor vertices if their corresponding vestice
Once clustering of a mesh by approximating CVT or are linked withcluster edgesand there are no other such
CCVT is done, the following work of geting a coarsened Vertices between them. Because of anisotropic property, an
triangular mesh is relatively simple. The process is like a €dge between two anchor vertices may not faithfully capture
Delauney triangulation, with each cluster treated as a#dgi  the geometry on the original mesh. Therefore, sometime it is
vertex. The process is illustrated below. necessary to insert new anchor vertices between two anchor
vertices to get more edges according to some criteria such
as:d-sin(Nj,Nj)/[/(a,b)|| is less than a threshold, where
I(a,b)]|| is the distance betweem andb, d is the largest
distance from the vertices on the boundary arc in the orig-
inal mesh to(a,b) and (Nj,Nj) is the angle between the
two adjacent cluster® andR;. After edge contractiortyi-
angulationis performed. A multi-source Djisktra’s shortest

The second step is to triangulate the vertices created in path algorithm is applied to do the pseudo-Constrained De-
the above step. Delauney triangulation is used here. Two ver launay Triangulation, which will preserve the edges on the
tices are connected with an edge in the coarsened mesh if theboundary in the final triangulation. In this algorithm, each
corresponding clusters of these vertices are adjacentto ea anchor vertex represents a color. This algorithm first col-
other. Thus a vertex point that is shared by three clusters ors vertices in the original mesh which are on the boundary
corresponds to a triangle in the coarsened mesh. Degener-with the color of the closest anchor vertex. Then do color
ate cases, however, would arise if a vertex point is shared by assignment for interior points in each cluster. Then foheac

6. Applications

The first step inchor vertexcreation. Ananchor vertex

First, a vertex is created for each cluster. Several tech-
nigues can be used here. One approach is, for each cluster
take the vertex that is closest to its mass centrgid@4]. A
second choice is to use the Quadric Error Metic to compute
a vertex VCP0§. The first approach is used here since it
conforms more with the spirit of CCVT on a mesh.
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Figure 5: Results of uniform coarsening on a statue and a head modelléfhmost and the second from right figures are
meshes with 800 clusters and 1000 clusters, respectiviedys@cond from left and the right most figures are coarseradtee

Models #F (org) #V (org) #V (approx) time(s) min  Ave.min/ /< 30° Qmin Qave

hand 72.9k 36.6k 1000 0.102 31.177 49.5895 0 0.580444 063681
head 214k 107k 1000 2.11 34.3362 52.1764 0 0.597016 0.908267
bunny 69.4k  34.8k 500 0.095  31.3123 50.321 0 0.581436 0799
sphere 131k  65.5k 200 0.388 38.549 53.329 0 0.640395 0.91569
horse 354k 177k 1.5k 6.24637 36.6344 51.6152 0 0.615523 79080
statue 272k 136k 800 1.457 32.0611 51.9163 0 0.541623 (©I0P2

Table 1: Results for uniform mesh coarsening

triangle in the original mesh whose three vertices have dis- times on the statue model and the horse model are 0.954s
tinct colors, we create a triangle in the approximating mesh and 1.547s, respectively, which are better than the new al-
whose edges are connected according to the colors in the re-gorithm. But the output meshes of the new algorithms al-
ferring triangle. More on postprocessing is discussed in de ways have better mesh quality. For instance, for the sphere
tail in [CSADO4. To clearly show the anisotropic effect, we = model, the data generated by the programME04,VCP0g

only show polygonal mesh representaions of the examples are min/ = 37.7732, Ave. min/ = 52.8697,/ < 30° =0,

used in this paper. Qmin = 0.710607 andave = 0.9096. Data generated by the

new algorithm are better.
7. Results

From Table 2, one can see that the new algorithm runs
very fast and gives good approximation results. This shows
that the new algorithm is practical. The new algorithm con-
tracts one face for each cluster. Then the number of clusters
in the clustering result for each mesh is just the '#F (approx
in Table 2, such as 32 clusters for the fandisk model. The
anisotropic nature of the®! error metric is demonstrated in
these examples.

The algorithms presented in this paper are implemented on
a laptop computer with 1G memory and Intel Core 2 CPU
T7200 under Windows. Performance data for uniform mesh
coarsening applications are collected in Table 1. Experime
tal data for anisotropic shape approximation are gathered i
Table 2. Notice that the new algorithms run very fast. It take
only a few seconds to get the job done for a mesh with more
than 200k faces.

For the uniform mesh coarsening application, the qual-

. . . 8. Conclusions
ity of the output mesiM is measured in several aspects, as

listed in Table 1. 'mir/’ stands for the minimum angle de-  In this paper we propose a novel clustering algorithm for
gree of the triangle faces M. Similarly, 'Ave. min/’ com- a polygonal mesiM by approximating CVT or CCVT on
putes the average minimum angle degree<’ 30°’ counts M. The new clustering algorithm is also suitable for clus-
the number of angles smaller than 30 degre®gs’ (min- tering construction with respect to thé! error metric. We
imal quality) and Qave (average quality) measure the tri-  present a rigorous mathematical analysis for the new algo-
angle shapes. Both terms are definedAB97. The exam- rithm. Our algorithm possesses the intrinsic distance com-

ples have also been tested using the program provided by theparison as the local geometric operation, which is simpler
authors of YC04, VCP0§. The execution times for models  and more intuitive than those used W04,VCP0g. More-
bunny and hand are 0.328s and 0.266s, respectively, whichover, our algorithm updates the cluster configuration only
are slower than the new algorithm. However, the execution after comparing alcluster edgesThe proposed algorithm

(© 2009 The Author(s)
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Models  #F (org) #V (org) #F (approx) time(s)
hand 72.9k 36.6k 98 1.542
face 98.4k 49.3k 119 1.084
fandisk 12.9k 6.4k 32 0.032
monster 130k 65k 120 1.832f

Table 2: Results for anisotropic mesh approximation

based on Lloyd method for constructing the optimal geo- [Tk| 3 2 2 9| Tk| 2
metric partition in CSADO4 is not guaranteed to converge. - 12 ( Zl|xi =X+ 3P — 2] ) T X~ 2l
But the new algorithm is proved to converge for constructing =

discrete CCVT and CVT oM or clustering withL%* met- B M( 3 IXj — X |2) + 7T

ric. Although the new algorithm runs more or less as those T12 gl 177k k—al Tk

in [VCPO04, the coarse mesh produced by the new algorithm s
has a better mesh quality. Depending on the clustering cri- wherex, = %
teria, we show examples for both isotropic and anisotropic

mesh approximations. The anisotropic mesh approximation
by using CVT is also investigated iVCP0§. It seems an
interesting problem to generalize the new algorithm for the | 7= Treev [Tkl

Expansion with the mass centroid

be the mass centroid &f. z satisfies

anisotropic case. This will be investigated in the future. Ireey [Tl
the following equation
Appendix Tl (—7) =0
Integration over a triangle TEVA
Suppose the triangl& has three verticesy, x», X3. Letx € Consequently,
. = 2 — — 2
Tk Then we haves = Aq(X)x1 +)\2(>_<)x2 +)\3_(x)x3, where I — 24T = Xk — 7+ 73— 2Tl
Ai(x)(i = 1,2,3) are the barycentric coordinates xf We T4V T4V

havey2 | Ai(x) = 1. Then

Y (u-3fr2en-23-2>
TeEVi

Ix—z%dx = [ [AL(X)X1+A2(X)X2 +Ag(X)X3 — Z |2dx
Tk Tk _ 2
+7-2P) I

= [ Ma)6a—2)+ A0 —2) -
Ti =2< [Tk| (% — 2), 2—2>
+A3(x)(xs — 2) Pdx e o
3 ) ) + Y xe— 7Tl + ZvlszI [Tkl

= Z/ Aj(x)7|xj — zi|“dx TEV; TEV;
e = 3 -3+ Y (T2
+2/ A(OA2(X) < X3 —Zj, X2 — Z > dX TeEVi Te€M

Tk

+2 [ M(X)A3(X) < X1 —Z,X3— 2z > dx
Tk

+2/ A2(X)A3(X) < X2 —Zj,X3 —z; > dX
Tk

Using the fact thay/y Ai(X)Aj(x)dx = [Ti[/12 (i # j) and
JrNi(0)%dx = [Ti(| /6 (i = 1,2,3) (see Che0d), we have

3

2 [Tk 2
/Tk|X—Zi| dx = e (Z Xj—z|"+ Y <xr—ZXs—z >>:igure 6: Clustering and coarsening results for a sphere
J=1 lsr<sss model. Left: a sphere with 200 clusters. Right: coarsened

Consequently we have a special caseléf(1] as follow: mesh.
ik - T (s Y.
/Tk|x zi|“dx = 12 <121|XJ Xk + Xk — Zi] ) References
3 [Che05] @HEN L.: New analysis of the sphere covering
+@< z 1Xj *Zi|2+ 2 <% —zj,xs— P9 lems and optimal polytope approximation of convex
12 =i 1<1Zs<3 odies.J. Approx. Theory 133l (2005), 134-145.

(© 2009 The Author(s)
Journal compilatiorf© 2009 The Eurographics Association and Blackwell Publighital.



/ EG BIX Author Guidelines

Figure 7: Clustering and coarsening results for a horse
model. Top: a mesh with 1500 clusters. Bottom: coarsened

=
y

Figure 8: Two different views of clustering and approxima-
tion of a monster model with 120 clusters.

Figure 9: Two different views of clustering and approxima-
tion of a face model with 119 clusters

Figure 10: Two different views of clustering and approxi-
mation of a fandisk model with 32 clusters
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