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Figure 1: Two examples of Bezier crust applied on Catmull-Clark subdivision surfaces

Abstract
Subdivision surfaces have been widely used in computer graphics and can be classified into two categories, ap-
proximating and interpolatory. Representative approximating schemes are Catmull-Clark (quad) and Loop (trian-
gular). Although widely used, one issue remains with the approximating schemes, i.e., the process of interpolating
a set of data points is a global process so it is difficult to interpolate large data sets. In this paper, we present a
local interpolation scheme for quad subdivision surfaces through appending a G2 Bezier crust to the underlying
surface, and show that this local interpolation scheme does not change the curvatures across the boundaries of
underlying subdivision patches, therefore, one obtains high quality interpolating limit surfaces for engineering
and graphics applications efficiently.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Subdivision surfaces have been widely used in surface rep-
resentation. Compared to traditional spline methods (e.g.
Bezier Surface), advantages include simpler to use and can
work on any topology.

Subdivision schemes use three types of mesh structure:
quadrilateral, triangular and hexagonal. Quad faces and Tri-
angular faces are most commonly used for practical applica-
tions. Subdivision surfaces can be classified into two types:
face-split and vertex-split. Vertex-split schemes (midedge
[DS78], biquartic [Qu90]) are not as popular as face-split
schemes because they do not generate well behaved sur-
faces on an arbitrary topology as face-split schemes. In a
face-split scheme, vertices of the control mesh are refined
recursively. Each vertex of the current control mesh is rede-

fined in the next subdivision level. If the original vertex and
its corresponding vertex in the next subdivision step are the
same, we call this scheme interpolating (e.g. Modified But-
terfly [DLG90], Kobbelt [Kob96]), otherwise the scheme is
approximating (e.g. Loop [Loo87], Catmull-Clark [CC78]).
Interpolating is attractive, since vertices in the original con-
trol mesh remain in the control meshes in subsequent sub-
divisions, making subdivision more intuitive. However, sur-
face quality of interpolating schemes is not as good as that
of approximating schemes. As a comparison, interpolating
schemes such as Modified Butterfly and Kobbelt scheme
are C1 continuous on regular meshes, while approximating
schemes such as Catmull-Clark and Loop are C2 continu-
ous on regular meshes. Among various subdivision schemes,
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Loop and Catmull-Clark are most widely used on triangular
meshes and quad meshes, respectively.

As an approximating scheme, limit surface of the Loop
subdivision or the Catmull-Clark subdivision (CCS) does
not interpolate the control mesh in general. However, Since
construction of smooth interpolating surfaces is important in
many applications, including CAD, statistical data modeling
and face recognition, it is necessary to develop interpolation
techniques for approximating subdivision schemes. In this
paper, we will address the issue of interpolating quad data
meshes, focusing especially on Catmull-Clark scheme.

Given a quad data mesh, the process of calculating a CCS
control mesh whose limit surface interpolates the given data
mesh can be done directly or iteratively. A direct method
such as the earlier work of Halstead [HKD93] is not recom-
mended because calculating the inverse of a large matrix is
not feasible (the number of data points in an interpolation
problem is typically hundreds or even thousands). Iterative
methods, on the other hand, do not need to compute the in-
verse of a large matrix [BT09] [CLT∗08], Some of them even
have an exponential convergence rate [CLT∗08]. But the in-
terpolation is basically an approximating process.

In this paper, we present a simple interpolation scheme
for CCS. The new scheme interpolates the given data mesh
precisely, instead of iteratively. It works by appending the
parametric polynomial of a special bi-quintic Bezier crust to
a Catmull-Clark parametric surface. The Bezier crust works
on difference vectors between CCS control points and corre-
sponding data points, so the new interpolating surface can be
computed locally. There is no need to solve a global linear
system and the algorithm is efficient and compact. With spe-
cial properties of Bezier crust at the boundaries of a surface
patch, the new interpolation scheme works on an arbitrary
quad subdivision surface as well, and will maintain its C1/C2

continuity.

The rest of paper is organized as follows: section 2 re-
views previous approaches of mesh interpolation, section 3
presents the concept of Bezier crust on space curve, section
4 introduces the new interpolating parametric surface by ap-
pending tensor-product Bezier crusts to a quad subdivision
surface with focus on Catmull-Clark, section 5 shows several
implementations and a discussion, section 6 concludes.

2. Previous Works

In this section, we briefly review earlier methods for inter-
polation of given data meshes by quad subdivision scheme
of Catmull-Clark and by traditional spline scheme of Bezier
surface. The goal of the interpolation is to get a smooth limit
surface that is tangent plane continuous (G1) or curvature
continuous (G2). In this paper, we focus on G2 surfaces,
which are suitable for most engineering and graphics appli-
cations.

2.1. Interpolating Scheme of Catmull-Clark

Catmull-Clark subdivision (CCS) is the most widely used
subdivision scheme. Control points in a CCS control mesh
can be classified into three categories: vertex, edge and face
[CC78]. In each CCS, a new face point is created for each
face, a new edge point is created for each edge, and the origi-
nal vertex points are updated with new vertex points. By per-
forming recursive subdivision, one can obtain a limit surface
that is C2 everywhere except at extraordinary points, where
it is C1 (tangent plane) continuous only [BS88] [DS78].

Interpolation with a CCS surface can be performed by
solving a linear system,

Ax = b (1)

where A is a square matrix determined by interpolation con-
ditions and mesh topology, x is a column vector of control
points to be determined, b is a column vector of data points
in the given data mesh [HKD93]. If A is a small and non-
singular matrix, we can obtain the control mesh by calcu-
lating A−1 directly first. However, a direct method will not
work or not work well if A is a singular or large matrix. In
such a case, an iterative method needs to be applied. Tra-
ditionally, stationary iterative methods like Jacobi, Gauss-
Seidel or Successive Over-relaxation can be used to solve
a large linear system. The issue with these methods is the
convergence rate - they are slow when the data set is large.
When A is singular, the least-squares method can be applied.
There are faster iterative methods to solve larger scale data
sets [BT09] [Sze90]. However, since (1) is a global system,
convergence rate will still not be satisfactory when we are
dealing with thousands of data points.

To avoid dealing with singular linear systems and to
improve iteration speed, a progressive subdivision scheme
[CLT∗08] [CFL∗09] has been developed. This method itera-
tively generates a new control mesh by adding to old control
mesh the difference between this control mesh and its cor-
responding data points on the CCS limit surface and shows
that the linear system developed is positive definite and can
improve the convergence speed of CCS control mesh gener-
ation process which satisfies (1).

Besides convergence speed, the interpolating surface ob-
tained by solving (1) sometime is unsatisfactory because of
excessive undulations [HKD93]. Halstead [HKD93] notices
that the undulations appear because they are not indicated
by the shape of the original mesh. The Fairing techniques
proposed in [LP88] [ZZC01] smooth an interpolating sur-
face by including more constraints but increasing the size of
the control mesh. Some alternative methods [LC06] [ZC06]
improve shapes by choosing good initial control mesh or
adding more control points to control the shape locally.

The above methods focus on improving convergence
speed of solving (1) or introducing additional constraints to
handle surface artifact, they are all approximating schemes.
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It is natural to ask the following question: "Is it possible
to have a precise interpolating scheme other than approxi-
mating ones, without solving a global linear system, but not
iterative, while preserving the easy implementation and cur-
vature continuity features of CCS?"

2.2. G2 Bezier Surface

In CAGD, Bezier Patch is one of the most widely used repre-
sentations in free-form surface modeling. Since each Bezier
Patch interpolates its 4 corner control points, this makes it a
natural choice in surface construction when an interpolating
scheme is desired.

A two-dimensional Bezier surface patch can be defined as
a parametric surface,

p(u,v) =
n

∑
i=0

m

∑
j=0

bi,n(u)b j,m(v)Pi, j, (2)

where bi,n(u) and b j,m(v) are Bernstein basis functions of
degree m and n, respectively, and Pi, j are control points.
Since the commonly used Bezier surface patch has m = n,
so here we focus on piecewise tensor-product Bezier surface
only.

It is clear from the definition (2) that the four corner con-
trol points are interpolated by its limit surface. Conditions
of G1 continuity for a piecewise Bezier surface have been
discussed in [Bez86] [DeR90] [LH89]. It was pointed out,
to obtain G1 continuity, one must ensure that partial deriva-
tives across the boundary of Bezier patches (n≥ 2) must be
coplanar.

In CAGD, G2 continuity is necessary to ensure the ex-
istence of a visually well behaved surface. Conditions for
G2 continuity are discussed in [Deg90] [Kah83] [YLN96].
These works show that, to get G2 continuity, one must have
at least a piecewise biquintic Bezier surface.

Although one can theoretically obtain a piecewise G2

Bezier surface, the construction of such a surface is more
difficult than the construction of a subdivision surface. One
has to solve a linear system of partial derivatives up to sec-
ond order across the boundaries, and the linear system has
too many degrees of freedom. Gregory reduces the degree
of freedom by introducing additional constraints on internal
control points of a Bezier patch [GH89], but its construction
is still not an easy task.

In the above we have reviewed two main interpolating
schemes: subdivision surface based and Bezier patch based.
The first scheme is approximating and suffers problems with
convergence speed and undesired undulations, while the lat-
ter one is more difficult to construct.

3. Bezier Crust on Space Curve

In this section, we introduce a special quintic Bezier off-
set polynomial named Bezier crust on curve. We show that

when a Bezier crust is added to a C2 space curve, the new
curve is C2 with the same tangent and curvature at the start
and end points.

A Bezier spline is a composite curve formed by piecing
together several Bezier curve segments. A Bezier spline in-
terpolates all the start and end control points of its Bezier
curve segments. While quadratic and cubic Bezier splines
are widely used in font design and 3D animation, they are
not G2 continuous between adjacent Bezier segments. To
obtain a G2 Bezier spline, quintic Bezier curve segments are
needed [Deg90].

A quintic Bezier curve segment takes the following form,

B(t) =
5

∑
i=0

bi,5(t)Pi, (3)

where bi,5(t) =
(5

i
)
t i(1− t)n−i, i = 0, ..,5, are Bernstein

polynomials of degree 5 and Pi are its control point.

Figure 2: Control points of B̄(t) after movement of ∆P(t)
from original B(t).

Fig 2 shows the movement of control points of a quintic
Bezier spline composed of two Bezier curve segments. The
Bezier spline interpolates P0, P1 and P2. We want it to inter-
polate P̄0, P̄1, and P̄2, here we only consider the six control
points of the right Bezier curve segment B(t), the left curve
segment can be adjusted similarly. If we want to maintain its
curvature at the start and end points on the new Bezier curve
segment B̄(t), we can set B̄(t) as

B̄(t) = B(t)+
5

∑
i=0

bi,5(t)∆Pi, (4)

where ∆P0 = ∆P1 = ∆P2 = p̄1 − p1 and ∆P3 = ∆P4 =
∆P5 = p̄2− p2.

If we define

∆B(t) =
5

∑
i=0

bi,5(t)∆Pi, (5)

we have the following properties on ∆B(t) of degree 5:

(1) when ∆B(t) is displayed alone, it is a line segment inde-
pendent of its degree. So it is C2 on ∆B(t) except at the
start and ending points.
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(2) The 1st and 2nd derivatives of ∆B(t) at the start and end
points are both zerro. So it will not change the 1st and 2nd

derivatives of B(t) at the start and end points.
(3) The new quintic Bezier spline obtained by adding ∆B(t)

to each of the original Bezier curve segments will remain
G2 continuous if the original Bezier spline is G2.

With the above properties, we name ∆B(t) of degree 5 a
Quintic Bezier crust. We notice that this Quintic Bezier crust
can be added to an arbitrary C2 curve.

THEOREM 1: The new curve obtained by adding a
Quintic Bezier crust to a C2 parametric curve is C2 continu-
ous and has the same curvature at the start and end point as
the original curve.

PROOF: A C2 parametric curve can be written in poly-
nomial form at a parametric value t0 as

f (t) = f (t0)+ f ′(t0)(t− t0)+
f ”(t0)

2
(t− t0)

2 +δ. (6)

The new curve f̄ (t) = f (t)+∆B(t), by calculating its first
and second derivatives, we can prove that f̄ (t) is C2 and has
the same curvature at the start and end points as f (t). QED

Since a piecewise cubic B-spline curve is C2, we can add
quintic Bezier crust (with difference vectors chosen as dif-
ferences between control points and their corresponding data
points) to each curve segment and obtain a new C2 compos-
ite curve which interpolates all control points of the original
curve (except 1st and last control points if the curve is open).

4. Bezier Crust on Quad Subdivision Surface

In this section, we introduce a new interpolating scheme
for quad subdivision surfaces like Catmull-Clark. The new
scheme will interpolate a given data mesh exactly.

Quad subdivision schemes have been widely used in sur-
face representation because of their simplicity and well
behaved limit surfaces. Among various quad schemes,
Doo Sabin [DS78], Mid-Edge [PR97] are C1 continuous,
Catmull-Clark [CC78] is C2 everywhere except at extraordi-
nary points. In this paper, we present a new unified interpo-
lating scheme for quad approximating subdivision surfaces,
with main effort focusing on Catmull-Clark.

Given a quad control mesh M, the CCS scheme generates
a limit surface that approximates the control mesh. The limit
surface of each face f of M (regular or extraordinary) can be
represented in parametric form S(u,v). For each f , we define
∆P0, ∆P1, ∆P2 and ∆P3 (Fig 3) as the difference vectors
between its corner control points and its corresponding data
points, respectively. In order to interpolate the corner control
points, similar to quintic Bezier crust, we can define a bi-
quintic Bezier crust ∆p(u,v) as follows,

∆p(u,v) =
5

∑
i=0

5

∑
j=0

bi,5(u)b j,5(v)∆Pi, j, (7)

where ∆Pi, j are control points of a bi-quintic Bezier surface,
and ∆Pi, j = ∆P0 if i ∈ [0,2] & j ∈ [0,2], ∆Pi, j = ∆P1 if
i ∈ [0,2] & j ∈ [3,5], ∆Pi, j = ∆P2 if i ∈ [3,5] & j ∈ [0,2],
∆Pi, j = ∆P3 if i ∈ [3,5] & j ∈ [3,5].

Figure 3: Difference vectors between control points and
their limit points of a regular(left) and an extraordi-
nary(right) Catmull-Clark face

When displayed by itself, the Bezier crust defined in (7)
has exactly the same boundaries as a bilinear Coons patch.
By analyzing the 1st and 2nd order derivatives, we get the
following properties of a bi-quintic Bezier crust:

(1) At the four corners, the 1st and 2nd order derivatives van-
ish.

(2) At the four boundaries, the 1st and 2nd order derivatives
across the boundaries vanish. Since the difference vectors
along the boundary are the same for neighboring Bezier
crusts, the boundary curve between neighboring Bezier
crusts coincides

(3) At (u,v) of the Bezier crust, the 1st and 2nd order deriva-
tives are continuous or vanishes.

(4) Bezier crust works on difference vectors at the four cor-
ners of a surface patch, so it has the same representation
form for both regular and extraordinary face.

By adding the Catmull-Clark parametric form S(u,v) to its
Bezier crust ∆p(u,v), we obtain a parametric surface S̄(u,v)
which interpolates the four corner control points of f , as fol-
lows:

S̄(u,v) = S(u,v)+∆p(u,v) (8)

S(u,v) is computed locally with its (2N + 8) control points
(N is the valence). Since the difference vectors can be cal-
culated locally with its surrounding (2N +1) control points,
∆p(u,v) is also computed locally. So (8) differs from ear-
lier CCS interpolation schemes in that it is a local piecewise
parametric surface. Hence, it is not necessary to calculate di-
rectly or iteratively a global new control mesh to interpolate
a given control mesh (shown in (1)).

THEOREM 2: The limit surface of an interpolating sur-
face patch S̄(u,v) defined in (8) is C2 continuous everywhere
except at extraordinary points.

PROOF: The proof is trivial by properties of the bi-
quintic Bezier crust mentioned above. By properties (1) and
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(2), the first and second order derivatives at four corners
and across the boundaries of a Bezier crust vanish, so the
continuity remain the same at the corners and across the
boundaries for both regular and extraordinary faces. By
properties (2) and (3), we can also show C2 continuity
along the boundaries and on the new surface patch. So the
limit surface of our new scheme maintains C2 continuity
everywhere except at extraordinary points where it is C1

continuous. QED

Figure 4: Behavior at corner limit points (middle) and
across-boundary limit points (right) after adding Bezier
crust to CCS (left)

Since a Bezier crust depends only on the difference vec-
tors, we can apply Bezier crusts to any quad approximating
scheme, as far as the subdivision surface can be parameter-
ized. The following is a generalization of Bezier crusts on
quad subdivision surface. A quad subdivision surfaces is ei-
ther C1 or C2.

PROPOSITION 1: Bi-quintic Bezier crusts can be added
to any parametric C1 or C2 quad subdivision surface. The
new parametric surface interpolates the given control mesh,
while maintains the continuity of the original subdivision
surface.

PROOF: Difference vectors between control points
and corresponding limit points of the original subdivision
surface are determined by its subdivision rules. By adding
Bezier crusts based on these difference vectors to the given
subdivision surface, the new parametric surface interpolates
the given data mesh and keeps the continuity of the original
subdivision surface by properties (1), (2) and (3) of a
bi-quintic Bezier crust. QED

In the above, we have showed the construction of a new
parametric interpolating surface by adding bi-quintic Bezier
crusts to a Catmull-Clark subdivision surface, and presented
a general solution to arbitrary parametric quad subdivision
schemes. Next, we will show implementation and analysis
of this new parametric surface.

5. Implementation and Discussion

In last sections, we introduce a new interpolation scheme for
quad subdivision surfaces with a focus on Catmull-Clark.

Figure 5: Left side shows a CCS limit surface, right side
shows the limit surface of our new interpolating scheme

Here we review the implementation and analyze the Bezier
crust on CCS.

As shown in (7) and (8), our new interpolating scheme on
CCS is obtained locally by adding the parametric polyno-
mial of a local Bezier crust to a CCS surface patch. It is far
superiorer than the earlier global interpolation schemes. The
algorithm is numerically stable and compact. Fig. 1 shows
two engineering parts with our new Bezier crust method on
CCS. Fig. 5 shows a comparison of limit surfaces on a given
control mesh by the original CCS and by our interpolating
scheme. From the images, one can see that the limit surface
of our new scheme is well behaved.

Since difference vectors between CCS control points and
data points can be of any values, a Bezier crust could be quite
normal in one case while not so normal in another case. For
instance, in Fig. 6, top left side shows a normal patch, while
on the top right side the patch is twisted. Obviously, for a
standalone surface a twisted control mesh is undesired for
it will render the surface patch not well behaved. Neverthe-
less, with our interpolating scheme, since the Bezier crust is
added to the underlying CCS patch, the twisting effect can
be offset by the underlying CCS patch, such that the new
surface patch still maintains its continuity (Fig 6).

One limitation we notice is that, when a Bezier crust
is displayed by itself, ∆p(u,v) is enclosed in the volume
bounded by ∆P0, ∆P1, ∆P2 and ∆P3, so the generated in-
terpolating limit surface might show diminishing effect on
curvature towards the center. From Fig. 5, we can see sev-
eral slightly flattened surface areas. More experiments need
to be done to see if this will cause any unwanted surface
artifacts.

6. Conclusion

In this paper, we introduce a simple interpolation scheme
for quad parametric subdivision surfaces. We show that by
adding a special bi-quintic Bezier crust to each of the orig-
inal subdivision surface patches one can generate an inter-
polating surface that maintains curvature conditions of the
original limit surfaces.
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Figure 6: Top row shows two scenario of standalone Bezier
crust, bottom row shows a twisted example. In the bottom
row, limit surface of new interpolating scheme (left), limit
surfaces of CCS (middle) and standalone Bezier crust (right,
enlarged) on a single patch.

With a special construction of bi-quintic Bezier crusts, we
can avoid the calculation of a global linear system common
in earlier interpolation schemes, but get a system that is local
and simple.

Implementation results on CCSS show that the new in-
terpolating scheme can generate visually well behaved limit
surfaces, such that barely no fairing is needed.

Our Bezier crust interpolating scheme is limited to quad
subdivision surfaces. For triangular subdivision surfaces
(e.g. Loop) which are also popular in computer graphics, dif-
ferent schemes have to be developed. That will be one of our
future works.

In summary, we provide a local interpolating scheme
for quad subdivision surfaces. With the simplicity of this
scheme, one can easily apply it to approximating subdivision
surfaces, making them more appropriate for CAD, CAGD,
face recognition and other interpolation-demanding applica-
tions.
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