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Abstract: A new method for constructing a smooth sur-ing a connection between a given mesh and an interpolat-
face that interpolates the vertices of an arbitrary mesh ing subdivision surface has never really been successful
presented. The mesh can be open or closed. Normaifen the number of vertices of the given mesh is large
specified at vertices of the mesh can also be interpolateld. One exception is a work published recently [11]. In
The interpolating surface is obtained by locally adjustthis paper, an iterative interpolation technique simitar t
ing the limit surface of the given mesh (viewed as the¢he one used in [8] for non-uniform B-spline surfaces is
control mesh of a Catmull-Clark subdivision surface) s@roposed for subdivision surfaces. Since the iterative ap-
that the modified surface would interpolate all the verproach does not require solving a system of linear equa-
tices of the given mesh. The local adjustment process i®ns, it can handle meshes with large number of vertices.
achieved through locally blending the limit surface withBut the paper fails to prove the convergence of the itera-
a surface defined by non-uniform transformations of théve process.
limit surface. This local blending process can also be In this paper we will address the problem of ‘con-
used to smooth out the shape of the interpolating surfacgtructing a smooth surface to interpolate the vertices of a
Hence, asurface fairing process is not needed in the newgiven mesh’ and present a new solution to this problem.
method. Because the interpolation process does not N briefly review previous work in this area first.
quire solving a system of linear equations, the method
can handle meshes with large number of vertices. Testl.1. PreviousWork: A Brief Review: There are two
results show that the new method leads to good interpmajor ways to interpolate a given mesh with a subdivi-
lation results even for complicated data sets. The negjon surface:interpolating subdivision [4, 6, 7, 14, 19]
method is demonstrated with the Catmull-Clark subdior global optimization [5, 12]. In the first case, a subdi-
vision scheme. But with some minor modification, onevision scheme that interpolates the control vertices, such
should be albe to apply this method to other subdivisioas the Butterfly scheme [4], Zorin et al's improved ver-
schemes as well. sion [19] or Kobbelt's scheme [7], is used to generate the
interpolating surface. New vertices are defined as local
1. Introduction: Constructing a smooth surface to in-affine combinations of nearby vertices. This approach
terpolate the vertices of a given mesh is an importari® simple and easy to implement. It can handle meshes
task in many areas, including geometric modeling, conWith large number of vertices. However, since no vertex
puter graphics, computer animation, interactive desighs ever moved once it is computed, any distortion in the
and scientific visualization. The interpolating surfacearly stage of the subdivision will persist. This makes in-
sometime is also required to interpolate normal vector€rpolating subdivision very sensitive to irregularitytie
specified for some or all of the mesh vertices. Develog@iven mesh. In addition, it is difficult for this approach to
ing a general solution for this task is difficult because théterpolate normals or derivatives.
required interpolating surface could be of arbitrary tepol ~ The second approaclglobal optimization, usually
ogy and with arbitrary genus. Traditional representationeéeds to build a global linear system with some con-
schemes such as B-spline or Bézier surfaces can not regcaints [13]. The solution to the global linear system is a
resent such a complex shape with only one surface. ~ control mesh whose limit surface interpolates the vertices
Subdivision surfaces were introduced as an efficierfif the given mesh. This approach usually requires some
technique to model complex shapes [2][3][10]. Butbuild-  1jnterpolating subdivision [4] will be addressed shortly
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(a) Given Mesh (b) Interpolating surface generated with blending arearaati-
cally selected

(c) Interpolating surface generated with user selecteddig (d) Interpolating surface generated with user selecteddihe
areas around upper portion of the teapot body areas around bottom portion of the teapot body

Figure 1: Example with local control

fairness constraints in the interpolation process, such agerpolate given meshes [9]. But those techniques are
the energy functions presented in [5], to avoid undesiregither of different natures or of different concerns and,
undulations. Although this approach seems more complitence, will not be discussed here.
cated, it results in a traditional subdivision surface. For 1.2. Overview: In this paper a new method for con-
example, the method in [5] results in a Catmull-Clarkstructing a smooth surface that interpolates the vertices
subdivision surface (CCSS), which@&-continuous al- of a given mesh is presented. The mesh can be of arbi-
most everywhere and whose properties are well studidtary topology and can be open or closed. Normal vectors
and understood. The problem with this approach is thapecified for any vertices of the mesh can also be interpo-
a global linear system needs to be built and solved. lated. The basic idea is to view the given mesh as the
is difficult for this approach to handle meshes with largeontrol mesh of a Catmull-Clark subdivision surface and
number of vertices. locally adjust the limit surface of the given mesh so that
There are also techniques that produce surfaces to itite resulting surface would not only interpolate vertices
terpolate given curves or surfaces that near- (or quasief the given mesh, but also possess a satisfactory smooth
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shape. The local adjustment process is achieved throughperform interpolating subdivision schemes on the in-
blending the limit surfaceS with a blending surfacd” put mesh, we perform interpolation by manipulating the
defined by non-uniform transformations of the limit sur-limit surfaceS of the given mesh directly. The basic idea
face. By performing the blending process at different sds to push or pull the limit surface of the given mesh in
lected points, we are able to (1) ensure the modified suvicinity of selected points so that the modified surface in-
face would interpolate the given mesh, (2) preventit fronterpolates the given mesh and, in the meanwhile, prevent
generating unnecessary undulations, and (3) smooth atifrom generating unnecessary undulations and maintain
the shape of the resulting surface. its smoothness. The push or pull process is done by con-

The new method has two main advantages. Firsstructing a new surfac#', and blendindgl’ with S. T
since we do not have to compute the interpolating sumust be relatively easy to construct and interpolatihg
face’s control mesh, there is no need to solve a system wiitially. For example, in Fig. 2(a)]" is composed of five
linear equations. Therefore, the new method can handdeparate segmentsy:, Too, Tos, Tos andTys, and each
meshes with large number of vertices, and is more robust them interpolates a point @ = { P, P, P5, Py, P5 }.
and stable. Second, because the local blending procé8saand.S must be blended in a way such that the result-
can be used to smooth out the shape of the interpolatimgg surface interpolate® and isC2-continuous almost
surface, aurfacefairing process is not needed in the neweverywhere. The interpolating surface can be defined as
method. follows:

An example of this interpolation process is shown in
Figure 1. The surfaces shown in Figures 1(b), 1(c) and _
1(d) all interpolate the mesh shown in Figure 1(a). The © = S 0)W(u,v) +T(u,v)(1 = W(u,v)), (1)
blending areas in Figure 1(b) are automatically selectegnereo < W(u,v) < 1is aC2-continuous weight
by the system while Figures 1(c) and 1(c) have user s¢;nction satisfying the_properlym(u w0 W (u,0) = 0.
lected blending areas in the upper portion and lower pofrhe plending process is done independently on each of
tion of the teapot body afterward. Itis easy to see froffye three coordinates of the surfaéu, v). T must be
Figure 1 that local control is necessary when better q”a}IJ'arametrized so that(0,0) = P;, (1 <i < n)andis

ity interpolating surfaces are needed. C?-continuous everywhere except(at 0) (where it is at
The new method is demonstrated with Cath”'C|a”feast01-continuous) and except &fu, v) | W (u, v) =

subdivision surfaces here (by viewing the given mesh a8 (where it is not even necessary to G8-continuous).
the control mesh of a Catmull-Clark subdivision surfacelrherefores is guaranteed to interpolate and is C2-

But with a minor modification, one should be able to apgontinuous everywhere except at some extraordinary
ply it to other subdivision schemes as well. oints.

The remaining part of the paper is arranged as fol-  ygyally during the initial blending process, quality
lows. " In Section 2, the basic idea of our locally con+y the resulting interpolating surface would not be good
trollable interpolation technique for closed meshes is Pr&nough yet. For example, the blue curve in Fig. 2(a), de-
sented. The construction process of a blending surfaceigteds, | is the resulting curve of the first blending pro-
presented in Section 3. In Section 4, a local parametrizgass As we can ses,; has a lot of undesired undulations
tion is introduced. The blending process around an ®4ithough it interpolates the given meBrexactly.
traordingry point or an arbitrarily selected p_oint is dis- T4 improve the shape of the interpolating surface and
cussed in Section 5 and Section 6, respectively. ISSUES reduce unnecessary oscillations, a second blending
on dealing with normal interpolation and handling operyocess can be performed in the vicinity of some selected
meshes are d|scuss_ed in Section 7 and Section 8, respB6ints. For example, in Fig. 2(b), a second blending pro-
tively. Implementation issues and test results are pregpss is performed in the vicinity of all thesige points
sented in Section 9. Concluding marks are given in Segj the given mesh. To carry out the second blending

tion 10. process, a different blending surfag has to be con-
structed. 77 does not have to interpolaté. However,

2. Basic ldea; Given a 3D mesh wit vertices: P = Ty must not Change the position of the imagesR)bn

{P1,P>,---,P,}, the goal here is to construct a neWthe |imit surface. In other words, the domain involved

surface that interpolateB (the vertices ofP, for now). in constructingl; should be smaller than the domain of

Contrast to existing interpolation methods, which eitheg; ' so that the images d@? would not be involved in the
construct a new mesh whose limit surface interpolétes construction process @f;. For example, in Fig. 2(b),
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(a) First blending (b) Second blending

Figure 2: Basic idea of the new interpolation method.

Ty = {T11,T12,T13,T14,T15} and the images aP;s are  the key here is how to constructlgu, v) for each local

not involved in the construction &f;. OnceT} is con- blending process and how to construct the corresponding

structed;T} can be blended witl; similarly to getS, as  blending weight functioV (u, v) such that the resulting

follows: interpolating surface is smooth and oscillation-free. The
construction process @f will be shown in the next sec-

5 tion. For consistency, we denote thie+ 1)st blending

surfaceT” by T;, and us€el’ as a general reference to all

possible levels of ;.

Sa = S1(u, v)Wi (u,v) + T1(u,v)(1 — Wi (u,v))

whereW, (u, v) is a blending function similar t&/ (u, v)
in Eg. (1), except; (u,v) is constructed for vicinity of
edge points, whiléV (u, v) is constructed for vicinity of
vertex points. This means that we have to trandlate)
by some constant so théit; (u,v) = 0 at the selected
edge point. Because the imagesibhire not involved in
the construction process @f, the images of? are not
affected in the above blending process. Hence interpol
tion requirement still holds.

Note that the blending process is done for individ
ual pieces. For example, in Fig. 2(b), it is done for th
pieces corresponding t5;;, 1 < i < 5, independently.

?*ecaluigllz nhot rtqulrle;lj t% n:jter_p:ﬂa;:é’ , not everé/_ T can be constructed in several different ways. In this
1i; 1= 1% 0,Naslobe blended wi € correspon Ingbaper we construdt by linearly transforming pieces of

lplecedofSl_. A b:eqfdlrr]]g pr:ocessflsh perfofrmeq for a se- in 3D object space. Note tha} is not necessary to be
ected region only If the shape of the surface IS Nt go0go_¢qntinyous at parameters whéfé(u,v) = 1. The

enqugh n that_area. Hence, the blending process is Affine transformation matrix can be chosen in a way such
optional operation.

. . thatT} interpolates” and, in the meanwhile, changes the
As we can tell from Fig. 2, the shape 8§ is much 0 b ;

; X original limit surface as little as possible. For example,
better than that of;. However, if necessary, a third or in Figure 2(a), to gefl’ for the limit surfaceS defined
even more blending processes can be performed on tbgp —{P P’ Py, Py, P5 ), we simply translate seg-
resulting surface to further improve its quality. While Lo 2i oSS

th t, in the direction from the i f
the above idea seems to be simple and straightforwar%lq,en y segment, in the direction from the imagdpfo

3. Construction of 7': The construction process @f
must satisfy two requirements: it should be intuitive
enouch to use and the result should be easy to obtain.
Note that onlyT} is required to interpolaté’, not the
subsequent;, i > 1. Hence, it is sufficient to show
the construction process df only. 7; (i > 1) can

be constructed similarly, without the interpolation con-
straint. Nevertheless, we will show how to constriiict

%‘ > 1) with details in Section 6 after local parameteriza-
tion of subdivision surfaces is discussed.
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P;, and then scale each segment with appropriate scalingize the blending area around an extraordinary point
factors forX, Y andZ components such thdtinterpo- (note that a regular point is just a special case of an ex-
lates P and has an appropriate size. Consequently, astiaordinary point), we define the blending region in the
shows in Figure 2(a)]’ is represented by five segments:parameter space by the condition:
{To1, Toz, Tos, Toa, Tos } and they are na®®-continuous.
But after a blending process using equation (1), we get a
surfaceS; which smoothly interpolateB. This is a circle centered at the extraordinary point in the
parameter space (See Fig. 3(a)). Note that some of the
4, Local Parameterization of Subdivision Surfaces. parameters$u,v) in the characteristic map might be out-
The blending process defined by eq. (1) is performed oside the unit circle [17, 18], i.ey? + v? > 1 is possi-
regions of the limit surface. Hence a local parameterizésle. Hence the actual blending area is smaller than the
tion is needed for each region of the limit surface wherghole domain. It should be pointed out that the blending
a blending process is to be performed. Several local parea defined here is different from the one used in [18],
rameterization methods have been reported in the literahich is defined byu? + v? < A, with \,, being the
ture [15, 17]. We follow Reif's approach [17] here. Wesub-dominant eigenvalue of the subdivision matrix corre-
assume that for any two extraordinary pointsiaftheir  sponding to a valence extraordinary vertex. The reason
corresponding points on the limit surface are at least twir this difference is because we want to maximize the
patches away. If this is not the case, simply perform onklending areas and overlapping of blending areas does not
or two subdivision steps off to get a new control mesh matter in our case.
for the limit surface. But the target of the interpolation ~ The blending weight functio®V (u,v) must satisfy
process is stillP, not the new control mesh. the condition0 < W(u,v) < 1 in the blending region
Reif’s approach maps an extraordinary pointag0)  and has to be at lea§-continuous everywhere. We fol-
and is based on theharacteristic map of a subdivision low Levin’s approach [18] to defin® (u, v), i.e.,
scheme [17]. A characteristic map is defined by calcu-
lating the limit of subdivision on a 2D mesh formed byW(“’ v) = (u* +v*)(3(u’ +v*) = 8y/(u? + %) +6)
the two sub-dominant eigenvectors of the local subdivitt is easy to see tha¥/ (u, v) satisfiesd < W (u,v) < 1
sion matrix [17, 21]. The characteristic map for Catmullin the regionu? + »> < 1 and isC?-continuous every-
Clark subdivision scheme around an extraordinary veiwhere. At the extraordinary point (u, v) approaches
tex of valencen is based on the topology of the 2-ring zero at the rate af? +v2. When near the boundary of the
neighborhood of vertices around the extraordinary vemlending region:® +v> = 1, W (u,v) approaches 1, with
tex. The 2-ring neighborhood is enough to determine thgero partial derivatives up to order 2. Hence, the resulting
limit function for then faces adjacent to the extraordi- surface is guaranteed to interpolate the given mesh and,
nary vertex. Thus, the two sub-dominant eigenvectoligieanwhile, cancels out the irregularity and discontinuity
have6n + 1 entries each. Since they do not depend osf the blending surfacé'.
the input mesh, they can be pre-computed for each va-
lencen. Once we have the two sub-dominant eigenvecs Blending around an arbitrarily selected point:
tors, we can findu, v) parameters corresponding to eactBecause we allow local adjustment of the interpolating
vertex of thek-times ¢ € Z andk > 0) refined mesh, surface, there should be a way for the system to per-
around the extraordinary point. This is done by applyingorm blending process in regions around arbitrarily se-
a3 x 3 limit mask [18] of bicubic B-splines to the corre- |ected points of the surface, not only the images of the
sponding neighborhood of vertices in theimes refined  control verticesP;. With a local parametrization, such
mesh. Also as a normalizationrule, the two sub-dominany task is actually relatively easy to achieve. For exam-
eigenvectors should be scaled such that the parametgfg, in Fig. 3(b), to adjust the interpolating surface in a
(u,v) at the end-points of edges emanating from the eXmall area around the selected point (the one marked with
traordinary vertex have coordinatesos(ia),sin(icr)),  a black solid circle), we first find the parameter, vo)
i =1---n, wherea = 2r/n (see Fig. 3(a)). of the selected 3D point in the parameter space of the
local parametrization that covers the selected point, and
5. Blending around an extraordinary point: With  then find the biggest circle in the parameter space whose
parametrization available, it is now possible to perforngenter is(uq, vo) (the red circle in Fig. 3(b)). This circle
blending process on regions of the limit surface. To maxdefines the blending area for the selected point.

u? + v? <1.
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(a) Blending around the image of an original vertex (b) Blending around an arbitrary point

Figure 3: Parameter space for a vertex of degree 5 and fobénaaily selected point.

To speed up the search @ig,vp), we can simply the irregularity and discontinuity of the blending surface
choose the closestiy, vg) in the k-times refined charac- T while locally modify the shape of the interpolating sur-
teristic map ¢ € Z andk > 0). Once we havéug,vg), face according to the need of the user.
we still need to find the biggest radius for the blending 6.1. Revisit Construction of Blending SurfaceT": In
area. Again we compare all the distances from the s#he above section, we have discussed how to construct
lected point(ug, ) to all the boundary parameter val- an initial blending surfacé), around vertices to be in-
ues in thek-times refined characteristic map € Z and terpolated. In this section, we show how to construct a
k > 0) and the smallest one is the radius of our blendblending surfacd’; around an arbitrarily selected point.
ing area, denoted,. In addition, as mentioned above, T}, like T', should also be easy and efficient to construct.
the blending area should not include the parameter poidgain, we can use affine transformation to constriict
(0,0). So we also need to compagewith the distance from S;. The scaling factor components of the affine
between(0,0) and(ug,vo) and the smaller one is called transformation matrix are easy to determine, simply com-
r. Therefore the blending area for the selected point capare the dimensions df; andsS;. The question is how to

be defined as follows. determine the offset components of the affine transfor-
) ) ) mation matrix. Note that, unlike the caseT@fwhere the
(u—uo)” + (v —wo)” <r offset components of the affine transformation matrix are

determined by the vertex to be interpolated and its limit
point on S, in this case, there is no point in the given
mesh that corresponds to the selected poinfpnn an

The corresponding blending weight functi@i(u, v) is
defined by the following quartic formula [18].

W (u,v) = p*(3p° — 8p + 6), interactive environment, such a point can be specified by

the user. But how should such a point and, consequently,

where the offset vector be determined for an automatic system?
p= V(u —ug)? + (v — “0)2' We propose to determine the offset vector for each

r selected 3D point by constructing a Hermite surface for

It is easy to seep < 1 and W (u,v) satisfies0 < the patch that covers the selected point. For example, if
W (u,v) < 1inthe blending region and §2-continuous the offset vectors for the four vertices of the patch are
everywhere. Note that at the selected poifitiu, v) ap- Di, D2, D3 andDy, then we construct a Hermite surface
proaches zero. When near the boundary of the blendimgtchH (u,v) based oD, , D,, D3 andD,. The tangent
region, W (u,v) approaches 1, with zero partial deriva-vectors at the four corners required for the construction of
tives up to order 2. Consequently, it can still cancel out! are set to the partial derivatives of the limit surfate
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at the four corners. The offset vector for a selected poimectly. This is because boundary vertices of an open
with parameter valuéug, vg) in S;, is set toH (ug,v,), mesh have no corresponding limit points, nor derivatives.
where (u(, v}) can be determined by linearly mappingTherefore, the Affine transformation matrix required for
quadrilateral0, cos(2im/n)] x [0,sin(2i7/n)] to a unit  the construction of; cannot be built directly. One way
square. to overcome this problem is to add an additional ring of
vertices along the current boundary and connect the ver-
7. Interpolation of Normal Vectors: Direction of nor- tices of this ring with corresponding vertices of the cur-
mal vectors specified at vertices of the given mesh caient boundary to form an additional ring of faces. The
also be interpolated. The key is to modify the construcaewly added vertices are callddmmy vertices. We then
tion process of the blending surfa@g so that it would apply the interpolation method to the extended open mesh
have the same normals (actually the same partial derivas to a closed mesh except that there are no actions taken
tives) at the extraordinary points. This can be easiljor the dummy vertices. This technique of extending the
achieved by rotating each piece Bf with appropriate boundary of a given mesh is similar to a technique pro-
X, Y and Z rotation factors after the above mentionedoosed for uniform B-spline surface representation in [1].
translation and scaling process. This is possible becaudete that in this case, the interpolation process is not
each piece of, interpolates one point @ only. Hence based on the limit surface of the given mesh, but the limit
we have a blending surfadg that not only interpolates surface of the extended mesh. Therefore, the shape of the
the given mesIP but normals specified at some or all ver-interpolating surface will be affected by locations of the
tices of P as well. Because the value Bf (u,v) and its dummy vertices as well. Determining the location of a
first partial derivatives af0, 0) are all zero, the resulting dummy vertex, however, is a tricky issue, the user should
interpolating surfacé then satisfies?Tgl‘L’”) — asézﬁv) not be burdengd by sugh a tricky task. In our system, this
and?Z(ur) _ 85(ur) |p otherwordsS andT, have the is done by using locations of the current boundary ver-
tices of the given mesh as the locations of the dummy ver-

v v
same normal. Hence, with one more Affine transforma- ; . . i
! . ; : .tices. Note that our interpolation technique is performed
tion (actually they can be combined into a single matrix

L . directly on the limit surface, hence there is no need to care

to save computation time), we can construct an interpo- " . ) .
. . . about positions of the dummy vertices after interpolation.

lating surface that not only interpolates the given mesh, . :

) Another approach to handle open mesh interpolation
but normals at all or some of the vertices of the mesh as . . )
well IS to modify the proposed |nterpolat|_on method fo_r closed
' meshes. Note that our method is locally adjustable.
Hence the limit point of a vertex actually can be moved
to anywhere, as long as the interpolation requirement are
satisfied. Consider the mesh shown in Fig. 5 where ver-
tices marked with circles, liké®> and @), are boundary
vertices and vertices marked with solid circles, suciias
A and B, are interior vertices. The shaded surface patch
is the corresponding limit surface whe$¢A) andS(B)
are the images ofl andB, respectivelyS(C) andS(D)
are the images of the corresponding edge points, respec-
tively. According to our interpolation method{A) and
S(B) should be moved tel and B, respectively. How-
ever, to interpolate the boundary poiftsand@, we can
modify our approach such thét A) andS(B) are moved
to P and@, respectively, and (C) andS(D) are moved
to A and B, respectively. The resulting surface then in-

terpolates all the vertices of the given open mesh.

Figure 5: Handling open meshes

9. Test Results: The proposed techniques have been
8. Handling Open Meshes: The interpolation process implemented inC++ using OpenGL as the supporting
developed in the previous sections can not be used fgfaphics system on the Windows platform. Quite a few
open meshes, such as the one shown in Fig. 4(c), dixamples have been tested with the techniques described
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(a) Given Mesh (b) Interpolation Surface (c) Given Mesh (d) Interpolation Surface

Figure 4: Examples

here. All the examples have extra-ordinary verticegarts: lid, handle, body and spout. The mesh shown
Some of the tested results are shown in Figures 1, 4 aimd Figure 1(a) is actually a set of four meshes, one for
6. From these examples we can see smooth and visuadlgch component of the original Utah teapot. Each part
pleasant shapes can be obtained by locally adjusting tiean open mesh. Although each of these meshes can
original limit surfaces. be interpolated separately, Figure 1(b) and Figure 1(c)
In our implementation, two subdivision steps are perare generated by regarding them as a single mesh. The
formed on the given mesh for each example before thmesh shown in Figure 6(b) is another example of an open
parametrization technique [17] is applied. The evaluatiomesh with disconnected boundaries. But different from
of the interpolating surfaces are based on sample parathe case shown in Figure 1, which is generated by mov-
eter values of the-times refined characteristic maps, andng the vertices to some different position intentionally,
we find the results to be good for most cases. For bigg&igure 4(d) is generated using additional dummy vertices
patches one can use more sample points because patdhake interpolating surface construction process.
do not have to be sampled uniformly. The new interpolation method can handle meshes
All the interpolation shown in Figures 1, 4 and 6 arewith large number of vertices in a matter of less than
done with at least two blending processes. First one & second on an ordinary PC (3.2GHz CPU, 512MB of
done withT}, which is based on all the given control ver-RAM). For example, the meshes shown in Figures 1(a),
tices. T3 for the second blending process is based on al(a), 4(c), 6(a) and 6(c) have 320, 9, 194, 354 and 66
edge points of the given mesh. Some figures in the exangertices, respectively, and it takes almost no time to in-
ples went through more blending processes to further interpolate these relatively small meshes. Since it is a lo-
prove quality of the interpolating surfac&;’s for those cal blending process and is performed directly on the
blending processes are selected based on, for exampimit surface, our method can easily handle meshes with
face points of all patches, or parameter Va|(l§5 2%), thousands of or more vertices. Hence our interpolation
wherej andk are integers. User interaction is also posmethod is especially suitable for interactive shape design
sible. For example, Figure 1(b) and Figure 1(c) both in-
terpolate the given mesh shown in Figure 1(a), but Figured. Summary: A new interpolation method for meshes
1(c) is obtained with more local adjustment on the uppewith arbitrary topology is presented. The interpolation
part of the teapot body. The other parts are not adjustegrocess is a local process, it does not require solving a
hence they are exactly the same as those shown in Figwstem of linear equations. Hence, the method can handle
1(b). Figure 1 shows, with user local adjustment, a betata set of any size.
ter shape can be obtained after some automatic blending The interpolating surface is obtained by locally ad-
processes. justing the limit surface of the given mesh (viewed as the
The original Utah teapot consists of four separateontrol mesh of a Catmull-Clark subdivision surface) so
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that the modified surface interpolates all the vertices of
the given mesh. This local adjustment process can also
be used to smooth out the shape of the interpolating sur-
face. Hence, aurface fairing process is not needed in
the new method.

The new method can handle both open and closed
meshes. It can interpolate not only vertices, but normals
and derivatives as well. These normals and derivative can
be anywhere, not just at the vertices of the given mesh.
Test results show that the new method leads to good in-
terpolation results even for complicated data sets.

The resulting interpolating surface is not a Catmull-
Clark subdivision surface. It does not even satisfy the
convex hull property [18]. But the resulting interpolating
(a) Given Mesh (b) Interpolating Sur- surface is guaranteed to B8 continuous everywhere ex-

face cept at some extraordinary points, where i€is contin-
uous. Using a technique similar to the one presented in
[18], a C? continuous interpolating surface can also be
achieved.
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