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Abstract: A new method for constructing a smooth sur-
face that interpolates the vertices of an arbitrary mesh is
presented. The mesh can be open or closed. Normals
specified at vertices of the mesh can also be interpolated.
The interpolating surface is obtained by locally adjust-
ing the limit surface of the given mesh (viewed as the
control mesh of a Catmull-Clark subdivision surface) so
that the modified surface would interpolate all the ver-
tices of the given mesh. The local adjustment process is
achieved through locally blending the limit surface with
a surface defined by non-uniform transformations of the
limit surface. This local blending process can also be
used to smooth out the shape of the interpolating surface.
Hence, asurface fairing process is not needed in the new
method. Because the interpolation process does not re-
quire solving a system of linear equations, the method
can handle meshes with large number of vertices. Test
results show that the new method leads to good interpo-
lation results even for complicated data sets. The new
method is demonstrated with the Catmull-Clark subdi-
vision scheme. But with some minor modification, one
should be albe to apply this method to other subdivision
schemes as well.

1. Introduction: Constructing a smooth surface to in-
terpolate the vertices of a given mesh is an important
task in many areas, including geometric modeling, com-
puter graphics, computer animation, interactive design,
and scientific visualization. The interpolating surface
sometime is also required to interpolate normal vectors
specified for some or all of the mesh vertices. Develop-
ing a general solution for this task is difficult because the
required interpolating surface could be of arbitrary topol-
ogy and with arbitrary genus. Traditional representation
schemes such as B-spline or Bézier surfaces can not rep-
resent such a complex shape with only one surface.

Subdivision surfaces were introduced as an efficient
technique to model complex shapes [2][3][10]. But build-

ing a connection between a given mesh and an interpolat-
ing subdivision surface has never really been successful
when the number of vertices of the given mesh is large
1. One exception is a work published recently [11]. In
this paper, an iterative interpolation technique similar to
the one used in [8] for non-uniform B-spline surfaces is
proposed for subdivision surfaces. Since the iterative ap-
proach does not require solving a system of linear equa-
tions, it can handle meshes with large number of vertices.
But the paper fails to prove the convergence of the itera-
tive process.

In this paper we will address the problem of ‘con-
structing a smooth surface to interpolate the vertices of a
given mesh’ and present a new solution to this problem.
We briefly review previous work in this area first.

1.1. Previous Work: A Brief Review: There are two
major ways to interpolate a given mesh with a subdivi-
sion surface:interpolating subdivision [4, 6, 7, 14, 19]
or global optimization [5, 12]. In the first case, a subdi-
vision scheme that interpolates the control vertices, such
as the Butterfly scheme [4], Zorin et al’s improved ver-
sion [19] or Kobbelt’s scheme [7], is used to generate the
interpolating surface. New vertices are defined as local
affine combinations of nearby vertices. This approach
is simple and easy to implement. It can handle meshes
with large number of vertices. However, since no vertex
is ever moved once it is computed, any distortion in the
early stage of the subdivision will persist. This makes in-
terpolating subdivision very sensitive to irregularity inthe
given mesh. In addition, it is difficult for this approach to
interpolate normals or derivatives.

The second approach,global optimization, usually
needs to build a global linear system with some con-
straints [13]. The solution to the global linear system is a
control mesh whose limit surface interpolates the vertices
of the given mesh. This approach usually requires some

1Interpolating subdivision [4] will be addressed shortly
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(a) Given Mesh (b) Interpolating surface generated with blending area automati-
cally selected

(c) Interpolating surface generated with user selected blending
areas around upper portion of the teapot body

(d) Interpolating surface generated with user selected blending
areas around bottom portion of the teapot body

Figure 1: Example with local control

fairness constraints in the interpolation process, such as
the energy functions presented in [5], to avoid undesired
undulations. Although this approach seems more compli-
cated, it results in a traditional subdivision surface. For
example, the method in [5] results in a Catmull-Clark
subdivision surface (CCSS), which isC2-continuous al-
most everywhere and whose properties are well studied
and understood. The problem with this approach is that
a global linear system needs to be built and solved. It
is difficult for this approach to handle meshes with large
number of vertices.

There are also techniques that produce surfaces to in-
terpolate given curves or surfaces that near- (or quasi-)

interpolate given meshes [9]. But those techniques are
either of different natures or of different concerns and,
hence, will not be discussed here.

1.2. Overview: In this paper a new method for con-
structing a smooth surface that interpolates the vertices
of a given mesh is presented. The mesh can be of arbi-
trary topology and can be open or closed. Normal vectors
specified for any vertices of the mesh can also be interpo-
lated. The basic idea is to view the given mesh as the
control mesh of a Catmull-Clark subdivision surface and
locally adjust the limit surface of the given mesh so that
the resulting surface would not only interpolate vertices
of the given mesh, but also possess a satisfactory smooth
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shape. The local adjustment process is achieved through
blending the limit surfaceS with a blending surfaceT
defined by non-uniform transformations of the limit sur-
face. By performing the blending process at different se-
lected points, we are able to (1) ensure the modified sur-
face would interpolate the given mesh, (2) prevent it from
generating unnecessary undulations, and (3) smooth out
the shape of the resulting surface.

The new method has two main advantages. First,
since we do not have to compute the interpolating sur-
face’s control mesh, there is no need to solve a system of
linear equations. Therefore, the new method can handle
meshes with large number of vertices, and is more robust
and stable. Second, because the local blending process
can be used to smooth out the shape of the interpolating
surface, asurface fairing process is not needed in the new
method.

An example of this interpolation process is shown in
Figure 1. The surfaces shown in Figures 1(b), 1(c) and
1(d) all interpolate the mesh shown in Figure 1(a). The
blending areas in Figure 1(b) are automatically selected
by the system while Figures 1(c) and 1(c) have user se-
lected blending areas in the upper portion and lower por-
tion of the teapot body afterward. It is easy to see from
Figure 1 that local control is necessary when better qual-
ity interpolating surfaces are needed.

The new method is demonstrated with Catmull-Clark
subdivision surfaces here (by viewing the given mesh as
the control mesh of a Catmull-Clark subdivision surface).
But with a minor modification, one should be able to ap-
ply it to other subdivision schemes as well.

The remaining part of the paper is arranged as fol-
lows. In Section 2, the basic idea of our locally con-
trollable interpolation technique for closed meshes is pre-
sented. The construction process of a blending surface is
presented in Section 3. In Section 4, a local parametriza-
tion is introduced. The blending process around an ex-
traordinary point or an arbitrarily selected point is dis-
cussed in Section 5 and Section 6, respectively. Issues
on dealing with normal interpolation and handling open
meshes are discussed in Section 7 and Section 8, respec-
tively. Implementation issues and test results are pre-
sented in Section 9. Concluding marks are given in Sec-
tion 10.

2. Basic Idea: Given a 3D mesh withn vertices:P =fP1;P2; � � � ;Png, the goal here is to construct a new
surface that interpolatesP (the vertices ofP , for now).
Contrast to existing interpolation methods, which either
construct a new mesh whose limit surface interpolatesP

or perform interpolating subdivision schemes on the in-
put mesh, we perform interpolation by manipulating the
limit surfaceS of the given mesh directly. The basic idea
is to push or pull the limit surface of the given mesh in
vicinity of selected points so that the modified surface in-
terpolates the given mesh and, in the meanwhile, prevent
it from generating unnecessary undulations and maintain
its smoothness. The push or pull process is done by con-
structing a new surfaceT , and blendingT with S. T
must be relatively easy to construct and interpolatingP
initially. For example, in Fig. 2(a),T is composed of five
separate segments:T01, T02, T03, T04 andT05, and each
of them interpolates a point ofP = fP1; P2; P3; P4; P5g.T andS must be blended in a way such that the result-
ing surface interpolatesP and isC2-continuous almost
everywhere. The interpolating surface can be defined as
follows:�S = S(u; v)W (u; v) + T (u; v)(1�W (u; v)); (1)

where0 � W (u; v) � 1 is a C2-continuous weight
function satisfying the propertylim(u;v)!0W (u; v) = 0.
The blending process is done independently on each of
the three coordinates of the surfaceS(u; v). T must be
parametrized so thatT (0; 0) = Pi; (1 � i � n) and isC2-continuous everywhere except at(0; 0) (where it is at
leastC1-continuous) and except atf(u; v) j W (u; v) =1g (where it is not even necessary to beC0-continuous).
Therefore�S is guaranteed to interpolateP and isC2-
continuous everywhere except at some extraordinary
points.

Usually during the initial blending process, quality
of the resulting interpolating surface would not be good
enough yet. For example, the blue curve in Fig. 2(a), de-
notedS1, is the resulting curve of the first blending pro-
cess. As we can see,S1 has a lot of undesired undulations
although it interpolates the given meshP exactly.

To improve the shape of the interpolating surface and
to reduce unnecessary oscillations, a second blending
process can be performed in the vicinity of some selected
points. For example, in Fig. 2(b), a second blending pro-
cess is performed in the vicinity of all theedge points
of the given mesh. To carry out the second blending
process, a different blending surfaceT1 has to be con-
structed. T1 does not have to interpolateP . However,T1 must not change the position of the images ofP on
the limit surface. In other words, the domain involved
in constructingT1 should be smaller than the domain ofS1, so that the images ofP would not be involved in the
construction process ofT1. For example, in Fig. 2(b),
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Figure 2: Basic idea of the new interpolation method.T1 = fT11; T12; T13; T14; T15g and the images ofPis are
not involved in the construction ofT1. OnceT1 is con-
structed,T1 can be blended withS1 similarly to getS2 as
follows:S2 = S1(u; v)W1(u; v) + T1(u; v)(1�W1(u; v));
whereW1(u; v) is a blending function similar toW (u; v)
in Eq. (1), exceptW1(u; v) is constructed for vicinity of
edge points, whileW (u; v) is constructed for vicinity of
vertex points. This means that we have to translate(u; v)
by some constant so thatW1(u; v) = 0 at the selected
edge point. Because the images ofP are not involved in
the construction process ofT1, the images ofP are not
affected in the above blending process. Hence interpola-
tion requirement still holds.

Note that the blending process is done for individ-
ual pieces. For example, in Fig. 2(b), it is done for the
pieces corresponding toT1i; 1 � i � 5, independently.
BecauseT1 is not required to interpolateP , not everyT1i; 1 � i � 5, has to be blended with the corresponding
piece ofS1. A blending process is performed for a se-
lected region only if the shape of the surface is not good
enough in that area. Hence, the blending process is an
optional operation.

As we can tell from Fig. 2, the shape ofS2 is much
better than that ofS1. However, if necessary, a third or
even more blending processes can be performed on the
resulting surface to further improve its quality. While
the above idea seems to be simple and straightforward,

the key here is how to construct aT (u; v) for each local
blending process and how to construct the corresponding
blending weight functionW (u; v) such that the resulting
interpolating surface is smooth and oscillation-free. The
construction process ofT will be shown in the next sec-
tion. For consistency, we denote the(i + 1)st blending
surfaceT by Ti, and useT as a general reference to all
possible levels ofTi.
3. Construction of T : The construction process ofT
must satisfy two requirements: it should be intuitive
enouch to use and the result should be easy to obtain.
Note that onlyT0 is required to interpolateP , not the
subsequentTi, i � 1. Hence, it is sufficient to show
the construction process ofT0 only. Ti (i � 1) can
be constructed similarly, without the interpolation con-
straint. Nevertheless, we will show how to constructTi
(i � 1) with details in Section 6 after local parameteriza-
tion of subdivision surfaces is discussed.T can be constructed in several different ways. In this
paper we constructT by linearly transforming pieces ofS in 3D object space. Note thatT0 is not necessary to beC0-continuous at parameters whereW (u; v) = 1. The
affine transformation matrix can be chosen in a way such
thatT0 interpolatesP and, in the meanwhile, changes the
original limit surface as little as possible. For example,
in Figure 2(a), to getT for the limit surfaceS defined
byP = fP1; P2; P3; P4; P5g, we simply translateS seg-
ment by segment, in the direction from the image ofPi to
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Pi, and then scale each segment with appropriate scaling
factors forX , Y andZ components such thatT interpo-
latesP and has an appropriate size. Consequently, as it
shows in Figure 2(a),T is represented by five segments:fT01; T02; T03; T04; T05g and they are notC0-continuous.
But after a blending process using equation (1), we get a
surfaceS1 which smoothly interpolatesP .

4. Local Parameterization of Subdivision Surfaces:
The blending process defined by eq. (1) is performed on
regions of the limit surface. Hence a local parameteriza-
tion is needed for each region of the limit surface where
a blending process is to be performed. Several local pa-
rameterization methods have been reported in the litera-
ture [15, 17]. We follow Reif’s approach [17] here. We
assume that for any two extraordinary points ofP , their
corresponding points on the limit surface are at least two
patches away. If this is not the case, simply perform one
or two subdivision steps onP to get a new control mesh
for the limit surface. But the target of the interpolation
process is stillP , not the new control mesh.

Reif’s approach maps an extraordinary point to(0; 0)
and is based on thecharacteristic map of a subdivision
scheme [17]. A characteristic map is defined by calcu-
lating the limit of subdivision on a 2D mesh formed by
the two sub-dominant eigenvectors of the local subdivi-
sion matrix [17, 21]. The characteristic map for Catmull-
Clark subdivision scheme around an extraordinary ver-
tex of valencen is based on the topology of the 2-ring
neighborhood of vertices around the extraordinary ver-
tex. The 2-ring neighborhood is enough to determine the
limit function for then faces adjacent to the extraordi-
nary vertex. Thus, the two sub-dominant eigenvectors
have6n + 1 entries each. Since they do not depend on
the input mesh, they can be pre-computed for each va-
lencen. Once we have the two sub-dominant eigenvec-
tors, we can find(u; v) parameters corresponding to each
vertex of thek-times (k 2 Z andk � 0) refined mesh,
around the extraordinary point. This is done by applying
a3� 3 limit mask [18] of bicubic B-splines to the corre-
sponding neighborhood of vertices in thek-times refined
mesh. Also as a normalization rule, the two sub-dominant
eigenvectors should be scaled such that the parameters(u; v) at the end-points of edges emanating from the ex-
traordinary vertex have coordinates(
os(i�); sin(i�)),i = 1 � � �n, where� = 2�=n (see Fig. 3(a)).

5. Blending around an extraordinary point: With
parametrization available, it is now possible to perform
blending process on regions of the limit surface. To max-

imize the blending area around an extraordinary point
(note that a regular point is just a special case of an ex-
traordinary point), we define the blending region in the
parameter space by the condition:u2 + v2 � 1:
This is a circle centered at the extraordinary point in the
parameter space (See Fig. 3(a)). Note that some of the
parameters(u; v) in the characteristic map might be out-
side the unit circle [17, 18], i.e.,u2 + v2 > 1 is possi-
ble. Hence the actual blending area is smaller than the
whole domain. It should be pointed out that the blending
area defined here is different from the one used in [18],
which is defined byu2 + v2 � �n with �n being the
sub-dominant eigenvalue of the subdivision matrix corre-
sponding to a valencen extraordinary vertex. The reason
for this difference is because we want to maximize the
blending areas and overlapping of blending areas does not
matter in our case.

The blending weight functionW (u; v) must satisfy
the condition0 � W (u; v) � 1 in the blending region
and has to be at leastC2-continuous everywhere. We fol-
low Levin’s approach [18] to defineW (u; v), i.e.,W (u; v) = (u2 + v2)(3(u2 + v2)� 8p(u2 + v2) + 6)
It is easy to see thatW (u; v) satisfies0 � W (u; v) � 1
in the regionu2 + v2 � 1 and isC2-continuous every-
where. At the extraordinary point,W (u; v) approaches
zero at the rate ofu2+v2. When near the boundary of the
blending regionu2+v2 = 1,W (u; v) approaches 1, with
zero partial derivatives up to order 2. Hence, the resulting
surface is guaranteed to interpolate the given mesh and,
meanwhile, cancels out the irregularity and discontinuity
of the blending surfaceT .

6. Blending around an arbitrarily selected point:
Because we allow local adjustment of the interpolating
surface, there should be a way for the system to per-
form blending process in regions around arbitrarily se-
lected points of the surface, not only the images of the
control verticesPi. With a local parametrization, such
a task is actually relatively easy to achieve. For exam-
ple, in Fig. 3(b), to adjust the interpolating surface in a
small area around the selected point (the one marked with
a black solid circle), we first find the parameter(u0; v0)
of the selected 3D point in the parameter space of the
local parametrization that covers the selected point, and
then find the biggest circle in the parameter space whose
center is(u0; v0) (the red circle in Fig. 3(b)). This circle
defines the blending area for the selected point.

Proceedings of 2008 NSF Design, Service, and ManufacturingGrantees and Research Conference, Knoxville, Tennessee Grant #0422126



(a) Blending around the image of an original vertex (b) Blending around an arbitrary point

Figure 3: Parameter space for a vertex of degree 5 and for an arbitrarily selected point.

To speed up the search of(u0; v0), we can simply
choose the closest(u0; v0) in thek-times refined charac-
teristic map (k 2 Z andk � 0). Once we have(u0; v0),
we still need to find the biggest radius for the blending
area. Again we compare all the distances from the se-
lected point(u0; v0) to all the boundary parameter val-
ues in thek-times refined characteristic map (k 2 Z andk � 0) and the smallest one is the radius of our blend-
ing area, denotedr0. In addition, as mentioned above,
the blending area should not include the parameter point
(0,0). So we also need to comparer0 with the distance
between(0; 0) and(u0; v0) and the smaller one is calledr. Therefore the blending area for the selected point can
be defined as follows.(u� u0)2 + (v � v0)2 < r2
The corresponding blending weight functionW (u; v) is
defined by the following quartic formula [18].W (u; v) = �2(3�2 � 8�+ 6);
where � = p(u� u0)2 + (v � v0)2r :
It is easy to see� � 1 and W (u; v) satisfies0 �W (u; v) � 1 in the blending region and isC2-continuous
everywhere. Note that at the selected point,W (u; v) ap-
proaches zero. When near the boundary of the blending
region,W (u; v) approaches 1, with zero partial deriva-
tives up to order 2. Consequently, it can still cancel out

the irregularity and discontinuity of the blending surfaceT while locally modify the shape of the interpolating sur-
face according to the need of the user.

6.1. Revisit Construction of Blending Surface T : In
the above section, we have discussed how to construct
an initial blending surfaceT0 around vertices to be in-
terpolated. In this section, we show how to construct a
blending surfaceTi around an arbitrarily selected point.Ti, like T , should also be easy and efficient to construct.
Again, we can use affine transformation to constructTi
from Si. The scaling factor components of the affine
transformation matrix are easy to determine, simply com-
pare the dimensions ofTi andSi. The question is how to
determine the offset components of the affine transfor-
mation matrix. Note that, unlike the case ofT0 where the
offset components of the affine transformation matrix are
determined by the vertex to be interpolated and its limit
point onS, in this case, there is no point in the given
mesh that corresponds to the selected point onSi. In an
interactive environment, such a point can be specified by
the user. But how should such a point and, consequently,
the offset vector be determined for an automatic system?

We propose to determine the offset vector for each
selected 3D point by constructing a Hermite surface for
the patch that covers the selected point. For example, if
the offset vectors for the four vertices of the patch areD1; D2; D3 andD4, then we construct a Hermite surface
patchH(u; v) based onD1; D2; D3 andD4. The tangent
vectors at the four corners required for the construction ofH are set to the partial derivatives of the limit surfaceS
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at the four corners. The offset vector for a selected point
with parameter value(u0; v0) in Si, is set toH(u00; v00),
where(u00; v00) can be determined by linearly mapping
quadrilateral[0; 
os(2i�=n)℄ � [0; sin(2i�=n)℄ to a unit
square.

7. Interpolation of Normal Vectors: Direction of nor-
mal vectors specified at vertices of the given mesh can
also be interpolated. The key is to modify the construc-
tion process of the blending surfaceT0 so that it would
have the same normals (actually the same partial deriva-
tives) at the extraordinary points. This can be easily
achieved by rotating each piece ofT0 with appropriateX , Y andZ rotation factors after the above mentioned
translation and scaling process. This is possible because
each piece ofT0 interpolates one point ofP only. Hence
we have a blending surfaceT0 that not only interpolates
the given meshP but normals specified at some or all ver-
tices ofP as well. Because the value ofW (u; v) and its
first partial derivatives at(0; 0) are all zero, the resulting

interpolating surface�S then satisfies�T (u;v)�u = � �S(u;v)�u
and�T (u;v)�v = � �S(u;v)�v . In other words,�S andT0 have the
same normal. Hence, with one more Affine transforma-
tion (actually they can be combined into a single matrix
to save computation time), we can construct an interpo-
lating surface that not only interpolates the given mesh,
but normals at all or some of the vertices of the mesh as
well.

P

A
B

SA SB

SC SD

Q

V

Figure 5: Handling open meshes

8. Handling Open Meshes: The interpolation process
developed in the previous sections can not be used for
open meshes, such as the one shown in Fig. 4(c), di-

rectly. This is because boundary vertices of an open
mesh have no corresponding limit points, nor derivatives.
Therefore, the Affine transformation matrix required for
the construction ofT0 cannot be built directly. One way
to overcome this problem is to add an additional ring of
vertices along the current boundary and connect the ver-
tices of this ring with corresponding vertices of the cur-
rent boundary to form an additional ring of faces. The
newly added vertices are calleddummy vertices. We then
apply the interpolation method to the extended open mesh
as to a closed mesh except that there are no actions taken
for the dummy vertices. This technique of extending the
boundary of a given mesh is similar to a technique pro-
posed for uniform B-spline surface representation in [1].
Note that in this case, the interpolation process is not
based on the limit surface of the given mesh, but the limit
surface of the extended mesh. Therefore, the shape of the
interpolating surface will be affected by locations of the
dummy vertices as well. Determining the location of a
dummy vertex, however, is a tricky issue, the user should
not be burdened by such a tricky task. In our system, this
is done by using locations of the current boundary ver-
tices of the given mesh as the locations of the dummy ver-
tices. Note that our interpolation technique is performed
directly on the limit surface, hence there is no need to care
about positions of the dummy vertices after interpolation.

Another approach to handle open mesh interpolation
is to modify the proposed interpolation method for closed
meshes. Note that our method is locally adjustable.
Hence the limit point of a vertex actually can be moved
to anywhere, as long as the interpolation requirement are
satisfied. Consider the mesh shown in Fig. 5 where ver-
tices marked with circles, likeP andQ, are boundary
vertices and vertices marked with solid circles, such asV ,A andB, are interior vertices. The shaded surface patch
is the corresponding limit surface whereS(A) andS(B)
are the images ofA andB, respectively,S(C) andS(D)
are the images of the corresponding edge points, respec-
tively. According to our interpolation method,S(A) andS(B) should be moved toA andB, respectively. How-
ever, to interpolate the boundary pointsP andQ, we can
modify our approach such thatS(A) andS(B) are moved
toP andQ, respectively, andS(C) andS(D) are moved
to A andB, respectively. The resulting surface then in-
terpolates all the vertices of the given open mesh.

9. Test Results: The proposed techniques have been
implemented inC++ using OpenGL as the supporting
graphics system on the Windows platform. Quite a few
examples have been tested with the techniques described
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(a) Given Mesh (b) Interpolation Surface (c) Given Mesh (d) Interpolation Surface

Figure 4: Examples

here. All the examples have extra-ordinary vertices.
Some of the tested results are shown in Figures 1, 4 and
6. From these examples we can see smooth and visually
pleasant shapes can be obtained by locally adjusting the
original limit surfaces.

In our implementation, two subdivision steps are per-
formed on the given mesh for each example before the
parametrization technique [17] is applied. The evaluation
of the interpolating surfaces are based on sample param-
eter values of the4-times refined characteristic maps, and
we find the results to be good for most cases. For bigger
patches one can use more sample points because patches
do not have to be sampled uniformly.

All the interpolation shown in Figures 1, 4 and 6 are
done with at least two blending processes. First one is
done withT0, which is based on all the given control ver-
tices. T1 for the second blending process is based on all
edge points of the given mesh. Some figures in the exam-
ples went through more blending processes to further im-
prove quality of the interpolating surface.Ti’s for those
blending processes are selected based on, for example,
face points of all patches, or parameter values( 12j ; 12k ),
wherej andk are integers. User interaction is also pos-
sible. For example, Figure 1(b) and Figure 1(c) both in-
terpolate the given mesh shown in Figure 1(a), but Figure
1(c) is obtained with more local adjustment on the upper
part of the teapot body. The other parts are not adjusted,
hence they are exactly the same as those shown in Figure
1(b). Figure 1 shows, with user local adjustment, a bet-
ter shape can be obtained after some automatic blending
processes.

The original Utah teapot consists of four separate

parts: lid, handle, body and spout. The mesh shown
in Figure 1(a) is actually a set of four meshes, one for
each component of the original Utah teapot. Each part
is an open mesh. Although each of these meshes can
be interpolated separately, Figure 1(b) and Figure 1(c)
are generated by regarding them as a single mesh. The
mesh shown in Figure 6(b) is another example of an open
mesh with disconnected boundaries. But different from
the case shown in Figure 1, which is generated by mov-
ing the vertices to some different position intentionally,
Figure 4(d) is generated using additional dummy vertices
in the interpolating surface construction process.

The new interpolation method can handle meshes
with large number of vertices in a matter of less than
a second on an ordinary PC (3.2GHz CPU, 512MB of
RAM). For example, the meshes shown in Figures 1(a),
4(a), 4(c), 6(a) and 6(c) have 320, 9, 194, 354 and 66
vertices, respectively, and it takes almost no time to in-
terpolate these relatively small meshes. Since it is a lo-
cal blending process and is performed directly on the
limit surface, our method can easily handle meshes with
thousands of or more vertices. Hence our interpolation
method is especially suitable for interactive shape design.

10. Summary: A new interpolation method for meshes
with arbitrary topology is presented. The interpolation
process is a local process, it does not require solving a
system of linear equations. Hence, the method can handle
data set of any size.

The interpolating surface is obtained by locally ad-
justing the limit surface of the given mesh (viewed as the
control mesh of a Catmull-Clark subdivision surface) so
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(a) Given Mesh (b) Interpolating Sur-
face

(c) Given Mesh

(d) Interpolating Surface

Figure 6: Examples

that the modified surface interpolates all the vertices of
the given mesh. This local adjustment process can also
be used to smooth out the shape of the interpolating sur-
face. Hence, asurface fairing process is not needed in
the new method.

The new method can handle both open and closed
meshes. It can interpolate not only vertices, but normals
and derivatives as well. These normals and derivative can
be anywhere, not just at the vertices of the given mesh.
Test results show that the new method leads to good in-
terpolation results even for complicated data sets.

The resulting interpolating surface is not a Catmull-
Clark subdivision surface. It does not even satisfy the
convex hull property [18]. But the resulting interpolating
surface is guaranteed to beC2 continuous everywhere ex-
cept at some extraordinary points, where it isC1 contin-
uous. Using a technique similar to the one presented in
[18], aC2 continuous interpolating surface can also be
achieved.
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