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Abstract. We present trichotomy results characterizing the complexity of rea-
soning with disjunctive logic programs. To this end, we introduce a certain defi-
nition schema for classes of programs based on a set of allowed arities of rules.
We show that each such class of programs has a finite representation, and for each
of the classes definable in the schema we characterize the complexity of the exis-
tence of an answer set problem. Next, we derive similar characterizations of the
complexity of skeptical and credulous reasoning with disjunctive logic programs.
Such results are of potential interest. On the one hand, they reveal some reasons
responsible for the hardness of computing answer sets. On the other hand, they
identify classes of problem instances, for which the problem is “easy” (in P) or
“easier than in general” (in NP).

1 Introduction

It is well known that the problem to decide whether a disjunctive logic program has an
answer set (the EAS problem, for short) is ΣP

2 -complete [1]. It is also well known that
putting restrictions on the input instances may affect the complexity. For example, the
EAS problem for normal logic programs is NP-complete [2].

In this paper we study the complexity of the EAS problem for classes of disjunctive
logic programs that can be defined by sets of program rule arities. We show that in each
case the problem is either in P, is NP-complete or is ΣP

2 -complete, and we characterize
the classes of programs that fall into each category. We extend this result to establish
similar characterizations for the problems of skeptical and credulous reasoning with
disjunctive logic programs. Such results are of potential interest. On the one hand, they
reveal some reasons responsible for the hardness of computing answer sets; cf. Lemmas
4 and 5. On the other hand, they identify classes of problem instances, for which the
problem is “easy” (in P) or “easier than in general” (in NP); cf. Lemmas 1 and 2.

Our results can be regarded as trichotomy results for the complexity of reasoning
tasks in disjunctive logic programming. Similar results are known for the complexity of
reasoning in other formalisms: propositional satisfiability [3–5], reasoning with mini-
mal models [6], default logic [7], and abductive reasoning [8]. There is however, an im-
portant distinction between those earlier papers and our approach. The results contained
there are concerned with the setting in which formulas are conjunctions of Boolean re-
lations, and the set of models of a formula is the intersection of the sets of models of
its constituent relations (that, in particular, implies the monotonicity of inference from
such formulas). The basic results concern the complexity of the satisfiability problem



for classes of formulas determined by sets of Boolean relation allowed as formula con-
juncts. It turns out that there is a simple characterization of all those classes, for which
the problem is in P; moreover for all other classes the problem is NP-complete [3–5].
This result can be exploited to characterize the complexity of reasoning with systems,
in which basic reasoning tasks reduce to series of satisfiability tests [6–8]. In the setting
of disjunctive logic programs, these earlier results seem of little help. It is well known
that the answer-set semantics is nonmonotone and so, logic programs under the answer-
set semantics are not conjunctions of their rules. Thus, it is unclear that defining classes
of programs in terms of semantic properties of individual rules could yield any useful
insights.

2 Preliminaries

We fix an infinite countable set At of propositional variables. A disjunctive program (or
simply, program) over the set of atoms At is a collection of disjunctive logic program
rules, that is, expressions of the form

r = a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn, (1)

where ai, bi and ci are atoms from At . The disjunction a1| . . . |ak is the head of r
and the conjunction b1, . . . , bm,not c1, . . . ,not cn is the body of r. Further, we call
the triple [k,m, n] the arity of r. We denote the arity of r by a(r) and write a1(r),
a2(r) and a3(r) for the three components of a(r). Thus, under this notation, a(r) =
[a1(r), a2(r), a3(r)]. If a1(r) ≥ 1, we call r proper. Otherwise, a1(r) = 0 and r
is a constraint. Programs consisting of proper rules are proper programs. Similarly,
programs consisting of constraints only are constraint programs.

We recall that given a program P and a set of atoms M (an interpretation), the
reduct of P with respect to M , PM , is the program obtained by removing all rules
with a literal not c, where c ∈ M , in the body and, then, removing all negative literals
(negated atoms) from the bodies of all remaining rules. A set of atoms M is an answer
set of a disjunctive program P if M is a minimal model of PM [9].

For a program P , we denote by P and P the programs consisting of all proper rules
and of all constraints in P , respectively. The following result is well known.

Theorem 1. A set M ⊆ At is an answer set of a program P if and only if M is an
answer set of P and a model of P .

One can define classes of logic programs by specifying arities of rules. For instance,
the set {[1, 1, 0], [0, 1, 0]} defines the set of all Horn programs such that each rule has
at most one atom in the body. Some classes of programs do not have such a finitary
representation. For instance, the class of all Horn programs with constraints can be
defined by the set {[k,m, 0] | k ≤ 1, 0 ≤ m}, but there is no finite set of arities that
could be used instead. To handle such cases, we introduce now a general representation
schema for classes of programs defined by sets of arities.

Let U = {0, 1, . . .} ∪ {∞}. We consider U to be ordered by the relation ≤ (the
standard ≤ ordering relation on non-negative integers, extended by i ≤ ∞, for every



i = 0, 1 . . .). Next, we define T = {[k,m, n] | k,m, n ∈ U}. Thus, T contains all
arities, as well as additional triples — those containing at least one occurrence of ∞.
We refer to triples of that latter sort as superarities. We emphasize that superarities are
not arities as we do not consider infinitary rules. If α ∈ T , we write α1, α2 and α3 for
the components of α.

Let α, β ∈ T . We define α � β if (1) αi ≤ βi, for i = 1, 2, 3 and, (2) if α1 = 0
then β1 = 0. We write α ≺ β when α � β and α 6= β.

If ∆ ⊆ T , then we define F(∆) to be the set of all finite programs P that satisfy
the following condition: for every rule r ∈ P there is α ∈ ∆ such that a(r) � α. The
condition (2) in the definition of � allows us to distinguish between classes of proper
programs and classes of programs with constraints. Indeed, without the condition (2),
every class of programs of the formF(∆) would contain constraints. With the condition
(2), we can specify constraint-free classes of programs by means of sets ∆ such that for
every α ∈ ∆, α1 ≥ 1. Including in ∆ elements α with α1 = 0 yields classes of
programs with constraints. As there are classes of proper programs that are of interest
(Horn programs and normal logic programs are typically defined as consisting of proper
rules only), the distinction is needed and motivates the condition (2) in the definition of
�.

Using this schema we can define several important classes of programs. For in-
stance, the class of proper Horn programs can be described as F({[1,∞, 0]}) and the
class of normal logic programs with constraints as F({[1,∞,∞], [0,∞,∞]}).

Our main goal in this paper is to determine the complexity of the EAS problem
when input programs come from classes F(∆), for ∆ ⊆ T .

3 The Case of Finite ∆

In this section we tackle the case when∆ is finite. We note that given a finite set∆ ⊆ T ,
the problem to decide the membership of a program in the class F(∆) is in P.

We start by establishing the upper bounds on the complexity of the EAS problem
for classes F(∆) given by some particular finite sets ∆ of arities. Our first result is
concerned with the following classes: F({[∞,∞, 0]}) — the class of proper positive
disjunctive programs; F({[1,∞, 0], [0,∞,∞]}) — the class of programs whose every
rule is either a proper Horn rule or a constraint; F({[∞, 1, 0], [0, 1, 0]}) — the class
of dual Horn programs, that is, programs whose every rule, when viewed as a proposi-
tional clause, is a dual Horn clause; and F({[i, j, 0] ∈ T | i + j ≤ 2}) — the class of
positive programs whose every rule consists of at most two literals. For each of these
classes of programs, the EAS problem is easy (that is, in P).

Lemma 1. If ∆ is one of:

1. {[∞,∞, 0], [0, 0, 0]}
2. {[1,∞, 0], [0,∞,∞]}
3. {[∞, 1, 0], [0, 1, 0]}
4. {[i, j, 0] ∈ T | i+ j ≤ 2}

then the EAS problem for F(∆) is in P.



Proof: We omit the proofs of the first two statements, which are quite straightforward.
Thus, let us assume that P ∈ F({[∞, 1, 0], [0, 1, 0]}) or P ∈ F({[i, j, 0] ∈ T | i+

j ≤ 2}). Then P is a dual Horn program, or P is positive and every clause in P consists
of two literals. In each case, one can decide in polynomial time whether P has a model.
If the answer is “no,” then P has no answer sets. Otherwise, P has a model, say M .
Since M is a model of P , there is a subset M ′ of M such that M ′ is a minimal model
of P . We have P

M ′

= P . Thus, M ′ is an answer set of P . Since M satisfies P and
each rule in P is of the form← a or← a, b, M ′ satisfies P , too. Thus, M ′ is an answer
set of P . Again, the assertion follows. 2

The second result establishes sufficient conditions for the EAS problem to be in
the class NP. It turns out to be the case for the following three classes of programs:
F({[1,∞,∞], [0,∞,∞]}) — the class of normal logic programs with constraints;
F({[∞, 1,∞], [0,∞,∞]}) — the class of programs whose reducts consist of proper
dual Horn rules and constraints; and F({[∞,∞, 0], [0,∞, 0]}) — the class of positive
programs.

Lemma 2. If ∆ is one of:

1. {[1,∞,∞], [0,∞,∞]}
2. {[∞, 1,∞], [0,∞,∞]}
3. {[∞,∞, 0], [0,∞, 0]}

then the EAS problem for F(∆) is in NP.

Proof: If ∆ = {[1,∞,∞], [0,∞,∞]}, F(∆) consists of normal logic programs with
constraints. In this case, the result is well known [2].

Next, let ∆ = {[∞, 1,∞], [0,∞,∞]} and P ∈ F(∆). To prove the assertion it is
enough to show that there is a polynomial time algorithm for deciding whether a set of
atoms M ⊆ At(P ) is an answer set of P . To this end, we note that M is a minimal
model of P

M
if and only if for every a ∈M , the program P

M ∪ { ← a} ∪ { ← b | b ∈
At(P ) \M} does not have a model. Since P

M ∪ { ← a} ∪ { ← b | b ∈ At(P ) \M}
is dual Horn, verifying whether M is a minimal model of P

M
can be accomplished

in polynomial time. In addition, checking that M is a model of P can also be done in
polynomial time, too. Thus, in this case, the assertion follows.

Finally, if ∆ = {[∞,∞, 0], [0,∞, 0]} and P ∈ F(∆), then deciding whether P
has an answer set is equivalent to deciding whether P has a model. Since the problem
to decide whether P has a model is in NP, the assertion follows. 2

Next, we will prove several lower-bound results. We will first exhibit classes of
programs of the form F(∆) for which the EAS problem is NP-hard. To this end, we
need a lemma establishing the NP-hardness of the SAT problem for some simple classes
of CNF theories. For the most part, the result is folklore. We sketch an argument for the
sake of completeness.

Lemma 3. The SAT problem restricted to each of the following classes of CNF theories
is NP-hard:

1. the class of all CNF formulas ψ such that each clause of ψ is a disjunction of two
negated atoms, or of at most three atoms



2. the class of all CNF formulas ψ such that each clause of ψ consists of at most two
literals, or is a disjunction of two atoms and one negated atom

3. the class of all CNF formulas ψ such that each clause of ψ consists of at most
two atoms, or of one negated atom, or is a disjunction of an atom and two negated
atoms

4. the class of all CNF formulas ψ such that each clause of ψ is a disjunction of two
atoms, or of at most three negated atoms.

Proof: We will only prove the case (3). The argument in all other cases is similar.
Let ϕ be a CNF formula whose every clause has three literals, and let X be a set of

atoms occurring in ϕ. For each atom z ∈ X we introduce a fresh atom z′. Next, in each
clause c we replace some of its positive literals a with ¬a′, and some of its negative
literals ¬b with b′ so that the resulting clause, we will denote it by ĉ, is the disjunction
of exactly one atom and two negated atoms. Such replacements can always be found.

Finally, we introduce one more fresh atom, say f , and define F (ϕ) as follows:

F (ϕ) = {z ∨ z′ | z ∈ X} ∪ {f ∨ ¬z ∨ ¬z′ | z ∈ X} ∪ {¬f} ∪
{ĉ | c is a clause in ϕ}

It is evident that F (ϕ) is in the class of theories under consideration.
We will show that ϕ has a model if and only if F (ϕ) has a model. To this end,

we note that models of F (ϕ) (if exist) are of the form M ∪ {z′ | z ∈ X \M}, where
M ⊆ X . It is now easy to see thatM is a model of ϕ if and only ifM∪{z′ | z ∈ X\M}
is a model of F (ϕ). Thus, the claim and, consequently, the assertion, follows.

As we noted, the argument for the remaining classes is similar. We only need to
change the definition of ĉ and use clauses ¬z ∨¬z′ instead of f ∨¬z ∨¬z′ (there is no
need to introduce f , as clauses being the disjunctions of two negated atoms are allowed
in formulas in each of the classes considered in (1), (2) and (4)). 2

We will now use Lemma 3 to establish the NP-hardness of the EAS problem for
F(∆) for several simple sets ∆ ⊆ T .

Lemma 4. If ∆ is any of:

1. {[1, 0, 1]}
2. {[2, 0, 0], [0, 0, 1]}
3. {[3, 0, 0], [0, 2, 0]}
4. {[2, 1, 0], [0, 2, 0]}
5. {[2, 0, 0], [1, 2, 0], [0, 1, 0]}
6. {[2, 0, 0], [0, 3, 0]}

then the EAS problem for F(∆) is NP-hard.

Proof (sketch): (1) The proof of the NP-completeness of the EAS problem for normal
logic programs given by Marek and Truszczyński [2] establishes the assertion (1).

(2) We will construct a reduction from the SAT problem concerning the class considered
in Lemma 3(4). Let ϕ be a CNF of the appropriate form. We denote by pos(ϕ) the set
of all clauses in ϕ that are of the form a∨ b, where a, b ∈ At . We denote by neg(ϕ) the



set of all remaining clauses in ϕ (all of them are disjunctions of at most three negative
literals).

For every clause c = ¬y1 ∨ . . . ∨ ¬yk in neg(ϕ), we introduce a fresh atom xc.
Next, we define

P (ϕ) = {a|b← | a ∨ b ∈ pos(ϕ)} ∪
{xc|yi ← | c ∈ neg(ϕ),

c = ¬y1 ∨ . . . ∨ ¬yk, 1 ≤ i ≤ k},
Q(ϕ) = {← not xc | c ∈ neg(ϕ)}, and
R(ϕ) = P (ϕ) ∪Q(ϕ).

One can now show that ϕ is satisfiable if and only if R(ϕ) has an answer set (we
omit the details). Since R(ϕ) ∈ F(∆), the assertion follows by Lemma 3(4).
(3)-(6) In all the remaining cases, we exploit the fact that P ∈ F(∆) has an answer set
if and only if P has a model (the same argument that we used in the proof of Lemma 2
applies). The latter problem for each of the cases (3)-(6) is equivalent to the satisfiability
problem for the classes considered in Lemma 3(1)-(4), respectively. In each of these
cases the problem is NP-hard (Lemma 3), and so the assertion follows. 2

The next lemma establishes conditions guaranteeingΣP
2 -hardness of the EAS prob-

lem. Eiter and Gottlob [1] proved that given P ∈ F({[2, 0, 0], [1, 3, 0], [1, 0, 1]}), it is
ΣP

2 -hard to decide whether P has an answer set. The proof can be modified to the
case when the class of input programs is restricted to F({[2, 0, 0], [1, 2, 0], [1, 0, 1]}), as
clauses of the arity [1, 3, 0] can be simulated by clauses of arity [1, 2, 0]. Moreover, in
the construction provided by Eiter and Gottlob, the only rule of the arity [1, 0, 1] used
is a constraint and it can be simulated by a rule of the arity [0, 0, 1]. Thus, the ΣP

2 -
hardness holds also for the class F({[2, 0, 0], [1, 2, 0], [0, 0, 1]}) of programs. We omit
the details and state the result only.

Lemma 5. If ∆ is any of:

1. {[2, 0, 0], [1, 2, 0], [0, 0, 1]}
2. {[2, 0, 0], [1, 2, 0], [1, 0, 1]}

then the EAS problem for F(∆) is ΣP
2 -hard.

We will now derive the main result of this section. It provides a complete character-
ization of the complexity of the EAS problem for the class F(∆). To state the result we
introduce one more piece of notation. Given ∆,Θ ⊆ T , we write ∆ � Θ if for every
α ∈ ∆ there is β ∈ Θ such that α � β.

Theorem 2. Let ∆ ⊆ T be finite.
(A) If

1. ∆ � {[∞,∞, 0], [0, 0, 0]}, or
2. ∆ � {[1,∞, 0], [0,∞,∞]}, or
3. ∆ � {[∞, 1, 0], [0, 1, 0]}, or
4. ∆ � {[i, j, 0] ∈ T | i+ j ≤ 2},



then the EAS problem for F(∆) is in P.
(B) Otherwise, if

1. ∆ � {[1,∞,∞], [0,∞,∞]}, or
2. ∆ � {[∞, 1,∞], [0,∞,∞]}, or
3. ∆ � {[∞,∞, 0], [0,∞, 0]},

then the EAS problem for F(∆) is NP-complete.
(C) Otherwise, the EAS problem for F(∆) is ΣP

2 -complete.

Proof: The claim (A) follows directly from Lemma 1. Thus, let us assume that ∆ does
not fall under the scope of (A) and satisfies the assumptions of (B). By Lemma 2, the
latter implies that the EAS problem for F(∆) is in NP.

If {[1, 0, 1]} � ∆ or {[2, 0, 0], [0, 0, 1]} � ∆, the NP-hardness of the EAS problem
for F(∆) follows from Lemma 4, parts (1) and (2), respectively. Thus, let us assume
that {[1, 0, 1]} 6� ∆ and {[2, 0, 0], [0, 0, 1]} 6� ∆.

Since {[1, 0, 1]} 6� ∆, we have ∆ � {[∞,∞, 0], [0,∞,∞]}. Since ∆ does not
satisfy the condition (A2), {[2, 0, 0]} � ∆. Since {[2, 0, 0], [0, 0, 1]} 6� ∆, {[0, 0, 1]} 6�
∆. Thus, ∆ � {[∞,∞, 0], [0,∞, 0]}.

Since ∆ does not satisfy the condition (A1), {[0, 1, 0]} � ∆. Similarly, since ∆
does not satisfy the condition (A3), {[1, 2, 0]} � ∆ or {[0, 2, 0]} � ∆. We also
have that ∆ does not satisfy the condition (A4). Thus, there is α ∈ ∆ such that
α1 + α2 ≥ 3. Since we already proved that {[2, 0, 0]} � ∆, it follows that at least one
of the following conditions holds: {[3, 0, 0], [0, 2, 0]} � ∆, {[2, 1, 0], [0, 2, 0]} � ∆,
{[2, 0, 0], [1, 2, 0], [0, 1, 0]} � ∆, or {[2, 0, 0], [0, 3, 0]} � ∆. Thus, the NP-hardness of
the EAS problem for F(∆) follows again from Lemma 4 and completes the proof of
(B).

To prove (C), we observe that if ∆ does not fall under the scope of (B), then
{[2, 0, 0], [1, 2, 0], [0, 0, 1]} � ∆. Indeed, since∆ does not satisfy (B1), {[2, 0, 0]} � ∆.
Similarly, since ∆ does not satisfy (B2), {[1, 2, 0]} � ∆. Finally, since ∆ does not
satisfy (B3), {[0, 0, 1]} � ∆ or {[1, 0, 1]} � ∆. Thus, the ΣP

2 -hardness follows by
Lemma 5. Since the EAS problem is in ΣP

2 even without any restrictions on the class
of programs, both (C) and the assertion of the lemma follows. 2

4 The Case of Infinite ∆

The question we study now is whether there are interesting classes of programs of the
form F(∆), when ∆ is infinite. The main result of this section is that by allowing ∆ to
be infinite, we do not obtain any new classes of programs. In other words, for every class
of programs of the form F(∆) there is a finite set ∆′ ⊆ T such that F(∆) = F(∆′).

A sequence {αk}∞k=1 is monotone (strictly monotone) if for every k, αk � αk+1

(αk ≺ αk+1, respectively). Let {αk}∞k=1 be a monotone sequence of elements of T .
We define the limit of this sequence as α∞ = [(α∞)1, (α∞)2, (α∞)3], where (α∞)i =
sup{(αk)i | k = 1, 2 . . . , }, for i = 1, 2, 3. Let∆ ⊆ T . A monotone sequence {αk}∞k=1

of elements of ∆ is maximal if there is no α ∈ ∆ such that α∞ ≺ α. We define A(∆)
to be the set of the limits of maximal sequences in ∆.



We have the following two lemmas (we omit the proof of the first one as it is evi-
dent).

Lemma 6. Let {βk}∞k=1 be a strictly monotone sequence of elements from T . For every
α ∈ T , if α ≺ β∞, then there is k such that α ≺ βk.

Lemma 7. Let ∆ ⊆ T and α ∈ ∆. Then, there is α′ ∈ A(∆) such that α � α′.
Proof: Let X = {β ∈ ∆ | α � β}. If X has a maximal element, say γ, a sequence with
each term equal to γ is maximal. Its limit, also equal to γ, clearly satisfies γ ∈ A(∆)
and α � γ. Thus, the assertion follows.

Otherwise, X has no maximal elements. Let α1 be any element in X (we note that
X 6= ∅, as α ∈ X). Let k ≥ 1 and let 〈α1, . . . , αk〉 be a strictly monotone sequence
of k elements in X , for some k ≥ 1. Since X has no maximal elements, X contains
elements that are strictly greater than αk. Let us select as αk+1 an element β ∈ X such
that αk ≺ β and αk

i < βi on as many positions i = 1, 2, 3 as possible. An infinite
sequence we define in that way, we will denote it by α, is strictly monotone. Let us
assume that there is β ∈ ∆ such that α∞ ≺ β. It follows that there is j, 1 ≤ j ≤ 3,
such that (α∞)j < βj . Thus, (α∞)j = m, for some integer m, and there is n such that
(αn)j = m. Since αn+1 � β and (αn) = (αn+1)j = m, the number of positions i
such that (αn)i < (αn+1)i is strictly smaller than the number of positions i such that
(αn)i < βi. Since β ∈ X , that contradicts the way we constructed the sequence α.

It follows that the sequence {αk}∞k=1 is maximal for∆ and so, the assertion follows
in this case, too. 2

We now have the following properties. We provide a proof for the first of them and
omit proofs, rather direct and technical, of the remaining two.

Proposition 1. For every ∆ ⊆ T , F(∆) = F(A(∆)).

Proof: To prove the assertion, it is enough to show that for every arity α (no occurrence
of ∞), {α} � ∆ if and only if {α} � A(∆). Let us first assume that {α} � ∆.
It follows that there is an element α′ ∈ ∆ such that α � α′. By Lemma 7, there is
α′′ ∈ A(∆) such that α′ � α′′. Thus, α � α′′ and so, {α} � A(∆).

Conversely, let {α} � A(∆). It follows that there is β ∈ A(∆) such that α � β.
Since β ∈ A(∆), there is a monotone sequence {βk}∞k=1 of elements of ∆ such that its
limit is β. Wlog we can assume that either starting with some k0, the sequence {βk}∞k=1

is constant, or the sequence β is strictly monotone. In the first case, α � β = βk0 .
Since βk0 ∈ ∆, {α} � ∆. In the second case, Lemma 6 implies that there is k such
that α ≺ βk, and again {α} � ∆ follows. 2

Proposition 2. For every ∆, A(∆) is an antichain.

Proposition 3. Every antichain in the partially ordered set 〈T ,�〉 is finite.

These properties imply the main result of this section. It asserts that every class of
programsF(∆) can be defined by means of a finite set∆′ that is an antichain in 〈T ,�〉.
Theorem 3. For every set ∆ ⊆ T there is a finite subset ∆′ ⊆ T such that ∆′ is an
antichain and F(∆) = F(∆′).

Proof: Let us define ∆′ = A(∆). By Propositions 2 and 3, ∆′ is a finite antichain in
〈T ,�〉, and by Proposition 1, F(∆) = F(∆′). Thus, the theorem follows. 2



5 The Complexity of Skeptical and Credulous Reasoning

The EAS problem is just one example of a reasoning task that arises in the context of
disjunctive logic programs with the answer-set semantics. There are several other tasks
that are of interest, too. They concern deciding whether a program nonmonotonically
entails a literal, that is an atom, say a, or its negation¬a. For a disjunctive logic program
P and a literal l we say that

1. P skeptically entails l, written P |=s l, if M |= l, for every answer set M of P (we
recall that if M is a model (a set of atoms) and a is an atom, M |= a if a ∈M , and
M |= ¬a if a /∈M )

2. P credulously entails l, written P |=c l, if there is an answer set M of P such that
M |= l.

We note that P |=s l if and only if P 6|=c l, where l is l’s dual literal. Thus,
to establish fully the complexity of deciding nonmonotonic entailment it is enough to
focus on deciding whether P |=c ¬a and P |=s ¬a, where a is an atom. These two
decision tasks were studied by Eiter and Gottlob [1], who proved that, in general, the
first one is ΣP

2 -complete and the second one is ΠP
2 -complete.

Reasoning with answer sets is related to circumscription and closed-world reason-
ing with propositional theories. A detailed study of the complexity of those forms of
reasoning was conducted by Cadoli and Lenzerini [10]. Using Theorem 2 and one of
the results from that paper (which we state in the proof below), one can characterize
in terms of our definition schema the complexity of deciding, given a program P and
an atom a, whether P |=c ¬a and P |=s ¬a. The two problems are addressed in the
following two theorems.

Theorem 4. Let ∆ ⊆ T be finite.

(A) If

1. ∆ � {[1,∞, 0], [0,∞,∞]}, or
2. ∆ � {[∞, 1, 0], [0, 1, 0]}, or
3. ∆ � {[i, j, 0] ∈ T | i+ j ≤ 2},

then the problem to decide whether P |=c ¬a, where P ∈ F(∆) and a is an atom, is in
P.

(B) Otherwise, if

1. ∆ � {[1,∞,∞], [0,∞,∞]}, or
2. ∆ � {[∞, 1,∞], [0,∞,∞]}, or
3. ∆ � {[∞,∞, 0], [0,∞, 0]},

then the problem to decide whether P |=c ¬a, where P ∈ F(∆) and a is an atom, is
NP-complete.

(C) Otherwise, the problem to decide whether P |=c ¬a, where P ∈ F(∆) and a is an
atom, is Σ2

P -complete.



Proof: It is well known that P has an answer set M such that M |= ¬a (that is, a /∈M )
if and only if P ∪ { ← a} has an answer set. Let ∆ ⊆ T be finite and let us define
∆′ = ∆ ∪ {[0, 1, 0]}. Clearly, if P ∈ F(∆), then P ∪ { ← a} ∈ F(∆′). Moreover, if
∆ falls under the scope of (A) ((A) or (B), respectively) of this theorem then ∆′ falls
under the scope of (A) ((A) or (B), respectively) of Theorem 2. Consequently, the upper
bound follows by Theorem 2.

The proof of hardness exploits earlier results on the hardness of the EAS problem.
The reductions are provided by the following constructions. For a program P we define
P ′ = P ∪{a|b}, P ′′ = P ∪{a← not b; b← not a}, and P ′′′ = P ∪{a← bd(r) | r ∈
P}, where a and b are fresh atoms. Clearly, P has an answer set if and only if P ′ |=c ¬a
(P ′′ |=c ¬a, P ′′′ |=c ¬a, respectively). We omit the details due to space limits. 2.

Theorem 5. Let ∆ ⊆ T be finite.
(A) If∆ � {[1,∞, 0], [0,∞,∞]}, then the problem to decide whether P |=s ¬a, where
P ∈ F(∆) and a is an atom, is in P.
(B) Otherwise, if

1. ∆ � {[1,∞,∞], [0,∞,∞]}, or
2. ∆ � {[∞, 1,∞], [0,∞,∞]}

then the problem to decide whether P |=s ¬a, where P ∈ F(∆) and a is an atom, is
coNP-complete.
(C) Otherwise, the problem to decide whether P |=s ¬a, where P ∈ F(∆) and a is an
atom, is ΠP

2 -complete.

Proof: It is well known that P has an answer set such that M 6|= ¬a (that is, a ∈ M)
if and only if P ∪ { ← not a} has an answer set. That observation implies all upper
bound results (by a similar argument as that used in the proof of the previous theorem).

We will now prove the lower bounds for the cases (B) and (C). Let us assume
that ∆ does not satisfy (A) but falls under the scope of (B). If ∆ satisfies (B1), then
{[1, 0, 1]} � ∆. Let P ∈ F(∆) and let a and a′ be fresh atoms. We note that P has an
answer set if and only if P ∪ {a ← not a′} has an answer set M such that a ∈ M or,
equivalently, if and only if P ∪ {a ← not a′} 6|=s ¬a. Thus, the hardness follows (cf.
Lemma 4(1)).

Let us assume then that∆ does not satisfy (B1). Then, we have that {[2, 0, 0]} � ∆.
It follows from the results of Cadoli and Lenzerini [10] that it is NP-complete to decide
whether a given 2CNF theory, whose every clause is a disjunction of two atoms, has a
minimal model that contains a given atom a. As minimal models of such theories are
precisely answer sets of the corresponding disjunctive program, it follows that given a
program P ∈ F(∆) and an atom a, it is coNP-complete to decide whether P |=s ¬a.

Finally, let us assume that neither (A) nor (B) apply to ∆. Then [1, 2, 0] ∈ ∆ and
[2, 0, 0] ∈ ∆. Eiter and Gottlob [1] proved that if P ∈ F({[2, 0, 0], [1, 3, 0]}) and a is an
atom then it is ΠP

2 -hard to decide whether P |=s ¬a. That result can be strengthened
to the case when P ∈ F({[2, 0, 0], [1, 2, 0]}), as clauses of the arity [1, 3, 0] can be
simulated by clauses of arity [1, 2, 0] (cf. the comments preceding Lemma 5). 2

We note that credulous reasoning is simple (in P or in NP) for several classes of
programs. In contrast, there are fewer classes of programs, for which skeptical reasoning



is simple (in P or coNP). The main reason behind this asymmetry is that in the cases
(A2), (A3) and (B3) of Theorem 4 (positive programs) answer sets and minimal models
coincide. Thus, in these cases, credulous reasoning asks for the existence of a minimal
model that does not contain an atom a, which is equivalent to the existence of a model
(not necessarily minimal) that does not contain a. In other words, the requirement of
minimality becomes immaterial (one source of complexity disappears). This is not so
with skeptical reasoning, where not having a in any minimal model is not the same as
not having a in any model. A similar comparison of skeptical and credulous reasoning
for positive programs was offered by Eiter and Gottlob for the coarser setting of classes
of programs they considered [1].

6 Another Representation Schema

Finally, we consider briefly an alternative way, in which classes of programs could be
described by means of arities of rules. When defining the class F(∆), we view each
element α ∈ ∆ as a shorthand for the set of all arities β such that β � α. In other
words, ∆ is an implicit representation of the set of all allowed arities: not only those
arities that are explicitly listed in ∆ are legal but also those that are “dominated” by
them.

There is another, more direct (more explicit), way to use arities to define classes of
programs. Let ∆ ⊆ T be a set of arities, that is, we now do not allow superarities in
∆. We define G(∆) to consist of all finite programs P such that for every rule r ∈ P ,
a(r) ∈ ∆. Thus, when defining the class G(∆), ∆ serves as an explicit specification of
the set of allowed arities.

One can show that the results of Section 3 can be adapted to the setting of classes
of the form G(∆), where ∆ is a finite set of arities. In particular, we have the following
result.

Theorem 6. Let ∆ ⊆ T be a finite set of arities. If there are no k,m ≥ 1 such that
{[k, 0, 0]} ∈ ∆ or {[k, 0,m]} ∈ ∆, then the EAS problem for G(∆) is in P. Otherwise:

(A) If

1. ∆ � {[∞,∞, 0], [0, 0, 0]}, or
2. ∆ � {[1,∞, 0], [0,∞,∞]}, or
3. ∆ � {[∞, 1, 0], [0, 1, 0]}, or
4. ∆ � {[i, j, 0] ∈ T | i+ j ≤ 2},

then the EAS problem for G(∆) is in P.

(B) Otherwise, if

1. ∆ � {[1,∞,∞], [0,∞,∞]}, or
2. ∆ � {[∞, 1,∞], [0,∞,∞]}, or
3. ∆ � {[∞,∞, 0], [0,∞, 0]},

then the EAS problem for G(∆) is NP-complete.

(C) Otherwise, the EAS problem for G(∆) is Σ2
P -complete.



Proof (sketch): Let us first assume that there are no k,m ≥ 1 such that {[k, 0, 0]} ∈ ∆
or {[k, 0,m]} ∈ ∆, and let P ∈ G(∆). Then every rule in P has at least one positive
atom in the body and so, M = ∅ is the unique answer set of P . It can be verified in
polynomial time whetherM = ∅ is a model of P . Thus, the EAS problem for programs
in G(∆) can be decided in polynomial time.

To prove the remaining part of the assertion, we note that the upper bound is implied
directly by Theorem 2 (as G(∆) ⊆ F(∆)). To prove the lower bounds, we observe
that if there are k,m ≥ 1 such that {[k, 0, 0]} ∈ ∆ or {[k, 0,m]} ∈ ∆, then the EAS
problem forF(∆) can be reduced to the EAS problem for G(∆). Indeed, let P ∈ F(∆)
and let r ∈ P . Then there is α ∈ ∆ such that a(r) � α. Having {[k, 0, 0]} ∈ ∆ or
{[k, 0,m]} ∈ ∆, where k,m ≥ 1, allows us to “simulate” the effect of r with a rule
r′ of arity α obtained by repeating atoms in the head of r, and by inserting an atom
a and a negated atom not b, where a and b are fresh, as many times as necessary in
the body of r to “reach” the arity α. We also add the rule a| . . . |a ← or a| . . . |a ←
not a′, . . . ,not a′, where a′ is another fresh atom and a and not a′ are repeated k, or
k and m times, respectively. 2

Thus, as long as ∆ is finite, our approach and results obtained earlier apply to the
classes G(∆), as well. In particular, given a finite ∆, there is a polynomial-time (in the
size of ∆) algorithm to decide which of the cases of Theorem 6 applies. In addition,
there is a polynomial-time algorithm to decide whether P ∈ G(∆).

If∆ is infinite, the situation is different. For some infinite sets∆ there is no problem.
For instance, when ∆ is specified by means of a finite set ∆′ of arities and superarities
and consists of all arities α such that {α} � ∆, then we have G(∆) = F(∆′). Thus,
Theorem 2 can be used to determine the complexity of the EAS problem for programs
from the class G(∆). However, in general, each finitary representation schema for the
classes G(∆) would need to be studied separately and, possibly, it might not lend itself
easily to reductions to Theorem 2.

7 Discussion

In the paper, we studied classes of programs defined in terms of “legal” arities of rules.
Specifically, we focused on classes of programs of the form F(∆), where ∆ ⊆ T . We
proved that each such class has a finite representation and, for each finite set ∆, we
determined the complexity of reasoning tasks for programs from F(∆). We also con-
sidered a related family of classes of programs, namely those of the form G(∆), where
∆ ⊆ T consists of arities only. For classes of programs of that form we established
the complexity of the EAS problem, as well as that of the credulous and skeptical rea-
soning. In each case, the complexity is given by one of three complexity classes (P,
NP-complete, and ΣP

2 -complete; or P, coNP-complete, and ΠP
2 -complete, depending

on the type of the reasoning task).
As we noted, our trichotomy results have some similarity to the dichotomy result

by Schaefer, and its corollaries for other logic formalisms: the abductive reasoning [8],
reasoning with minimal models [6] and, reasoning in default logic [7]. The classes of
theories and formulas considered in those papers are defined in terms of boolean re-
lations that are allowed in the language [3–5]. That definition schema satisfies the di-



chotomy property: for every class of formulas definable in that schema, the satisfiability
problem is in P, or is NP-complete. The monotonicity of the propositional logic (the set
of models of the conjunction of two formulas is the intersection of the sets of models of
the conjuncts) is a fundamental property required by that result. Since logic programs
with the answer-set semantics do not satisfy the monotonicity property, it is unclear
how to extend that formalism the approach originated by Schaefer. Thus, we based our
approach on a different definition schema developed specifically for programs, and re-
lated to the “complexity” of rules as measured by the numbers of atoms in the head,
and positive and negative literals in the body.

It turns out though, that some classes of programs/theories appear prominently in
both settings (for instance: Horn programs and Horn theories; positive programs with
no more than two literals per rule and 2CNF theories). It is then an interesting problem
whether a result based on the classification in terms of types of boolean relations can
be obtained for disjunctive logic programs. One possibility might be to consider a more
general setting of answer-set programs in the language of propositional logic under the
semantics of equilibrium models [11].
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