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Abstract. Let G be the set of finite graphs whose vertices belong to some fixed
countable set, and let be an equivalence relation ¢h By the strengthening of

= we mean an equivalence relatien such thaiG =, H, whereG, H € G, if
foreveryF € G, GU F = H U F. The most important case that we study in
this paper concerns equivalence relations defined by graph prap&kewrite

G =? H, whered is a graph property and, H € G, if either bothG and H
have the propert®, or both do not have it. We characterize the strengthening of
the relations=? for several graph propertig@s For example, ifb is the property

of being ak-connected graph, we find a polynomially verifiable (fofixed)
condition that characterizes the pairs of graphs equivalent with retpec?.

We obtain similar results whed is the property of being-colorable, edge-
colorable, hamiltonian, or planar, and whénis the property of containing a
subgraph isomorphic to a fixed graph We also prove several general theorems
that provide conditions foe, to be of some specific form. For example, we find
a necessary and sufficient condition for the relatianto be the identity. Finally,

we make a few observations on the strengthening in a more generalkes¢

is the set of finite subsets of some countable set.

1 Introduction

Equivalence relations partition their domains into classeequivalent objects — ob-
jects indistinguishable with respect to some characteristthe case of domains whose
elements can be combined, equivalence relations camdmgthened. In this paper, we
introduce the concept of strengthening, motivate it, andsit in the case of equiva-
lence relations that arise in the domain of graphs.

To illustrate what we have in mind, let us consider aXetf possible team mem-
bers. Teams are finite subsetsXf We have some equivalence relation on the set of
teams, which groups in its equivalence classes teams o&the galue. Thus, given two
equivalent teams, say§, B C X, we could use any of them without compromising the
quality. But there is more to it. Let us consider a te@insuch thatA is its sub-team,
that is,A C C. Let us also suppose that for one reason or another we aréeuioab
keep all members aofl in C. If we need the “functionality” ofd in C, we might want
to replaceA with its equivalentB by forming the teanC’ = B U (C'\ A). After all,

A andB are equivalent. But this is a reasonable solution only if bynd so, we do not
change the quality of the overall team, that is}iandC’ are equivalent, too. And, in
general, it is not guaranteed.



Let us observe thatin our example= AU(C\ (AUB)) andC’ = BU(C\(AUB),
that is, they are extensions dfand B, respectively, with the same s¢€; \ (AU B)).
This suggests that we might call tearhgnd B strongly equivalent (with respect to the
original equivalence relation) if for every finite sBt AU D andB U D are equivalent.
Clearly, if A and B are strongly equivalent, then any two teams obtained bynextg
A and B with the same additional members are equivalent! Thusglagion of strong
equivalence, the “strengthening” of the original one, isgsely what we need when
we consider teams not as individual entities but as potesutateams in bigger groups.

To the best of our knowledge, the concept of strong equicaldras emerged so
far only in the area of logic programming [5, 6, 3, 7]. Resbkars argued there that it
underlies the notion of a module of a program, and is esdentiamodular program
development. In this paper we study the strengthening ofcaiivalence relation in
the domain of graphs. As a result, we obtain a new class ohgfagoretic problems.
Importantly, when applied to specific properties, for inst, to the graph connectivity,
the notion of strengthening has interesting practical iosion and does give rise to
non-trivial arguments and characterizations.

Let us consider the following scenario. In the context ofameks, which we typ-
ically represent as graphs, the concept of their connégtisi of paramount impor-
tance (cf. Colbourn [1]). Let us define grapisand H to be equivalent if both are
k-connected or if neither of them is. With time networks gravd @et embedded into
bigger networks. The key question is: are the gra@hend H interchangeable, in the
sense that the networks obtained by identical extensiofisaofd H are equivalent with
respect tok-connectivity?

For example, neither of the two graphs in Figure 1(a) is 27eated and so, they
are equivalent with respect to 2-connectivity. They are hotvever, strongly equivalent
with respect 2-connectivity. Indeed, the graphs obtaineéxtending them with two
edgesaw andbw, shown in Figure 1(b) are not 2-connectivity equivalent —e af
them is 2-connected and the other one is not! On the other, loaedcan verify directly
from the definition that the graphs shown in Figure 1(c) arengfly equivalent with
respect to 2-connectivity. Later in the paper, we providdaracterization that allows
us to decide the question of strong equivalence with regpexinnectivity.

Our paper is organized as follows. While most of our resulteceon strengthening
of equivalence relations on graphs, we start by introduttiegconcept of the strength-
ening of an equivalence relation in a more general settitiggoplomain of finite subsets
of a set. We derive there several basic properties of themotvhich we use later in
the paper. In particular, for a class of equivalence reatatidefined in terms of proper-
ties of objects — such equivalence relations are of primatgrest in our study — we
characterize those relations that are equal to their dfnenings.

The following sections are concerned with equivalencetigeia on graphs defined
in terms of graph properties, a primary subject of interesid. Narrowing down the
focus of our study to graphs allows us to obtain stronger aarkrmteresting results.
In particular, we characterize relations whose strengtigeis the identity relation, and
those whose strengthening defines one large equivalensg gléith all other classes
being singletons. We apply these general characterizatiorobtain descriptions of
strong equivalence with respect to several concrete gifagdretic properties including
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Fig. 1. (a) Graphs that are not strongly equivalent with respect to 2-ctimitec(b) Extensions
of the graphs from (a) showing that graphs in (a) are not strongljvagunt with respect to
2-connectivity; and (c) Two graphs that are strongly equivalent veisipect to 2-connectivity.

possessing hamiltonian cycles and being planar. Mainteesfiihe paper, are contained
in the two sections that follow. They concern graph-théonatoperties, which do not
fall under the scope of our general results. Specificallydeal there with vertex and
edge colorings, and with-connectivity. The characterizations we obtain are nosatr
and show that the idea of strengthening gives rise to clgilgrproblems that often (as
in the case of strengthening equivalence with respectdonnectivity) have interesting
motivation and are of potential practical interest.

2 The Problem and General Observations

We fix an infinite countable sé&t and denote by the set of finite subsets &f.

Definition 1. Let = be an equivalence relation on G. We say that sets G, H € G are
strongly equivalentvith respect to =, denoted by G =, H, if for every set F' € G,
G UF = H U F.Wecall =, the strengtheningf =.

While most of our results concern the case wideis a set of edges over some
infinite countable set of vertice, in this section we impose no structure Srand
prove several basic general properties of the conceptaigquivalence.

Proposition 1. Let = be an equivalence relation on setsin G. Then:

1. therelation =, isan equivalence relation
2. foreverysetsG, H € G, G =4 H impliesG = H (thatis, =, C =)
3. foreverysetsG,H,F € G,G =5 HimpliesGUF =, HU F.

Proof: (1) All three properties of reflexivity, symmetry amdnsitivity are easy to check.
For instance, let us assume that for some threel3ets H € G, D =, GandG =, H.
Let F' € G. By the definition.DU F = GU F andG U F' = H U F'. By the transitivity
of=, DUF = HU F. SinceF was an arbitrary element ¢f, D =, H.



(2) By the definition of=,, for every sett' € G, G U F = H U F. In particular, if
F =0, we getthalG = H.

(3) Foreveryset” € G, FUF' € G.SinceG =; H,(GUF)UF' = GU(FUF") =,
HU(FUF'")=(HUF)UF'. Thus, the claim follows.

Proposition 2. Let ~ and = be equivalence relationson G. Then:

1. if=C=,then~, C =,
2. ifrg==,then (N =) =~=,.

Proof: Arguments for each of the assertions are simple. Asxample, we prove (2)
here. By (1), it suffices to show that,C (=~ N =),. Thus, letus consider sef§ H € G
suchthati ~; H.LetF € G. Clearly, GUF ~ H U F. Moreover, by the assumption,
G =, H. Thus,GU F = HU F, as well. It follows thatG U F(x N =)H U F. AS F
is arbitrary,G(~ N =) H follows. |

Corollary 1. Let = be an equivalence relation on setsin G. Then, (=;)s ==,. More-
over, for every equivalencerelation =~ on G such that ~,==;, =,C~.
Proof: By Proposition 1(2)=,C=. Thus, by Proposition 2(1}=;)s C=;. Conversely,
let us consider set§’, H € G such thatG =, H and letF, F’' € G. SinceG =, H,
GU(FUF')=HU(FUF'").Thus,(GUF)UF' = (HUF)UF’. As F' is arbitrary,
G UF =, HU F follows. Consequently, aB is arbitrary, tooG(=;)<H.

To prove the “moreover” part of the assertion, we note that ~. Thus,=,C~,
as needed. ]

Corollary 1 states, in particular, that for every equivakemelation= on G, =; is
themost precise among all equivalence relatiorssuch thate,==,.

Most of our results concern equivalence relations definddrims of functions as-
signing to sets irg collections of certain objects. Lét be a set and lef : G — 2Y.
For sets7 and H, we define:

1. G Hif f(G) = f(H), and
2. G=F Hif f(G) = f(H) =0,0rf(G) # 0 and f(H) # 0.

Obviously,~/ C =7, Thus, by our earlier resultszf C =/, =/ € =/, and=/ C =/,

Properties of elements oy (formally, subsets of) give rise to a special class of
equivalence relations of the latter type. Namely, givena@pprty® C G, we define
U = {0} and setfs(G) = {0} if and only if G € & (otherwise,fs(G) = 0). Clearly,
G =f+ H if and only if bothG and H have® (G, H € @), or if neitherG nor H does
(G ¢ & andH ¢ ). To simplify the notation, we always write? instead of=/#. By
& we denote the property — &.

In the remainder of this section we present a general resalterning the relation
=? that does not require any additional structure of subsegs tifcharacterizes those
propertiesd C G, for which=?==? (the strengthening does not change the equiva-
lence relation). The remainder of the paper is concernel thé relations=/ and=/
(including relations=®) and their strengthenings in the case wigeronsists of graphs.
In several places, we will consider properties that are rtmv@ Formally, a property
& C G ismonotoneif for every G, HG, G € @ impliesH € .
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Lemma 1. Let & C G beaproperty suchthat ) ¢ &. Then, =?==? if and only if there
isX C&suchthatd ={G e G| GNX # 0}.

Proof: (<) Let us assume that thereds C £ such thatd = {G € G| GN X # 0}.
To prove that=?==2, it suffices to show that' =% H impliesG =% H (the converse
implication follows by Proposition 1(2)).

Thus, letG =% H. First, let us assume that, H < &. It follows thatG N X # ()
andH N X =# (. Consequently, for every sét, (GUF)NX # Jand(HUF)NX # 0.
Thus, GUF,HUF € #and soGU F =? H U F. It follows thatG =% H.

The only remaining possibility is that, H ¢ ¢. SinceGNX = HN X = 0, for
every graph?', (GU F)N X # @ ifand only if (H U F') N X # §. That is, for every
graphF,G U F =% HU F and soG =% H inthis case, as well.

(=) First, we prove that is monotone. LeG C H and letG € &. Let us assume
that H ¢ . It follows that() =% H and so, by the assumptioft, =% H. Thus,
G=0UG=? HUG = H.SinceH ¢ &, G ¢ &, a contradiction. Thus{ € &.

We defineX = {e € £| {e} € &}. We will show thatG € & if and only if
GNX #0.1f GN X # 0, then there ig € X such thafe} C G. Since{e} € @, by
the monotonicity of? it follows thatG € &.

Conversely, let us assume thG@ite . Let G’ C G be a maximal subset @f such
thatG’ ¢ &. SuchG’ exists ad) ¢ . Moreover, sinces € &, G’ # G. It follows that
there ise € G\ G’. We have) =% ¢’ as neither set has properdy By the assumption,
0 =2 G'. Thus,{e} = DU {e} =2 G’ U {e}. By the maximality ofG’, G’ U {e} € &.
Thus,{e} € @. Consequently € X andG N X # 0. O

Theorem 1. Let @ bea property. Then, =?==? if and only if thereis X C & such that
d={GeG|GNX #Btord={GeG|GC X}

Proof: (=) Let us assume thdt¢Z &. Then, Lemma 1 implies that there is a &such
thatd = {G € G| GNX # 0}. If ) € &, then)) ¢ . Since=?==?, === Thus,
=?_=? By Lemma 1, there is a sé&t such thatp = {G € G| GNY # (}. Setting
X =&\Y,weobtainthat = {Ge G| G C X}.

(e)Ifd={GeG|GNX # 0}, then)) ¢ & and the result follows from Lemma
1. Thus, let us assume thét= {G € G| G C X}. We have then thad = {G €
G| GNY # 0}, whereY = £\ X. Moreover,) ¢ ®. Thus, by Lemma 1=2==2,
By our earlier observationss?==?. O

3 Strengthening of equivalence relations on graphs

From now on we focus on the special case of equivalenceaatatin graphs. That is,
we assume a fixed infinite countable $&bf vertices and definef to be the set of all
unordered pairs of two distinct elements frafthe set of alledges on V). Thus, the
elements ofG (finite subsets of) can now be regarded as graphs with the vertex set
implicitly determined by the set of edges. For a gr@phwe denote by (G) the set

of vertices ofG, that is, the set of all endvertices of edgeginFrom this convention,

it follows that we consider only graphs with no isolated ig=$. We understand the



union of graphs as the set-theoretic union of sets. GiveraphgF and edges ¢ G
andf € G, we often writeG + e andG — f for GU {e} andG — { f}, respectively. We
refer the reader to Diestel [2] for definitions of all grapledinetic concepts not defined
in this paper.

Our first result fully characterizes equivalence relatiohg whose strengthening
is the identity relation.

Theorem 2. Let = be an eguivalence relation on G. Then, =, is the identity relation
on G if and only if for every completegraph K € G andfor everye € K, K #; K —e.

Proof: (=) Let K be a complete graph if and lete € K. SinceK # K — e,
K #4 K — e, as required.

(<) LetG, H € G. Clearly, if G = H thenG =, H (as=; is reflexive). Conversely,
let G =; H. Let us assume that # H. Without loss of generality, we may assume
that there is an edge € G \ H. Let K be the complete graph on the set of vertices
V(G U H). SinceG =5 H,GU (K —e) =, HU (K — e) (cf. Proposition 1(3)).
Moreover,GU (K —e¢) = K (asG C K ande € G)andHU (K —e¢) = K —¢
(asH C K ande ¢ H). Consequentlyk =; K — e, a contradiction. It follows that
G=H. O

Remark 1. If we consider finite subsets of an arbitrary infinite coutgaetX as ob-
jects to compare by equivalence relations, we could progddhowing result (by es-
sentially the same method we used in Theorem 2)=t bk an equivalence relation on
Prin(X). Then,=, is the identity relation orPg, (X) if and only if for everyS C X
and everyv € S, S #, S — v. Applying this result to graphs gives us a weaker char-
acterization than the one we obtained, as its conditionresdfor every grapty and
everye € S, S #, S — e,” while our condition is restricted to complete graphs only

We will now illustrate the applicability of this result. L&, H € G and let us define
G ="¢ H if and only if G and H either both have or both do not have a hamiltonian
cycle. Theorem 2 implies that the relatiesf* is the identity relation. In other words,
for every two distinct graph& and H, there is a grapt such that exactly one of the
graphsG U F'andH U F' is hamiltonian.

Theorem 3. Let G, H € G. Then G =" H ifandonly if G = H.

Proof: (=) Let K be a finite complete graph frogiand lete € K. If |K| = 1, then
K = {e} andK — e = (). Lete = uv and letw be a vertex in different fromu and
v. We defineF’ = {uw, vw}. Clearly, K U F' has a hamiltonian cycle and U F = F'
does not have one. Thuk, £ K — e. Next, let us assume thak'| = 3. Then, K
has a hamiltonian cycle anl — e does not. Thusk #"¢ K — e and, consequently,
K #* K —e.

Finally, let us assume thgk'| > 6 (that is, K is a finite complete graph on at least 4
vertices). Let, ..., v,, wheren > 4, be the vertices ok and lete = v,v,. We select
fresh vertices fronV, sayws, ..., w,—1. We setF = {v;w;| i = 3,...,n — 1} U
{w;viy1]i=3,...,n — 1}. Itis clear that’i U F' has a hamiltonian cycle. However,
(K — e) U F does not have one! Indeed, any such cycle would have to cositaédges



Fig.2.GraphsK U F and(K —e) U F

in F', and that set cannot be extended to a hamiltonian cydl&ir e) U F (cf. Figure
2). Thus, also in this casé #"¢ K — e and, by Theorem 25"¢ is the identity relation.

(«=) This implication is evident. It: = H then, clearlyG =/ H. |

We note that the strengthening of a related (and more plesigavalence relation
=~he \wherehc is the function that assigns to a graph the set of its hanigtooycles, is
also the identity relation.

Next, we turn our attention to other equivalence relatiomg@phs determined by
properties of graphs (subsets@ft

We say that a propery C G is strong if for every G, H € G, G =% H if and only
if G,H € ® orG = H. Inother words, a property is strong, if the strong equivalence
with respect te=? does not “break up” the equivalence cldssf the relation=? (does
not distinguish between any graphs with the propéitjut, in the same time, breaks
the other equivalence class into singletons.

We will now characterize properti@sthat are strong.

Theorem 4. Let @ be a property of graphsin G (a subset of G). Then, ¢ isstrong if and
only if & is monotone and for every graph G ¢ &, and every edgee € G, G #2 G —e.

Proof: (<) We need to show that foreve6y, H € G,G =2 Hifandonly if G, H € &
orG = H.If G, H € ¢ then, by the monotonicity op, for everyF € G,GUF € ¢
andH U F € . Thus,GU F =% H U F. SinceF is arbitrary,G =? H.If G = H
thenG =% H is evident.

Conversely, letz =% H. ThenG =? H and so, either botli; and H have®,
or neitherG nor H has®. In the first case, there is nothing left to prove. Thus, let us
assume that?, H ¢ &.

Lete € G\ H. We define’ = GUH. SinceG =2 H,G' = GUH =* HUH =
H. SinceH ¢ &, G' ¢ ®. Let G” be a maximal graph such th&(G") = V(G’),
G' C G" andG"” ¢ & (sinceG’ ¢ &, such a graph exists). We observe thadt =
GU(G" —e)andG"” — e = HU (G" — ¢). Thus,G” =2 (G” — e) (cf. Proposition
1(3)), a contradiction. It follows tha¥ C H. By symmetry,H C G and soG = H.

(=) Let us assume that there is a gragh¢ ¢ such that for every supergragh of
G, G’ ¢ . Let H be anyproper supergraph o7 (clearly, G has proper supergraphs).
and letF’ be any graph. The& U F'and H U F' are both supergraphs 6f. It follows
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thatGUF ¢ ® andH U F ¢ &. Consequentiyy U F =% H U F. SinceF is an
arbitrary graphG =2 H. However® is strong and so the equivalence clas&afnder
=? consists ofG only (asG ¢ ®). Thus,G = H, a contradiction. It follows that for
every graptGG ¢ &, there is a supergraghi’ of G such thatG’ € &.

Let us now assume thdtis not monotone. Then, there are graphand A such that
G C H,G e $,andH ¢ $. Let H' be a supergraph df such thatd’ € . It follows
thatG =? H' and, aspb is strong,G =2 H'. Thus,H =GUH =Y H' UH = H', a
contradiction (adf ¢ ® andH’ € ). It follows that® is monotone.

Finally, letG ¢ @ ande € G. Since® is strong, the equivalence class@funder
=? consists of only. Consequently; Z% G — e. ]

To illustrate the scope of applicability of this result, wdlwonsider now several
graph-theoretic properties. We start with the propertyaf-planarity, that is, the set of
all graphs that are not planar.

Theorem 5. The property of non-planarity is strong.

Proof: Let® denote the property of non-planarity. It is clear tftas monotone. Thanks
to Theorem 4, to complete the proof it suffices to show thaetery graphz ¢ ¢ and
every edge € G, G £2 G —e.

Thus, letG ¢ @, that s, letG be a planar graph. Lete G. We will denote by and
y the endvertices of. First, let us assume th&t = {e}. Let K be a complete graph on
5 vertices that contains Clearly,§) U (K — ¢) is planar ande} U (K — e) = K is not.
Thus,G #% G — .

From now on, we will assume that has at least three vertices. l@tbe a maximal
planar supergraph @ such that’ (G) = V(G’). We will now fix a particular planar
embedding of5’, and assume thatbelongs to the outerface (such an embedding ex-
ists). With some abuse of terminology, we will refer alsohis tmbedding a&’. We
observe that by the maximality ¥, every face inG’ is a triangle. Sinc& C G’, to
prove that’ £% G — e, it suffices to show that’ ¢ G’ — e (by Proposition 1(3)).

1.|V(G")| = 3. ThenG' is a triangle. Letr, y, andz be the vertices o’ and let (as be-
foree = zy). Letv andw be two new vertices anH = {vz, vy, vz, wz, wy, wz, vw}.
ThenG' UF = K, whereK is a complete graph on 5 vertices. Cleaftyjs not planar.
On the other handG’ — ¢) U F = K — eis planar. ThusG' U F £ (G’ —e) U F
and so’ £% G’ —e.

2.|V(G")| > 4. There are two distinct faces, s&y and F; in G’, sharing the edge
e. Both faces are triangles and, without loss of generaligy,agsume thak’ is the
outerface. Let us assume, as before, that xy and letv; (respectivelyps) be the
third vertex of the facd”; (resp.F»). We note that there is a path from to vy in G’
that does not contaim nor y. Indeed, every two edges incidentgaand consecutive
in the embedding of’ are connected with an edge, as all face§irare triangles (cf.
Figure 3(a)).

Letv be a new vertex anl = {wzx, wy, wvy, wvs }. Then(G' —e)UF is planar (cf.
Figure 3(b)). On the other hand, the gra@hu F' contains a subgraph homomorphic
to the complete graph on five vertices and €a, F is not planar. Thusi’ U F #%
(G' — ) U F and, consequentlyy’ ¢ G’ — e. ]
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Fig. 3. (a) GraphG’; (b) GraphG’ U F.

Corollary 2. Let =P! be the equivalence relation such that for every two graphs G and
H,G =P H if both G and H are planar or both G and H are non-planar. Then, for
every two graphs G and H, G =P! H if and only if both G and H are non-planar or
G=H.

Proof: The relation=P!==%, where® is the non-planarity property. Since the relation
@ is strong (by Theorem 5), the assertion follows. O

Theorem 4 applies to many graph-theoretic properties cordewith the contain-
ment of particular subgraphs. We will present several sucheasties below.

Theorem 6. The property &g consisting of all graphs containing a subgraph isomor-
phicto H isstrong in each of the following cases:

1. Hisastar

2. Hisacycle

3. H isa2-connected graph such that for every 2-element cutset {z, y}, zy isan edge
of H

4. H isa 3-connected graph

5. H isacomplete graph

Proof: In each case the property is monotone. Thus, we omllgl tteshow that for every
G ¢ ¢y and every edge € G, there is a grapl” such thaG U F £%# (G —e) U F.
Below we assume that= xy.

(1) If H = {e}, for somee € &, andG ¢ Py, thenG = () and so the required property
holds vacuously. Thus, let us assume tHatonsists oft > 2 edges. Sincé&' ¢ &y,
degg(x) < k. Let F be a star witht — degs (z) edges all incident ta: and with the
other end not inZ. Clearly, G U F' contains a star witlk edges. On the other hand,
(G —e) U F does not.

(2) Let H be a cycle withk edges. We defing’ to be a path withk — 1 edges, with
endvertices: andy, and with all intermediate vertices not @A. Clearly,G U F' has a
cycle of lengthk and(G — e) U F does not.

(3) Let F” be a graph isomorphic tH, such thal/ (F') NV (G) = {z,y} andzy is an
edge ofF’. Let F = F’ — e. Clearly,G U F contains a subgraph isomorphicib Let
us assume thdti —e) U F' contains a subgraph, s&¥/ isomorphic toH. This subgraph
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is not contained entirely idF — e (as thenG would contain a subgraph isomorphic to
H andG ¢ &g). Also, H' is not a subgraph of’ (F' has one fewer edge thad’).
Thus,{z, y} is a cutset ofH’ andzy is not an edge oH’. That implies thatd has a
2-element cutset whose elements are not joined with an edgmtradiction.

Parts (4) and (5) of the assertion follow from (1) - (3). Inde# a graphH is 3-
connected, then it is 2-connected, too. Moreover, it vaslyogatisfies the requirement
that for every 2-element cutsét, y}, zy is an edge off. Thus, (4) follows. IfH is a
complete graph, then itis a star (if it consists of only ongedar a cycle (if it consists
of three edges), or is 3-connected. Thus, (5) follows. |

We note that except stars, theedge path is the only trel# such thatby is strong.
Indeed, ifH is ak-edge tree different from a star an@-@dge path then we defir@
to be a complete graph dnvertices and: to be any edge ofi. Then,G ¢ &y (as it
has onlyk vertices). However, for every gragh, either bothG U F' and(G — e¢) U F'
containH or neither does. Thug; =2# G — e, which implies thatby is not strong.

If H is a3-edge path thetr ¢ & if and only if every component af is a star or
atriangle. Lete = xy be an edge itd7. If e itself is a component ofr then letF’ be a
2-edge pathyzu, wherez andu are new vertices (not il (G)). If e is an edge of a star
centered at then we defing” to be an edgez, wherez is a new vertex. Finally, ié is
an edge of a triangle then |étbe an edgewu, wherez is the third vertex of the triangle
andu is a new vertex. In each cagéU F' contains &8-edge path whildG — e) U F'
does not. Henc&' #%# G — e which, by Theorem 4, implies thaty; is strong when
H is the3-edge path.

Theorem 6 states that for every 3-connected grEphhe property®y is strong.
However, the problem of characterizing 1-connected andrifxected graph&l such
that®d g is not strong is open.

4 Colorability, Edge Colorability and Connectivity

In the rest of the paper, we discuss strengthening of eaarical relations arising in the
context of some well studied graph-theoretic conceptsneotivity, colorability and
edge colorability. We start with a simple lemma.

Lemma 2. Let G and H begraphs. If V(G) = V(H) and the families of vertex sets of
components of G and H are not the same then there exists a pair of vertices which are
joined by an edge in one of the graphs G or H and are in two different componentsin
the other graph.

Proof. By our assumptions there exists a component, Gayn G such thatV (G’)

is not the vertex set of any componentih Let H' be a component i/ such that
V(HYNV(G') # ( and letz be any element of (H') NV (G'). AsV(G') # V(H'),
V(G") = V(H') #0orV(H") — V(G") # 0. We will consider the former case only
because both cases are very similar. et V(G’) — V(H’). Since bothz andy
belong to the componert’, there exists a patR in G joining x with y. Clearly,z and

y belong to two different components fifi so there is an edge in the paththat joins
vertices that belong to two different componentdf a
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4.1 Colorability

Let k be a positive integer and let the functiehassign to every graph the set of its
goodk-colorings (to simplify the notation, we drop the referencd:). We will show
thatEcl — gcl — gcl_
Theorem 7. Let k be a positive integer. For every graphs G and H, the following con-
ditions are equivalent:

() G =2 H,
(i) G = H,
(i) G =~ H.

Proof. (i) = (ii). Let G =¢! H. By the inclusion=¢ C =, either bothG and H are
well k-colorable or bothG and H are not wellk-colorable. In the latter case the sets
of goodk-colorings ofG and H are empty so they are equal. Thus assume that@oth
and H are wellk-colorable.

Let us suppos& (G) # V(H) and assume without loss of generality that there
exists a vertex € V(G) — V(H). Denote byr a neighbor ofy in G. We define a graph
F whose vertex set consists of the vertiees and somé: — 1 vertices which are not
in V(G)UV(H). The edges of’ join each pair of vertices exceptandz. The graph
G UF contains a complete subgraph. 1 on the vertex st (F'), soGU F' is not well
k-colorable. On the other hand the grafiiu F' is well k-colorable because bofth and
F are wellk-colorable and their only possible common vertex.islenceG #¢ H, a
contradiction.

We have shown thaV'(G) = V(H). Let us suppose that the sets of gaed
colorings of G and H are not equal and assume without loss of generality thaether
is a goodk-coloringC = {C1,Cs,...,Cy} of G, which is not a good:-coloring
of H. We defineF to be the completé:-partite graph on the set of verticésG),
whose monochromatic sets of vertices @e Cs, . .., Cy. Clearly,C is the only good
k-coloring of F. SinceG U F' = F, G U F has a good:-coloring. On the other hand,
C is not a good:-coloring of H. Thus, it is not a good-coloring of H U F, either. We
have shown thay #¢ H. This contradiction proves that the sets of gdedolorings
of G andH are the same.

(i) = (iii) Let us assume that the sets of goketolorings of G and H are equal. If
both these sets are empty then they remain empty (and sd) &quhe graphss U F
andH U F, for every grapht'. If the sets of good:-colorings of G and H are equal
but not empty ther//(G) = V(H), as goodk-colorings of a graph are partitions of
the set vertices of this graph. Lét be any graph. If botl&z U F' and H U F are not
well k-colorable therG U F =/ H U F. Let nowC = {C},C,,...,C}} be a good
k-coloring of G U F. Obviously,C’ = {C1 N V(G),C2oNV(G),...,C, NV(G)} is
a goodk-coloring of G, so by our assumptio;,’ is a goodk-coloring of H. Thus no
block of C contains an edge df (asV (G) = V(H)). Similarly, no block ofC contains
an edge off" becaus€” = {C1 NV (F),Co NV (F),...,C, N V(F)} is a goodk-
coloring of F'. It follows thatC is a goodk-coloring of H U F'. Thus the set of good
k-colorings ofG U F' is a subset of the set of goédcolorings of H U F'. The converse
inclusion can be shown exactly the same way. Consequeiiijijrdlds.
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(iii) = (i) This implication follows from the obvious inclusior¢’ C =¢ (we refer to
Proposition 2 and note that! C =¢). O

Theorem 8. Let f be the function assigning to every graph the set of its good k-
colorings. If k > 3 then the problem of deciding if G ¢ H is NP-complete.

Proof. By Theorem 7, to demonstrate that#<' H, it suffices to show &-coloring
of one of the graph&/ or H which is not ak-coloring of the other graph. Hence the
problem is in NP.

We will now reduce the NP-complete problem of existence é@f@loring of a
graph (cf. Garey and Johnson [4]) to our problem.&ébe a graph. We defin@ to be
the graph obtained fror®’ by adding an edgey, wherex andy are two new vertices.
We defineH to be the graph obtained frotd by adding an edgex, wherez is some
vertex ofG’. We will prove thatG” is k-colorable if and only ifG #¢' H.

Let us suppose first that’ is k-colorable. Then there existstacoloring of G such
that both vertices andz belong to the same block of ttkecoloring. Thisk-coloring of
G is not ak-coloring of H because:z is an edge irfl. ThusG ¢ H and, by Theorem
7,G #£¢ H. Conversely, ifG’ is notk-colorable then neither i& nor H. Hence, the
sets ofk-colorings of bothG and H are empty and, consequently, equal. By Theorem
7 againG =¢ H. ]

Remark 2. Fork = 1, thatis, when the functioal assigns to a graph the set of its good
1-colorings of a graph, all four equivalence relatieefd, =< =< and=¢ coincide and
for every pair of graph&’ andH, G = HifandonlyifG = H =0 orG # () # H.

a

For k = 2 the problem ifG #¢ H is solvable in polynomial time. It is a conse-
guence of the following fact.

Proposition 3. Let ¢l be the function assigning to every graph the set of its good 2-
colorings. For any two graphs G and H, G =¢ H if and only if either none of the
graphs G and H isbipartite or

1. both G and H are bipartite

2. V(G)=V(H)

3. G and H have the same families of vertex sets of connected components, and

4. connected components with the same vertex setsin G and H have the same bipar-
titions.

Proof. (=) LetG =¢ H and assume that at least one of the gra@lus H is bipartite.
Otherwise the necessity holds. &§' C =¢/, bothG andH are bipartite. Hence the sets
of good2-colorings ofG and H are nonempty and they are equal by Theorem 7. Since
goodk-colorings in a graph are partitions of the vertex set ofginéph,V (G) = V(H).

Let us suppose the families of vertex sets of components ahd H are not the
same. Then, by Lemma 2, there exists a pair of vertices thabmred by an edge in one
of the graph<~ or H and are in different components in the other graph. Withoss bf
generality we can assume that there are verticesy sayly, that are joined by an edge
in G but belong to two different components kh. Let us denote by, (respectively,
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H,) the two components i/ that containe (respectivelyy) and byV,, (respectively,
V) the monochromatic class &f, (respectivelyH,) that contains: (respectivelyy).

Let F' be the complete bipartite graph on the set of vertic¢&l,) U V (H,) whose
monochromatic classes alg¢ U V,, and the other on¢V (H,) U V(H,)) — (V, U
Vy). The graphH U F is bipartite whileG U F is not because it contains the graph
F + xy which has an odd cycle. By the definition of the relatieff, G #¢! H, a
contradiction. Hence for each componentGn there is a component if with the
same vertex set. By symmeti§/, and H have the same families of vertex sets of their
connected components.

Let us suppose now that for some two componé#itef G and H' of H with the
same vertex sets, the bipartitions@fand H' are not the same. Then there exists a pair
of verticesu andv such that they both are in the same monochromatic clag$ but
in the different monochromatic class if'. The graphG U H') + wv is not bipartite
because there is a path of an even length joiniagdv in G so(GU H') +uv contains
an odd cycle. On the other hand the grdphuU H') + uv = H + uv is bipartite. Hence
G #¢ H, a contradiction. This completes the proof of necessity.

(<) If both G and H are not bipartite then for every grapgh bothG U F andH U F
are not bipartite s6; =¢! H. Let now bothG and H be bipartite. Let us denote ltya
good2-coloring of G and supposé is not a goo@-coloring of H. Then there exists an
edge, say, in H whose both ends are contained in the same block bkt H' be the
component offf that contains this edge. By our assumptions, there is a coemp6’
of G that has the same vertex set and the same bipartitid#’ a¥hus the edge has
its ends in two different blocks of this bipartition 6F so in two different blocks of
as well. This contradiction proves that every g@sdoloring of G is a good2-coloring
of H. In a very similar way one can prove that every ga@scdoloring of H is a good
2-coloring of G. By Theorem 7, we conclude that=¢ H. O

4.2 Edge 2-colorability

We will now consider the property of edge 2-colorability. Wate that a graph iedge
2-colorable if and only if each of its connected components is a path orcecyf
an even length We denote by**° the equivalence relation in which two graphs are
equivalent if and only if both are edge 2-colorable or neitbfahe two is.

The following theorem characterizes the relatiaft°.

Theorem 9. Let G, H € £. Then G =¢2¢ H if and only if at least one of the following
conditions holds

1. Both G and H are not edge 2-colorable (each contains an odd cycle or a vertex of
degree at least 3)

2. Both G and H are edge 2-colorable (no odd cycles and maximum degree at most
2), V(G) = V(H), and for every even (odd) path component in G thereis an even
(odd) path component in H with the same endpoints.

Proof. (=) If both G and H are not edge 2-colorable, there is nothing left to prove.
SinceG =¢*¢ H, thenG = H and, consequently, bot¥ and H are edge 2-
colorable. Let us suppose thet(G) # V(H), sayV(H) — V(G) # 0. Letu €
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V(H) — V(G). We denote by andw some new vertices (occurring neitherGhnor
in H). We defineF’ = {vu,wu}. Clearly,G U F is edge 2-colorable, whil& U F' is
not. Thus,G' #%¢ H, a contradiction, s& (G) = V(H).

Suppose now there is a verteyf G such thatlege (u) = 1 anddegy (u) = 2. Let
v be a new vertex (occurring neither@hnor in /). We defineF" = {vu}. Obviously, as
before, GUF is edge 2-colorable, whil UF is not. Hencew #£%*¢ H, a contradiction.
By the symmetry argument it follows that for every veriexega (u) = degy (u).

Let now P be a path inG with endpointsa andb. By the property proved above,
degp (a) = degp (b) = 1. Let us assume thatandb are the endpoints of two different
paths inH . We select a new vertex, saylf P has odd length, we defiré = {au, ub}.
Otherwise, we defing’ = {ab}. Clearly,G U F' contains an odd cycle and so, it is not
edge 2-colorable. On the other haitfllJ F' does not contain any odd cycles and so, it
is edge 2-colorable, a contradiction.

Thus,a andb are the endpoints of the same pathAn say P’. It remains to prove
that the length ofP’ is of the same parity as the length Bf If G + ab is edge 2-
colorable, then the cycl® + ab has even length. Thus, the cyd® + ab is also even.
Thus, bothP and P’ are both of odd length. IZ + ab is not edge 2-colorable, then
P + abis an odd cycle. It follows thaP’ + ab is an odd cycle, too and, consequently,
P and P’ are both of even length.

(<) Let F' be any set of edges and let us assume ¢hat F' is edge 2-colorable. It
follows thatG is edge 2-colorable and séf is edge 2-colorable, too. Moreover, no
vertex inG U F has degree 3 or more. By our assumptions, the same holds fo¢”
because the degrees of verticesdrand H are the same. Let us consider any cyCle
inHUF.If CNFEF = (,thenC C H. Consequenthy' is even. Thus, lef" = CNF.
By our assumptions, adding’ to G results in exactly one new cycle i, sayC’.
Moreover, the parity of the lengths 6 andC is the same. Sinc€& U F is edge 2-
colorable and contain§”’, C’ is even. Thus(' is even, too. It follows thaH/ U F' is
edge 2-colorable. By symmetry, for every graphG U F' is edge 2-colorable if and
only if H U F'is edge 2-colorable. ]

4.3 Connectivity

By acutset in a connected graph we mean a set of vertices in this grapbeuteletion
makes this graph disconnected. A 6etf vertices in a disconnected graghis acutset

of G if C' = 0 or, for some componer¥’ of G, C NV (G’) is a cutset of7’. Clearly,

C # (is a cutset ofG if and only if it separates some pair of verticesGh Let us
observe that the only graphs without any cutsets are the ledpengraphs.

Let cs be a function that assigns to every graph the set of its cutgetardinality
smaller thark, wherek > 1 (as in the case of colorability, to simplify the notation, we
drop the reference tb). Thus,G = H, if either both graph&s and H have a cutset
of cardinality less thai or both do not have such a cutset. We shall characterize now
the relation=¢*.

Lemma 3. If G =¢° H thenV(G) = V(H).

Proof. Let us suppose thaf(G) # V(H). We can assume without loss of generality
that there exists a vertexc V(H) — V(G).
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We will first assume that = 1. Let z be any vertex in{ different fromz and lety
be a new vertex (not i/ nor G). We defineF = {zu| v € V(H) — {z, 2}} U {zy}.

It follows that H U F' is connected (that is, has no cutsets of size 0)@ndF' is not
connected (the edgey is separated from the rest of the graph). This#S* H, a
contradiction.

Thus, from now on, we assume that> 2. Let K be a set of vertices which are
notinV(G)UV (H) and let! = max(k —degy(x), 1). Sincez is not an isolated vertex
in H andk > 2, ¢ < k. We defineF’ to be the graph obtained from the complete graph
on(V(H)U K) — {z} by adding the vertex and edges joining with all vertices of
some/-element subset of K. The graphH U F' can be obtained front’ by adding
the edges incident if with z. As deg, - (z) = degy (z) +¢ > k —( + ( = k, the
graphH U F' does not have a cutset of cardinality smaller tha®n the other hand, the
setl is a cutset inG U F. Indeed,L is a cutset of the component 6fU F' containing
K U {z} as it separates from the rest of the graph. Sin¢g| < k, G U F has a cutset
of cardinality smaller that. Thus,G #£¢° H, a contradiction, and s&(G) = V(H)
follows. |

Theorem 10. Let G and H be graphs. Then, G =¢° H if and only if V(G) = V(H)
and for every set C C V(G) suchthat |C| < k, thefamilies of vertex sets of components
of G — C and H — C arethe same.

Proof. (<) To show sufficiency assume that#¢* H. Then, for some graphk’, G U

F #% H U F. We can assume without loss of generality that F' has a cutsef’ of
cardinality smaller thait and H U I’ does not have such a cutset. KU F') — C'is
disconnected, there are verticeandy which belong to two different components of
(GUF)— C.Onthe other hanH U F') — C is connected so there exists a path, say
P, joining x andy in (H U F) — C. Lete be any edge i which does not belong to
F'. Then, clearlye is an edge off — C. We denote by’ the component off — C
which contains the edge Since the families of vertex sets of component&ef C and

H — C are the same, there is a componendhat contains the edge Consequently
there exists a path, sdy. in G — C joining the ends of the edge Let us replace in the
pathP every edge which is notinF’ by the pathP,. The resulting graph is a connected
subgraph of G U F') — C containing the vertices andy. We have got a contradiction
with the definition ofr andy. Thus our initial assumption th&t #¢°* H was false, so
G=¢H.

(=) We pass on to the proof of necessity. By Lemm& 87) = V(H).

LetC C V(G), |C] < k. Let us suppose the families of vertex sets of components
of G — C and H — C are not the same. By Lemma 2, there exists a pair of vertices
which are joined by an edge in one of the graghor H and are in two different
components in the other graph. Without loss of generalityaggume that there is an
edgee in H whose ends belong to two different componentssinLet G’ be one of
these components. We denote bya set of¢ = k£ — 1 — |C| vertices which are not
in V(G) U V(H). We defineF' to be the graph on the set of verticB§G) U L in
which every pair of vertices iV (G’) is joined by an edge, every pair of vertices in
V(G) -V (@) is joined by an edge and every vertex(rU L is joined by an edge with
every other vertex of’. Clearly,C’ = C'U L is a cutset inG U F' = F of cardinality
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|C'| = |C|+k—1—|C| =k — 1. Let us consider any cutsét’ in H U F. Since
VIHUF)=VH)UL=V(F)=V(G)UL =V(GUF) and every vertex i’

is joined by an edge with every other vertexi@fJ F, C"” D C’. Let us observe that
(HUF)—C'"=(HUF)—C D (F—C)+e.Thelast graph is a connected spanning
subgraph of H U F') — C’, soC" is not a cutset of/ U F'. We have shown that every
cutset inH U F' has at leask vertices which shows tha&t #£¢° H. This contradiction
completes the proof. a

Remark 3. It follows from Theorem 10 that for every fixekl the problem to decide
if G =¢° H is polynomial time solvable, wheres is the function assigning to every
graph the set of its cutsets of cardinality smaller thah is an open question what the
complexity status of this problem is whéris a part of the instance. |

Next, we will show that=$* = =¢°. That is,=“® despite being more precise than
=¢ has the same strangthening.

Theorem 11. G =¢° H ifandonly if G =¢° H.

Proof. («<) This implication follows from a generally true inclusierf C =/.

(=) Let G and H be graphs such th&t =¢ H. We assume that there is a graph
such thalG U F' 2 H U F. SinceG =$° H, by Proposition 1(3)GU F =$* HU F.
By Lemma3,V(GUF)=V(HUF).AsGUF % HUF, there exists a cutset
CinGUF,|C| < k, which is not a cutset ifH U F. Let z andy be a pair of
vertices such tha€' separates them ir U F'. We denote byG’ the component of
(G U F) — C that containse. Clearly C' does not separate andy in H U F, so
there is a path ifH U F) — C that joins the vertices: andy. Consequently there
exists an edge, say in (H U F') — C with one vertex inV'(G’) and the other one in
VHUF)-C)-V(G@)=V(GUF)-C)-V(G".

Let L be a set of cardinality — 1 — |C| of vertices not i/ (GU F’). We defineK to
be the graph on the set of verticé$G'U F')U L in which every pair of vertices it (G")
is joined by an edge, every pair of verticesiif(G U F) — C') — V(@) is joined by an
edge and every vertex i’ = C'U L is joined by an edge with every other vertexiof
Clearly,C" is acutsetilGUFUK = K of cardinality|C’| = |C|+k—1—|C| = k—1.
SinceG =¢* H, the graphH U F'U K has a cutsef” of cardinality smaller thar.
We observe thaf”” O C’ becausd/(H U F U K) = V(K) and every vertex i’ is
joined by an edge with every other vertexiifH U F U K). As |C"| < k, C" = C".
By the definition of K, V(HUFUK)-C")=V(K-C")=V((GUF)-C)and
the graph(H U F U K) — C’ contains complete graphs on the sets of verticés”)
andV((GUF) — C) — V(G') as subgraphs. The grapl U F'U K) — C’ contains
the edge: whose one end is in one of the complete subgraphs mentiommeée abd the
other one in the other complete subgraph. Therefore thendldpy FF U K) — C’ is
connected s@” = C’ is not a cutset ifH U F' U K, a contradiction.

We have shown thalf U F' =°° H U F for every graph¥', soG =¢° H. o

Remark 4. Unlike in the case ok-coloring, = £ =¢°. A simple example fok = 2
is shown in Figure . 4.
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a d a b

b I: ¢ I e d I: ¢ I e
Fig. 4. The set{c} is the only one-element cutset 6f and of H. Thus,G =°° H. However,
components ofs — c andH — c are different and sa7 25° H. a

For a given graplt it would be interesting to find a smallest (with respect to the
number of edges) subgraghf of G such that?’ = G. We observe, however, that
even fork = 2, itis a difficult problem. Indeed, let us consider the problef deciding
if for a given graphG and an integern there exists a subgrapf’ of G such that
G =¢° (' andG’ has at mostn edges. One can easily verify that the problem is in the
class NP (cf. Remark 3). Moreover it is NP-complete becau®daws from Theorem
10 that for a2-connected grapty andm = |V (G)| the problem asks for the existence
of a hamiltonian cycle irG.

Let @ be the set of all graphs with a cutset of cardinality smaHlant. It is obvious
that=? = =, Let us denote by the set of graphs that are neiconnected. One can
easily observe that a gragh € ¥ if and only if G has a cutset of cardinality smaller
thank or |[V(G)| < k. As the two relations are closely related, it is natural to s
=% = =7 We will answer this question positively.

Theorem 12. G =% H ifandonlyif G =¥ H.

Proof. (=) Let us suppos€& =? H butG #7 H. Then, without loss of generality,
there exists a graph suchthalG U F' € W andH U F' ¢ ¥. In this caseH U F has no
cutsets of cardinality smaller tharand|V (HUF)| > k. SinceG =¢ H, GUF has no
cutsets of cardinality smaller than Thus,|V(GU F)| < k becaus& U F' € ¥. Hence
|[V(GU F)| < |V(H U F)|, a contradiction because, by Lemmd3G) = V(H), so
V(GUF)=V(HUF),aswell

(«=) Let us suppose now thét =¥ H butG #2 H. Then, without loss of generality,
there exists a graph' such thatG U F' has a cutset of cardinality smaller tharand
H U F does not have such a cutset. It follows tidaty F € ¥. SinceG =¥ H,
HUF € ¥.Thus,|V(HUF)| < kand, consequentlyf U F' is a complete graph on at
mostk vertices. ASG =¥ H,GUHUF =Y HUHUF = HUF,soGUHUF € V.

Let us suppose first that U H U F' has a cutest’ of cardinality smaller thak. Let
G’ be one of the components @FUH UF)—C and letG” = (GUHUF)-C -G".
The complete grapi/ U F' has common vertices with at most one of the graghand
G", say withG”. Let H' be a complete graph dn+ 1 vertices that containg U F' and
has no common vertices with’. Now, G U H U F U H' € ¥ because&’ is its cutset,
while HU HU FU H' = H' ¢ ¥ because it is a complete graph br- 1 vertices.
HenceG #£? H, a contradiction.

We have proved that U H U F' has no cutsets of cardinality smaller thhaso, as
GUHUF € ¥, |[V(GUHUF)| < k. Consequently\V (GUH)| < k. SinceG #2 H,
G # H have different edge sets. We can assume without loss of glépehat there
is an edge, say = zy in H, which is not an edge iG7. Let K be a graph obtained
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from the complete graph on(a + 1)-element set of vertices containifg G U H) by
deleting the edge. Clearly, G U K = K but H U K is the complete graph o+ 1
vertices. The former graph has a cutsgtk’) — {z,y} of cardinalityk — 1 and the
latter graph has no cutsets. HerGeJ K € ¥ andH U K ¢ ¥ soG #Y H. This
contradiction proves that =% H. O

5 Open problems and further research directions

We do not know of any past research concerning the strenigthehequivalence rela-
tions on graphs. Nevertheless, it seems to us that this igieahaoncept worth further
investigations. In this paper, we focused on the strengpigenf the equivalence rela-
tions that are determined by graph properties. For manyepties® we studied, the
relations=? turned out to have a very simple structure (for instancey treke both
equivalence classes ef?,  andd, into singletons, that is, were identities; or kdpt
as an equivalence class and broke the other one into sing)elo several cases, how-
ever, (for the propertie® of beingk-connectedk-colorable, and edg&colorable), the
structure of the relations? turned out to be more complex and so more interesting,
too. Therefore, a promising research direction could bdeatify and study additional
natural graph propertie, for which the relations=? have a nontrivial structure. Estab-
lishing characterizations of the relatios€, and determining the complexity of decid-
ing whether for two given graphs andH, G =% H holds, are particularly interesting
and important. Given the results of our paper, it seems tiegptoperties of being edge
k-colorable and edgk-connected are natural candidates for this kind of invasitgs.
In the former case we were only able to find a characterizatioine relation=?, when

& is the property of being edgecolorable. The theorem we proved in this case sug-
gests that for an arbitrary the structure of the relatior? may be quite complicated,
which makes the problem a challenge. In the latter case, alatiere may be strong
similarities with the strengthening of the propertyke€onnectivity but do not have any
specific results.

There are a few open problems directly related to the resfilisis paper. One of
them is to establish the computational complexity of theofsm to decide itz =¢ H
(given graphg~ andH, and an integet), whend is the property of being-connected.
For a fixedk, it follows from our Theorem 10 that the problem is solvablpolynomial
time. The question is open however, wheis a part of the instance.

Another problem concerns the propedty; of containing a subgraph isomorphic to
H. ltwas shown in Theorem 6 that the relatieff has some very simple structure for
many graphgd. The question arises what is the structure=d¥ for all other graphs
H.

There are also several natural general questions congah@rconcept of strength-
ening of an equivalence relation in graphs. For example ild/be interesting to find
a general condition for the functighthat guarantees that the relatioas and==/ are
equal.

Another general problem is to establish conditions thatienghat there exists a
weakest equivalence relatiesl such that=", is the same as,; and, whenever it is so,
to find this='. In some cases, the problem is easy. For example, the redati) and
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=<l studied in Subsection 4.1 are equal (see Theorem 7) andlgtione= is strictly
weaker thari=®!. As = has only two equivalence classes and the strengthening of th
total relation (the only possible weakening=ef') is also the total equivalence relation,
=< is the weakest relatios’ such that=, and=< are equal. This observation does not
generalize to other properties. For instance, the relatighis not the weakest relation
=’ such that=/, and=2¢* are the same. Indeed, the strengtheningbf(whereV is the
property considered in Theorem 12) coincides v, yet=°* is incomparable with
=Y (and so, in this case, there is no weakest relation of theetbproperty). Thus, in
general, the two problems mentioned above seem to be niahtriv
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