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Abstract. We consider random logic programs with two-literal rules
and study their properties. In particular, we obtain results on the proba-
bility that random “sparse” and “dense” programs with two-literal rules
have answer sets. We study experimentally how hard it is to compute
answer sets of such programs. For programs that are constraint-free and
purely negative we show that the easy-hard-easy pattern emerges. We
provide arguments to explain that behavior. We also show that the hard-
ness of programs from the hard region grows quickly with the number of
atoms. Our results point to the importance of purely negative constraint-
free programs for the development of ASP solvers.

1 Introduction

The availability of a simple model of a random CNF theory was one of the
enabling factors behind the development of fast satisfiability testing programs
— SAT solvers. The model constrains the length of each clause to a fixed integer,
say k, and classifies k-CNF theories according to their density, that is, the ratio
of the number of clauses to the number of atoms. k-CNF theories with low
densities have few clauses relative to the number of atoms. Thus, most of them
have many solutions, and solutions are easy to find. k-CNF theories with high
densities have many clauses relative to the number of atoms. Thus, most of
them are unsatisfiable. Moreover, due to the abundance of clauses, proofs of
contradiction are easy to find. As theories in low- and high-density regions are
“easy,” they played essentially no role in the development of SAT solvers.

There is, however, a narrow range of densities “in between,” called the phase

transition, where random k-CNF theories change rapidly from most being satis-
fiable to most being unsatisfiable. Somewhere in that narrow range is a value d
such that random k-CNF theories with density d are satisfiable with the proba-
bility 1/2. The problem of determining that value has received much attention.
For instance, for 3-CNF theories, the phase-transition density was found exper-
imentally to be about 4.25 [1]. A paper by Achlioptas discusses recent progress
on the problem, including some lower and upper bounds on the phase transition
value [2]. A key property of 3-CNF theories from the phase transition region
is that they are hard.1 Thus, we have the easy-hard-easy difficulty pattern as

1 It should be noted that the low- and high-density regions also contain challenging
theories, but they are relatively rare [3]).



the function of density. Moreover, deciding satisfiability of programs from the
hard region is very hard indeed! Designing solvers that could solve random un-
satisfiable 3-CNF theories with 700 atoms generated from the phase-transition
region was one of grand challenges for SAT research posed by Selman, Kautz
and McAllester [4]. It resulted in major advances in SAT solver technology.

As in the case of the SAT research, work on random logic programs is likely
to lead to new insights into the properties of answer sets of programs, and lead
to advances in ASP solvers — software for computing them. Yet, the question
of models of random logic programs has received little attention so far, with the
work of Zhao and Lin [5] being a notable exception. Our objective is to propose
a model of simple random logic programs and investigate its properties.

As in SAT, we consider random programs with rules of the same length. For
the present study, we further restrict our attention to programs with two-literal
rules. These programs are simple, which facilitates theoretical studies. But de-
spite their simplicity, they are of considerable interest. First, every problem in
NP can be reduced in polynomial time to the problem of deciding the existence of
an answer set of a program of that type [6]. Second, many problems of interest
have a simple encoding in terms of such programs [7]. We study experimen-
tally and analytically properties of programs with two-literal rules. We obtain
results on the probability that random programs with two-literal rules, both
“sparse” and “dense,” have answer sets. We study experimentally how hard it is
to compute answer sets of such programs. We show that for programs that are
constraint-free and purely negative the easy-hard-easy pattern emerges. We give
arguments to explain that phenomenon, and show that the hardness of programs
from the hard region grows quickly with the number of atoms. Our results point
to the importance of constraint-free purely negative programs for the develop-
ment of ASP solvers, as they can serve as useful benchmarks when developing
good search heuristics. However, unlike in the case of SAT, depending on the
parameters of the model, we either do not observe the phase transition or, when
we do, it is gradual not sudden.

Even relatively small programs from the hard region are very hard for the
current generation of ASP solvers. Interestingly, that observation may also have
implications for the design of SAT solvers. If P is a purely negative program,
answer sets of P are models of its completion comp(P ), a certain propositional
theory [8]. For programs with two-literal rules the completion is (essentially) a
CNF theory. Our experiments showed that these theories are very hard for the
present-day SAT solvers, despite the fact that most of their clauses are binary.

2 Preliminaries

Logic programs consist of rules, that is, of expressions of the form

a← b1, . . . , bm,not c1, . . . ,not cn (1)

and
← b1, . . . , bm,not c1, . . . ,not cn, (2)



where a, bi and cj are atoms. Rules (1) are called definite, and rules (2) —
constraints. A rule is proper if no atom occurs in it more than once. A rule is
k-regular if it consists of k literals (that is, it is a definite rule with k− 1 literals
in the body, or a constraint with k literals in the body).

If r is a rule of type (1) or (2), the expression b1, . . . , bm,not c1, . . . ,not cn

(understood as the conjunction of its literals) is the body of r. We denote it by
bd(r). The set of atoms {b1, . . . , bm} is the positive body of r, denoted bd+(r),
and the set of atoms {c1, . . . , cn} is the negative body of r, denoted bd−(r).
In addition, the head of r, hd(r), is defined as a, if r is of type (1), and as
⊥, otherwise. A program P is constraint-free if it contains no constraints. A
program P is purely negative if for every non-constraint rule r ∈ P , bd+(r) = ∅.

A set of atoms M is an answer set of a program P if it is the least model
of the reduct of P with respect to M , that is, the program PM obtained by
removing from P every rule r such that M ∩ bd−(r) 6= ∅, and by removing all
literals of the form not c from all other rules of P .

Computing answer sets of propositional logic programs is the basic reasoning
task of answer-set programming, and fast programs that can do that, known as
answer-set programming solvers (ASP solvers, for short) have been developed in
the recent years [9–13].

3 2-Regular Programs

We assume a fixed set of atoms At = {a1, a2, . . .}. There are five types of 2-
regular rules: a ← not b; a ← b; ← not a,not b; ← a,not b; ← a, b. Accord-
ingly, we define five classes of programs, mR−

n , mR+
n , mC−

n , mC±
n , and mC+

n ,
with atoms from Atn = {a1, . . . , an} and consisting of m proper rules of each of
these types, respectively. Without the reference to m, the notation refers to all
programs with n atoms of the corresponding type (for instance, R+

n stands for
the class of all programs over Atn consisting of proper rules of the form a← b).

The maximum value of m for which mR−
n , mR+

n and mC±
n are not empty is

n(n− 1). The maximum value of m for which mC−
n and mC+

n are not empty is
n(n−1)/2. Let 0 ≤ m1,m2, c2 ≤ n(n−1) and 0 ≤ c1, c3 ≤ n(n−1)/2 be integers.
By [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n we denote the class of programs
P that are unions of programs from the corresponding classes. We refer to these
programs as components of P . If any of the integers mi and ci is 0, we omit
the corresponding term from the notation. When we do not specify the numbers
of rules, we allow any programs from the corresponding classes. For instance,
[R− + R+ + C− + C± + C+]n stands for the class of all proper programs with
atoms from Atn.

Given integers n and m, it is easy to generate uniformly at random programs
from each class mR−

n , mR+
n , mC−

n , mC±
n , and mC+

n . For instance, a random
program from mR−

n can be viewed as the result of a process in which we start
with the empty program on the set of atoms Atn and then, in each step, we
add a randomly generated proper rule of the form a ← not b, with repeating
rules discarded, until m rules are generated. This approach generalizes easily



to programs from other classes we consider, in particular, to programs from
[m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n. Our goal is to study properties of
such random programs.

We start with a general observation. If P ∈ [m2R
+ + c1C

− + c2C
± + c3C

+]n
(m1 = 0), then either P has no answer sets (if c1 6= 0) or, otherwise, ∅ is a unique
answer set of P . Thus, in order to obtain interesting classes of programs, we must
have m1 > 0. In other words, programs from R−

n (proper purely negative and
constraint-free) play a key role.

4 The Probability of a Program to Have an Answer Set

We study first the probability that a random program in the class [m1R
− +

m2R
++c1C

−+c2C
±+c3C

+]n has an answer set. In several places we use results
from random graph theory [14, 15]. To this end, we exploit graphs associated with
programs. Namely, with a program P ∈ [R−+R+ +C±]n we associate a directed

graph D(P ) with the vertex set Atn, in which a is connected to b with a directed
edge (a, b) if b← not a, b← a or ← b,not a is a rule of P . For P ∈ [R− +R+]n,
the graph D(P ) is known as the dependency graph of a program. Similarly, with
a program P ∈ [R− + R+ + C− + C± + C+]n we associate an undirected graph
G(P ) with the vertex set Atn, in which a is connected to b with an undirected

edge {a, b} if a and b appear together in a rule of P . If P ∈ [R− + R+ + C±]n,
then D(P ) may have fewer edges than P has rules (the rules a ← not b, a ← b
and ← b,not a determine the same edge). A similar observation holds for G(P ).

These graphs contain much information about the underlying programs. For
instance, it is well known that if P ∈ [R−+R+]n and D(P ) has no cycles then P
has a unique answer set. Similarly, if P ∈ [m1R

−+m2R
++c1C

−+c2C
±+c3C

+]n
and M is an answer set of P then M is an independent set in the graph G(P1),
where P1 is the component of P from m1R

−
n .

We denote by AS+ the class of all programs over At that have answer sets.
We write Prob(P ∈ AS+) for the probability that a random graph P from one
of the classes defined above has an answer set. That probability depends on n
(technically, it also depends on the numbers of rules of particular types but,
whenever it is so, the relevant numbers are themselves expressed as functions
of n). We are interested in understanding the behavior of Prob(P ∈ AS+) for
random programs P from the class [R− + R+ + C− + C± + C+]n (or one of its
subclasses). More specifically, we will investigate Prob(P ∈ AS+) as n grows to
infinity. If Prob(P ∈ AS+)→ 1 as n→∞, we say that P asymptotically almost

surely, or a.a.s for short, has answer sets. If Prob(P ∈ AS+)→ 0 as n→∞, we
say that P a.a.s. has no answer sets.

To ground our results in some intuitions, we first consider the probability that
a program from mR−

150 has an answer set as a function of the density d = m/150
(or equivalently, the number of edges m). The graphs, shown in Figure 1, were
obtained experimentally. For each value of d, we generated 1000 graphs from the
set mR−

150, where m = 150d. The graph on the left shows the behavior of the



probability across the entire range of d. The graph on the right shows in more
detail the behavior for small densities.
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Fig. 1. The probability that a graph from mR
−

150
(m = 150d) has an answer set, as a function of d.

The graphs show that the probability is close to 1 for very small densities,
then drops rapidly. After reaching a low point (around 0.6, in this case), it starts
getting larger again and, eventually, reaches 1. We also note that the rate of
drop is faster than the rate of ascent. We will now present theoretical results
that quantify some of these observations. Our results concern the two extremes:
programs of low density and graphs of high density.

We start with programs of low density and assume first that they do not
have constraints. In this case, the results do not depend on whether or not we
allow positive rules.

Theorem 1. If m1 + m2 = o(n) and P ∈ [m1R
− + m2R

+]n, then P a.a.s has

a unique answer set.

Proof. (Sketch) Let P be a random program from [m1R
−+m2R

+]n. The directed
graph D(P ) can be viewed as a random directed graph with n vertices, and
m′ = o(n) edges (m′ ≤ m, as different rules in P may map onto the same
edge). Thus, D(P ) a.a.s. has no directed cycles (the claim can be derived from
the property of random undirected graphs: a random undirected graph with n
vertices and o(n) edges a.a.s. has no cycles [15]). It follows that P a.a.s. has a
unique answer set. 2

If there are constraints in the program, the situation changes. Even a sin-
gle constraint of the form ← not a,not b renders a sparse random program
inconsistent.

Corollary 1. If c1 ≥ 1, m1 + m2 = o(n), and P is a random program from

[m1R
− + m2R

+ + c1C
−]n, then P a.a.s. has no answer sets.

Proof. Let P be a random program from [m1R
− + m2R

+ + c1C
−]n. Then, P =

P1 ∪ P2, where P1 is a random program from [m1R
− + m2R

+]n and P2 is a
random program from c1C

−
n . By Theorem 1, P1 a.s.s. has a unique answer set,

say M . Since P1 has o(n) non-constraint rules, |M | = o(n). The probability that



a randomly selected constraint of the form ← not a,not b is violated by M is
given by the probability that {a, b} ∩M = ∅. That probability is

(

n−o(n)
2

)

/
(

n
2

)

and it converges to 1 as n→∞. Thus, the assertion follows. 2

If we exclude such constraints then there again is a small initial interval of
densities, for which random programs are consistent with high probability.

Corollary 2. If c1 = 0, c2 +c3 ≥ 1, (m1 +m2)c2 = o(n), (m1 +m2)2c3 = o(n2),
and P is a random program from [m1R

−+m2R
++c2C

±+c3C
+]n, then P a.a.s.

has an answer set.

Proof. (Sketch) Let P be a random program from [m1R
− + m2R

+ + c2C
± +

c3C
+]n. Thus, P = P1 ∪ P2 ∪ P3, where P1, P2 and P3 are random programs

from [m1R
− + m2R

+]n, c2C
±
n and c3C

+
n , respectively. Since c2 > 0 or c3 > 0,

m1 + m2 = o(n). By Theorem 1, P1 a.a.s. has a unique answer set, say M .
Moreover, the size of M is at most m1 + m2. Under the assumptions of the
corollary, one can show that a.a.s. each constraint ← a,not b in P2 has no
atoms in M , and a.a.s. each constraint ← a, b in P3 has at most one atom in
M . Thus, a.a.s. programs P2 and P3 are satisfied by M . Consequently, P a.a.s.
has M as its unique answer set of P . 2

We move on to programs of high density. Our first result concerns programs
from R−

n (proper, purely negative and constraint-free programs with n atoms).

Theorem 2. Let 0 < c < 1 be a constant. For every fixed x, a random program

from mR−
n , where m = ⌊cN + x

√

c(c− 1)N⌋ and N = n(n − 1), a.a.s. has an

answer set.

Proof. (Sketch) To show the assertion, it is enough prove that a random directed
graph with n vertices and m edges, where m is as in the statement of the theorem,
a.a.s. has a kernel. It is known [16] that a.a.s. a random directed graph with n
nodes drawn from the binomial model (edges are selected independently of each
other and with the same probability c) has a kernel. Moreover, one can show
that if m′ > m, m′ = m + O(n), and Gm and Gm′ are random directed graphs
with n nodes, and m and m′ edges, respectively, then Prob(Gm has a kernel) ≤
Prob(Gm′ has a kernel) + o(1). That property can be used instead of convexity
in Theorem 2(ii) [14], which allows us to transform properties of graphs from
the binomial model into properties of graphs from the uniform model that we
are considering. Thus, the assertion follows. 2

Theorem 2 concerns only a narrow class of dense programs, its applicability
being limited by the specific number of rules programs are to have (m = ⌊cN +
x
√

c(c− 1)N⌋, where N = n(n − 1)). It also does not apply to “very” dense
graphs with m = n2 − o(n2) rules. However, based on that theorem and on
experimental results (Figure 1), we conjecture that for every c > 0, a program
from mR−

n , where m ≥ cn2, a.a.s. has an answer set.
We will now consider the effect of adding positive rules (rules of the form

a← b) and constraints. In fact, as soon as we have just slightly more than n log n
positive rules in a random program that program a.a.s. has no answer sets.



Theorem 3. For every ǫ > 0, if m1 ≥ 1, m2 ≥ (1 + ǫ)n log n, and P is a

random program from [m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n, then P a.a.s.

has no answer sets.

Proof. Let P ∈ [m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n, where m1 ≥ 1. Also,

let P2 be the component of P from m2R
+. If D(P2) contains a Hamiltonian

cycle, then P has no answer sets. Indeed, ∅ is not a answer set due to the rule
of the form a ← not b that is present in P . Thus, if P has an answer set, say
M , then M 6= ∅. Clearly, PM contains P2. By the assumption on D(P2), the
least model of PM contains all atoms in Atn. Thus, M = Atn. But then, PM

contains no atoms (all its rules are either from P2 or are constraints of the form
← a, b) and so, the least model of PM is ∅, a contradiction. Clearly, there is
a precise correspondence between programs from m2R

+ and random directed
graphs with n nodes and m edges (no loops). The assertion follows now from
the result that states that a random directed graph with n nodes and at least
(1 + ǫ)n log n edges a.a.s. has a Hamiltonian cycle [14]. 2

The presence of sufficiently many constraints of the form ← a, b or ←
a,not b also eliminates answer sets. To see that, we recall that if M is an answer
set of a program P = P1 ∪ P2, where P1 ∈ R−

n and P2 ∈ [R+ + C− + C± +
C+]n, then M is the complement of an independent set in G(P1). The following
property will be useful. For every real c > 0 there is a real d > 0 such that
a.a.s. a graph with n vertices and m ≥ cn2 edges has no independent set with
more than d log n elements [14]. Thus, we get the following result that provides
a lower bound on the size of an answer set in a dense random logic program.

Theorem 4. For every real c > 0, there is a real d > 0 such that a.a.s. the

complement of every answer set of a random program P = P1 ∪ P2, where P1 ∈
mR−

n , P2 ∈ [R+ + C− + C± + C+]n and m ≥ cn2, has size at most d log n.

We now consider the effect of constraints of the form ← a, b on the existence
of answer sets in programs with many purely negative rules. Intuitively, even a
small number of such constraints should suffice to “kill” all answer sets. Indeed,
according to Theorem 4, these answer sets are large and contain “almost all”
atoms. Formalizing this intuition, we get the following result.

Theorem 5. For every c > 0 there is d > 0 such that if m1 ≥ cn2, c3 ≥ d log n+
1, and P is a random program from [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n,

then P a.a.s. has no answer sets.

Constraints of the form ← a,not b do not have such a dramatic effect.
However, a still relatively small number of such constraints a.a.s. eliminates all
answer sets.

Theorem 6. For every c > 0, and for every ǫ > 0, if m1 ≥ cn2, c2 ≥ n1+ǫ, and

P is a random program form [m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n, then

a.a.s. P has no answer sets.



Proof. We set N = n(n − 1) and Ni = i(n − i). Let X ⊆ Atn consist of n − i
elements, where 0 < i < n. We will first compute the probability that in a
random directed graph with the set of vertices Atn and with m edges, there is
no edge starting in X and ending in X. That probability is given by

(

N−Ni

m

)

/
(

N
m

)

.
One can show that it can be bounded from above by (1 − Ni/N)m. It follows
that the probability that at least one X ⊆ Atn such that 0 < |X| ≤ k has that

property is bounded by
∑k

i=1

(

n
i

)

(1 − Ni/N)m. Let d > 0 be a constant. One

can show that for every ǫ > 0, if k ≤ d log n and m ≥ n1+ǫ, then
∑k

i=1

(

n
i

)

(1 −
Ni/N)m → 0 as n → ∞. Let us interpret that result in terms of programs.
Let d be a constant such that the complement of every answer set in a random
program P from [m1R

−+m2R
++c1C

−+c2C
±+c3C

+]n has size at most d log n
(such d exists by Theorem 4) and let ǫ be any fixed positive real. Let Q be the
component from c2C

±
n of P . Then D(Q) has at least n1+ǫ edges. Thus, a.a.s. for

every set X such that 1 ≤ |X| ≤ d log n, there is an edge (a, b) in D(P ) that
originates in X and ends in X. Such edge corresponds to a constraint ← b,not a
in Q. Clearly, this constraint is violated by X. Thus, a.a.s. P has no non-empty
answer sets. Since X = Atn is not an answer set either (the reduct of P wrt Atn

contains no atoms and so, it is inconsistent or its least model is empty), a.a.s. P
has no answer sets. 2

The case of constraints ← not a,not b is less interesting. Large answer sets
(having at least n−d log n atoms) that arise for programs with dense component
from R−

n typically satisfy them and to “kill” all answer sets of such programs
with high probability almost all constraints ← not a,not b must be present.

5 Hardness of Programs

We will now study the hardness of programs from [m1R
− + m2R

+ + c1C
− +

c2C
± + c3C

+]n for ASP solvers. The bulk of our experimental results concern
programs in the class R−

n . It turns out these programs (for appropriately chosen
density) are especially challenging.

Unless stated otherwise, our experiments separate programs that have an-
swer sets (are consistent) from those that do not (are inconsistent). For each
experiment we generate a sample of instances of programs of each of these two
types. In the previous section we provided evidence that programs in mR−

n ,
where m ≥ cn2 (cf. Figure 1 and Theorem 2), a.a.s. have an answer set. There-
fore, when experimenting with inconsistent programs, we restrict the number of
rules in a program to values for which inconsistent programs appear with prob-
ability sufficiently larger than 0 (about 0.05) to allow for building samples of
inconsistent programs of sizes large enough to justify drawing conclusions from
experiments (typically 100 programs per sample).

In experiments, we used smodels (with lookahead) [9] and clasp [10]. We took
the average number of choice points as reported by these systems as the measure
of the hardness of a family of programs.

Our first observation is that as we increase m, programs from mR−
n show

the easy-hard-easy pattern. That is, low-density programs are easy for the two



solvers. When m grows, programs get harder. Then, at some point, they start
getting easier again. We illustrate that behavior in Figure 2 below. The two
graphs show separately the results for consistent and inconsistent programs from
the classes mR−

100. Each figure shows together the results (average number of
choice points) for smodels (the scale on the right) and clasp (the scale on the
left). The x-axis shows the density, that is, the ratio of the number of rules to
the number of atoms in a program. We stress that the scales differ. Thus, the
figures are not meant to compare the performance of smodels and clasp. But
they do show that for each solver a similar easy-hard-easy pattern emerges, and
that the features of the pattern are remarkably similar for the two solvers.
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Fig. 2. Average number of choice points for consistent (graph (a)) and inconsistent (graph(b)) pro-
grams with 150 atoms; smodels (scale on the right) and clasp (scale on the left). The x-axis represents
the density. Sample sizes are 500 for consistent programs, and 100 for inconsistent programs.

We obtained the same type of a pattern in our experiments with programs
with 125, 175 and 200 atoms. However, we observed some minor deviations from
that pattern for smodels (but not for clasp) for programs with 100 atoms. Given
our results for n ≥ 125, it seems plausible that the irregular behavior arises only
for some smaller numbers of atoms.

We used the term hard region above somewhat informally. To make that
concept more precise, we define it now as the maximum interval [u, v] such that
for every density d ∈ [u, v] the average number of choice points is at least 90% of
the maximum (peak) average number of choice points. Table 1 shows the hard
regions, the density for which the number of choice points reaches the maximum,
and the number of choice points at the peak location for consistent and inconsis-
tent instances with n = 125, 150, 175 and 200 atoms. The key observations are:
(1) the location of the hard region does not seem to depend much on the solver;
it is centered around the density of 19 for consistent programs, and 22 for incon-
sistent ones, (2) inconsistent programs are significantly harder than consistent
ones, (3) the peak of hardness is not sharp or, in other words, the hard region
extends over a sizable range of densities, and (4) the hardness of programs in
the hard region grows very quickly.

We conclude with arguments to explain the presence of the easy-hard-easy
pattern we observed for programs in the class R−

n . First, we note that programs
in mR−, where m = o(n), a.a.s. are stratified (Theorem 1). Computing answer



Inconsistent programs

clasp smodels

n hard region peak choice points hard region peak choice points
at peak at peak

125 [17.5 − 27] 22 5261 [17.5 − 24] 21 388
150 [18 − 27] 23 18639 [19 − 31] 24.5 1184
175 [18.5 − 27.5] 22 59704 [17.5 − 23.5] 20.5 3582
200 [18 − 28] 22 189576 [18 − 26] 22.5 14407

Consistent programs

125 [15.5 − 21.5] 17.5 1231 [16 − 25] 20 130
150 [16 − 23] 17.5 4033 [16 − 29.5] 20 308
175 [18.5 − 21.5] 20 14230 [17.5 − 21.5] 20 1110
200 [17.5 − 23] 19.5 43345 [18.5 − 24.5] 19.5 4232

Table 1. Hard region, peak location, and the number of choice points at the peak location for
consistent and inconsistent programs. Results for clasp and smodels.

sets for such programs is easy. As the density (the number of rules) grows,
cycles in the graph D(P ) start appearing (that happens roughly when a program
has as many rules as atoms). Initially, there are few cycles and the increase in
hardness is slow. At some point, however, there are enough cycles in D(P ) to
make computing answer sets of P hard. To explain why the task gets easier
again, we note the following property of binary trees.

Proposition 1. Let T be a binary tree with m leaves, the height n, and with

the number of left edges on any path from the root to a leaf bounded by k. Then

m ≤ 2k
(

n
k

)

.

Proof: Let S(n, k) be the maximum number of leaves in such a tree. Then S(n, k)
is given by the recursive formula S(n, k) = S(n − 1, k) + S(n − 1, k − 1), for
n ≥ k + 1 and k ≥ 1, with the initial conditions S(n, 0) = 1 and S(n, n) = 2n,
for n ≥ 0. The assertion can now be proved by an easy induction. ⊓⊔

We denote by S the class of complete solvers with the following three prop-
erties: (1) they compute answer sets (or determine that no answer set exists)
by generating a sequence of partial assignments so that if an answer set exists
then it occurs among the generated assignments; (2) they use boolean constraint
propagation to force truth assignments on unassigned atoms and trigger back-
tracking if contradictions are found; and (3) the generated assignments can be
represented by a binary tree, whose nodes are atoms, and where the left (right)
edge leaving an atoms corresponds to assigning that atom false (true). This class
of solvers includes in particular solvers that use chronological backtracking, as
well as those that perform backjumping (we note that in that latter case, some
nodes corresponding to decision atoms may have only one child).

Proposition 2. Let P ∈ R−
n be such that the maximum size of an independent

set in G(P ) equals β. Then, the number of assignments generated by any solver

in the class S is O((2n)β+1).

Proof: The tree representing the space of assignments generated by a solver from
S for P has height at most n and at most β +1 left edges on every path. Indeed,
if there are ever β + 1 left edges on a path in the tree, then β + 1 atoms are set



to false. Atoms in that set do not form an independent set in G(P ), and so for
some two of them, say a and b, the rule a← not b is in P . Boolean propagation
forces a or b to be true, while both of these atoms are false. Thus, a backtrack
will occur (the current path will not be extended). The assertion follows now by
Proposition 1, as

(

n
k

)

≤ nk. ⊓⊔
We noted earlier that when m ≥ cn2, β = O(log n). Thus, when m ≥ cn2, the

size of the search space is bounded by nO(1)2O(log2 n), which is asymptotically
much smaller than O(2n). Furthermore, with m getting closer to n(n−1), β gets
even smaller and so, the search space gets smaller, too.

Finally, we note (due to space limits, we do not discuss these results in detail)
that adding even a small number of positive rules or constraints to programs from
mR−

n generally makes the resulting programs easier. These results suggest that
from the perspective of benchmarking and insights into search heuristics, proper
purely negative constraint-free programs are especially important.

6 Benchmarks for SAT Solvers

Deciding whether a logic program has an answer set is in the class NP. Thus,
there are polynomial-time methods to reduce the task of computing stable mod-
els of a program to that of computing models of a CNF theory. Unfortunately,
all known reductions lead to theories whose size is superlinear with respect to
that of the original program [17].

However, linear-size reductions exist for programs that are tight [18]. Namely,
answer sets of a tight program P are precisely models of the Clark’s completion

of P [8]. Purely negative programs are tight. In particular, programs in R−
n are

tight. Moreover, if P ∈ R−
n , then the completion of P has especially simple

form. It can be written as the collection of the following clauses: (1) a∨ b, where
a ← not b ∈ P , and (2) ¬a ∨ ¬b1 ∨ . . . ∨ ¬bk, where a ← not bi, 1 ≤ i ≤ k, are
all rules in P with a as the head.

Theories of that type obtained from programs form R−
n , constitute an in-

teresting class of benchmarks for SAT solvers. They are simple in that most
of their clauses consist of two literals and all other clauses are disjunctions of
atoms. Moreover, as the density grows, there is no phase transition, unlike in
the case of the standard model. Instead, we observe the familiar easy-hard-easy
property, with the hard region correlated well with the one we observed for clasp

and smodels (Figure 3).

7 Discussion

We proposed and considered a model of random logic programs with fixed-length
rules. We focused on the case of proper programs with two-literal rules. Our
model is parameterized by the number of atoms and five integers that specify the
numbers of rules of each possible type. Due to its simplicity, the model lends itself
to theoretical investigations. To the best of our knowledge, our paper provides
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Fig. 3. Easy-hard-easy pattern shown by minisat [19] on the completions of programs from mR−n,
where n = 150, satisfiable theories in graph (a), inconsistent ones in graph (b).

first non-trivial theoretical results on the properties of random programs. Our
experimental results show that while simple, the model allows us to generate
relatively small programs that are hard for the current ASP solvers. Computing
answer sets of proper purely negative constraint-free programs with 600 atoms
generated from the hard region seems to be infeasible at present. We also noted
that completions of hard programs from our model are challenging benchmarks
for SAT solvers. One of the main outcomes of our paper is the emergence of
proper purely negative constraint-free programs as the core class for generating
benchmarks and a key to theoretical studies of properties of random programs.

The model we proposed for the case of two-literal rules can be generalized to
programs consisting of k ≥ 3 rules. We believe that most properties we identified
in this paper generalize, too. In particular, our preliminary experiments show the
same easy-hard-easy pattern for proper purely negative constraint-free programs
with three-literal rules. Moreover, programs from the hard region are harder than
hard-region two literal ones.

There are several differences between our work and that of Zhao and Lin [5].
First, we consider the fixed rule-length model (and more narrowly, only the case
of two-literal programs). Second, we can specify in our model the composition
of programs in terms of the numbers of rules of particular types. That facilitates
studies of the effect these rules have when added to the “core” consisting of
proper purely negative constraint-free programs. Third, we focus on, what we
believe, is the key class of random logic programs — the class of programs that
are proper purely negative and constraint-free. Despite these differences, one of
specializations of our model (that allows for constraints) is quite closely related
to Zhao and Lin model and shows similar properties. We also note that the first
and the last of the issues discussed above differentiate our approach from an
unpublished work by Wong, Schlipf and Truszczyński [20].

Finally, we note that for the class R−
n , as well as for several other classes of

programs we can define in our framework, we do not observe the phase transition.
That is, unlike in SAT, increasing the density (the number of rules) does not
result in a sudden transition from consistent to inconsistent programs. In fact
there is no density for which programs are a.a.s inconsistent. We believe it is
due to the nonmonotonicity of the semantics of answer sets. For some classes



of programs, namely those with sufficiently many constraints, a transition from
consistent to inconsistent programs can be observed (Zhao and Lin’s model shows
such transition, too). However, the transition is relatively slow.
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