
Relativized Hyperequivalence of Logic Programs for
Modular Programming

Mirosław Truszczýnski1 and Stefan Woltran2

1 Department of Computer Science, University of Kentucky, Lexington,KY 40506, USA
2 Institut für Informationssysteme 184/2, Technische Universität Wien, Favoritenstraße 9-11,

A-1040 Vienna, Austria,

Abstract. A recent framework of relativized hyperequivalence of programsof-
fers a unifying generalization of strong and uniform equivalence. It seems to be
especially well suited for applications in program optimization and modular pro-
gramming due to its flexibility that allows us to restrict, independently of each
other, the head and body alphabets in context programs. We study relativized
hyperequivalence for the three semantics of logic programs given bystable, sup-
ported and supported minimal models. For each semantics, we identify four types
of contexts, depending on whether the head and body alphabets are given directly
or as thecomplementof a given set. Hyperequivalence relative to contexts where
the head and body alphabets are specified directly has been studied before. In this
paper, we establish the complexity of deciding relativized hyperequivalence wrt
the three other types of context programs.

1 Introduction

We study variants of relativized hyperequivalence that arerelevant for the development
and analysis of logic programs with modular structure. Our main results concern the
complexity of deciding relativized hyperequivalence for the three major semantics of
logic programs given by stable, supported and supported minimal models.

Logic programmingwith the semantics of stable models, nowadays often referred to
asanswer-set programming, is a computational paradigm for knowledge representation,
as well as modeling and solving of constraint problems [1–4]. In recent years, it has
been steadily attracting more attention. One reason is thatanswer-set programming is
truly declarative. Unlike in, say, Prolog, the order of rules in programs and the order of
literals in rules have no effect on the meaning of the program. Secondly, the efficiency
of the latest tools for processing programs, especially solvers, reached the level that
makes it feasible to use them for problems of practical importance [5].

It is broadly recognized in software engineering that modular programs are easier to
design, analyze and implement. Hence, essentially all programming languages and en-
vironments support the development of modular programs. Accordingly, there has been
much work recently to establish foundations ofmodularanswer-set programming. One
line of investigations has focused on the notion of an answer-set programmodule[6–
9]. This work builds on ideas for compositional semantics oflogic programs proposed
in [10] and encompasses earlier results on stratification and program splitting[11].

The other main line of research, to which our paper belongs, has centered on pro-
gram equivalence and, especially, on the concept of equivalence for substitution. Pro-
gramsP andQ areequivalent for substitutionwrt a classC of programs calledcontexts,
if for every contextR ∈ C, P ∪ R andQ ∪ R have the same stable models. Thus, if a
logic program is the union of programsP andR, whereR ∈ C, thenP can be replaced
with Q, with the guarantee that the semantics is preserved no matter whatR is (as long
as it is inC) precisely whenP andQ are equivalent for substitution wrtC. If C contains
the empty program (which is typically the case), the equivalence for substitution wrtC
implies the standard equivalence under the stable-model semantics.3 The converse is not
true. We refer to these stronger forms of equivalence collectively ashyperequivalence.

Hyperequivalence wrt the class ofall programs, known more commonly asstrong
equivalence, was proposed and studied in [12]. That work prompted extensive investi-
gations of the concept that resulted in new characterizations [13, 14] and connections
to certain non-standard logics [15]. Hyperequivalence wrtcontexts consisting of facts
was studied in [16, 17]. This version of hyperequivalence, known asuniform equiva-
lence, appeared first in the database area in the setting of DATALOGand query equiva-
lence [18]. Hyperequivalence wrt contexts restricted to a given alphabet, orrelativized
hyperequivalence, was proposed in [17, 19]. It was generalized in [20] to allow contexts
that use (possibly) different alphabets for the heads and bodies of rules. The approach
offers a unifying framework for strong and uniform equivalence. Hyperequivalence, in
which one compares projections of answer sets on some designated sets of atoms rather
than entire answer sets was investigated in [21, 22].

All those results concern the stable-model semantics of programs. There has been
little work on other semantics, with [23] long being a notable single exception. Recently
however, [24] introduced and investigated relativized hyperequivalence of programs un-
der the semantics of supported models [25] and supported minimal models, two other
major semantics of logic programs. [24] characterized these variants of hyperequiva-
lence and established the complexity of some associated decision problems.

In this paper, we continue research of relativized hyperequivalence under all three
major semantics of logic programs. As in [20, 24], we focus oncontexts of the form
HB(A,B), whereHB(A,B) stands for the set of all programs that use elements from
A in the heads and atoms fromB in the bodies of rules. Our main goal is to establish
the complexity of deciding whether two programs are hyperequivalent (relative to a
specified semantics) wrtHB(A,B). We consider the cases whenA andB are either
specified directly or in terms of their complement. As we point out in the following
section, such contexts arise naturally when we design modular logic programs.

2 Motivation

In the paper we consider finite propositional programs only,all over a fixed countable
infinite set of atomsAt . For a set of atomsX, we defineXc = At \X.

A logic program isA-definingif it specifies the definitions of atoms inA. The def-
initions may be recursive, they may involveinterfaceatoms, that is, atoms defined in

3 Two programs are equivalent under the stable-model semantics if theyhave the same stable
models.

other modules, as well as atoms used locally to represent some needed auxiliary con-
cepts. LetL be the set of local atoms, and letP be a particular logic program expressing
the definitions. ForP to behave properly when combined with other programs, these
“context” programs must not have any occurrences of atoms from L and must have
no atoms fromA in the heads of their rules. In our terminology, these are precisely
programs inHB((A ∪ L)c, Lc).4

The definitions of atoms inA can in general be captured by several differentA-
defining programs. A key question concerning such programs is whether they are equiv-
alent. Clearly, twoA-defining programsP andQ, both using atoms fromL to represent
local auxiliary concepts, should be regarded as equivalentif they behave in the same
way in the context of any program fromHB((A∪L)c, Lc). In other words, the notion of
equivalence that is appropriate in our setting is hyperequivalence wrtHB((A∪L)c, Lc)
under a selected semantics (stable, supported or supported-minimal).

Example 1.Let us assume thatA = {a, b} and thatc andd are interface atoms (atoms
defined elsewhere). We need a module that works as follows:

1. If c andd are both true, exactly one ofa andb must be true
2. If c is true andd is false, onlya must be true
3. If d is true andc is false, onlyb must be true
4. If c andd are both false,a andb must be false.

We point out thatc andd may depend ona andb and so, in some cases the overall
program may have no models of a particular type (to be concrete, for a time being we
fix attention to stable models).

One way to express above conditions is by means of the following {a, b}-defining
programP (in this example we assume programs without local atoms, that is, L = ∅):

a← c,not b; b← d,not a.

CombiningP with programs that specify facts:{c, d}, {c}, {d} and∅, it is easy to see
thatP behaves as required. For instance,P ∪ {c} has exactly one stable model{a, c}.

However,P may also be combined with more complex programs. For instance, let
us consider the programR = {c ← not d; d ← a,not c}. Here,d can only be true
if a is true andc is false. But thenb must be true anda must befalse, a contradiction.
Thus,d must be false andc must be true. According to the specifications, there should
be exactly one stable model forP ∪ R in this case:{a, c}. It is easy to verify that it is
indeed the case.

The specifications fora andb can also be expressed by other{a, b}-defining pro-
grams, in particular, by the following programQ:

a← c, d,not b; b← c, d,not a; a← c,not d; b← d,not c.

The question arises whetherQ behaves in the same way asP relative to programs from
HB({a, b}c, ∅c) = HB({a, b}c,At). For all contexts considered earlier, it is the case.
However, in general, it is not so. For instance, ifR = {c← ; d← a} then,{a, c, d} is
a stable model ofP ∪R, while Q ∪R has no stable models. Thus,P andQ cannot be
viewed as equivalent{a, b}-defining programs. 2

4 A-defining programs were introduced in [26]. However, that work considered more restricted
classes of programs with whichA-defining programs could be combined.

A similar scenario is as follows: We call a programA-completingif it completes
partial and non-recursive definitions of atoms inA given elsewhere in the overall pro-
gram (which, for instance, might specify the base conditions for a recursive definition
of atoms inA). Assuming thatP is an implementation of such a module (again withL
as a set of local atoms),P can be combined with any programR that has no occurrences
of atoms fromL and no occurrences of atoms fromA in the bodies of its rules. This is
precisely the classHB(Lc, (A ∪ L)c).

One can also construct scenarios that give rise to hyperequivalence wrt context
classesHB(A,B), whereA or B is specified directly. Thus, hyperequivalence wrt con-
text classesHB(A,B), where each ofA andB is specified directly or in terms of its
complement is of interest. Our goal is to study the complexity of deciding whether two
programs are hyperequivalent relative to such classes of contexts.

3 Technical Preliminaries

Basic logic programming notation and definitions.Disjunctive logic programs(pro-
grams, for short) are sets of (program)rules— expressions of the form

a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn, (1)

whereai, bi and ci are atoms inAt , ‘|’ stands for the disjunction, ‘,’ stands for the
conjunction, andnot is thedefaultnegation. Ifk = 0, the rule is aconstraint. If k ≤ 1,
the rule isnormal. Programs consisting of normal rules are callednormal.

We often write the rule (1) asH ← B+,not B−, whereH = {a1, . . . , ak},
B+ = {b1, . . . , bm} andB− = {c1, . . . , cn}. We callH theheadof the rule, and the
conjunctionB+,not B−, thebodyof the rule. The setsB+ andB− form the positive
and negative body of the rule. Given a ruler, we writeH(r), B(r), B+(r) andB−(r)
to denote the head, the body, the positive body and the negative body ofr, respectively.
For a programP , we setH (P) =

⋃
r∈P H(r), andB±(P) =

⋃
r∈P B+(r) ∪B−(r).

For an interpretationM ⊆ At and a ruler, we define entailmentsM |= B(r),
M |= H(r) andM |= r in the standard way. An interpretationM ⊆ At is amodelof
a programP (M |= P), if M |= r for everyr ∈ P .

Thereductof a disjunctive logic programP wrt a setM of atoms, denoted byPM ,
is the program{H (r) ← B+(r) | r ∈ P, M ∩ B−(r) = ∅}. A setM of atoms is a
stable modelof P if M is a minimal model (wrt inclusion) ofPM .

If a set M of atoms is a minimal hitting set of{H (r) | r ∈ P, M |= B(r)},
thenM is a supported modelof P . M is a supported minimal modelof P if it is a
supported model ofP and a minimal model ofP . We recall that each stable model
is also supported, but (generally) not vice versa. Supported models of anormal logic
programP have a useful characterization in terms of the (partial) one-step provability
operatorTP , defined as follows. ForM ⊆ At , if there is a constraintr ∈ P such
that M |= B(r) (that is,M 6|= r), thenTP (M) is undefined. Otherwise,TP (M) =⋃
{H (r) | r ∈ P, M |= B(r)}. Whenever we useTP (M) in a relation such as (proper)

inclusion, equality or inequality, we always implicitly assume thatTP (M) is defined.
It is well known thatM is a model ofP if and only if TP (M) ⊆ M (that is,TP is

defined forM and satisfiesTP (M) ⊆ M). Similarly, M is asupportedmodel ofP if
TP (M) = M (that is,TP is defined forM and satisfiesTP (M) = M) [27].

For a ruler = a1| . . . |ak ← B , wherek ≥ 1, ashift of r is a normal program rule
of the form

ai ← B ,not a1, . . . ,not ai−1,not ai+1, . . . ,not ak,

wherei = 1, . . . , k. If r is normal, the onlyshiftof r is r itself. A program consisting of
all shifts of rules in a programP is theshift of P . We denote it bysh(P). It is evident
that a setM of atoms is a (minimal) model ofP if and only if M is a (minimal) model
of sh(P). It is easy to check thatM is a supported (minimal) model ofP if and only if
it is a supported (minimal) model ofsh(P). Moreover,M is a supported model ofP if
and only ifTsh(P)(M) = M . Thus, in all results concerning supported models, we will
use implicitly the shift of programs involved (see also [24]for further details).

Characterizations of hyperequivalence of programs.Let C be a class of (disjunctive)
logic programs. ProgramsP andQ aresupp-equivalent(suppmin-equivalent, stable-
equivalent, respectively) relative toC if for every programR ∈ C, P ∪ R andQ ∪ R
have the same supported (supported minimal, stable, respectively) models.

In this paper, we are interested in equivalence of all three types relative to classes of
programs defined by theheadandbody alphabets. Let A,B ⊆ At . By HB(A,B) we
denote the class of all programsP such thatH (P) ⊆ A andB±(P) ⊆ B. Hence, the
empty program is contained in any suchHB(A,B).

For supp-equivalence and suppmin-equivalence, we need thefollowing concept in-
troduced in [24]. Given a programP , and a setA ⊆ At , we define

ModA(P) = {Y ⊆ At |Y |= P andY \ TP (Y) ⊆ A}.

Theorem 1. Let P andQ be programs,A ⊆ At , andC a class of programs such that
HB(A, ∅) ⊆ C ⊆ HB(A,At). Then,P andQ are supp-equivalent relative toC if and
only if ModA(P) = ModA(Q) and for everyY ∈ ModA(P), TP (Y) = TQ(Y).

To characterize suppmin-equivalence, we use the setMod
B
A(P) (following [24]),

which consists of all pairs(X,Y) such that

1. Y ∈ ModA(P)
2. X ⊆ Y |A∪B

3. for eachZ ⊂ Y such thatZ|A∪B = Y |A∪B , Z 6|= P
4. for eachZ ⊂ Y such thatZ|B = X|B andZ|A ⊇ X|A, Z 6|= P
5. if X|B = Y |B , thenY \ TP (Y) ⊆ X.

Theorem 2. Let A,B ⊆ At and letP,Q be programs. Then,P andQ are suppmin-
equivalent relative toHB(A,B) if and only ifMod

B
A(P) = Mod

B
A(Q) and for every

(X,Y) ∈ Mod
B
A(P), TP (Y)|B = TQ(Y)|B .

Relativized stable-equivalence of programs was characterized in [20]. We define
SE

B
A(P) to consist of all pairs(X,Y) such that:5

1. Y |= P
2. X = Y or jointly X ⊆ Y |A∪B andX|A ⊂ Y |A

5 We use a slightly different presentation than [20].

3. for eachZ ⊂ Y such thatZ|A = Y |A, Z 6|= PY

4. for eachZ ⊂ Y such thatZ|B ⊆ X|B , Z|A ⊇ X|A, and eitherZ|B ⊂ X|B or
Z|A ⊃ X|A, Z 6|= PY

5. there isZ ⊆ Y such thatX|A∪B = Z|A∪B andZ |= PY .

Theorem 3. Let A,B ⊆ At and letP,Q be programs. Then,P and Q are stable-
equivalent relative toHB(A,B) if and only ifSE

B
A(P) = SE

B
A(Q).

Decision problems.We study problems of deciding hyperequivalence relative topro-
gram classesHB(A′, B′), whereA′ andB′ stand either for finite sets or for comple-
ments of finite sets. In the former case, the set is givendirectly. In the latter, it is spec-
ified by its finitecomplement(the set itself is infinite). Thus, we obtain the classes of
direct-direct, direct-complement, complement-directandcomplement-complementde-
cision problems. We denote them using strings of the formSEMδ,ε(α, β), where (1)SEM

stands forSUPP, SUPPMINor STABLE and identifies the semantics relative to which we
define hyperequivalence; (2)δ andε stand ford or c (direct and complement, respec-
tively), and specify one of the four classes of problems mentioned above; (3)α is either
· or A, whereA ⊆ At is finite. If α = A, thenα specifies afixedalphabet for the heads
of rules in contexts: eitherA or the complementAc of A, depending on whetherδ = d
or c. The parameter does not belong to and does not vary with input. If α = ·, then
the specificationA of the head alphabet is part of the input and defines it asA or Ac,
again according toδ; (4) β is either· or B, whereB ⊆ At is finite. It obeys the same
conventions asα but defines the body alphabet according to the value ofε.

For instance,SUPPMINd,c(A, ·), whereA ⊆ At is finite, stands for the following
problem: given programsP andQ, and a setB, decide whetherP andQ are suppmin-
equivalent wrtHB(A,Bc). With some abuse of notation, we often talk about “the prob-
lem SEMδ,ε(A,B)” as a shorthand for “an arbitrary problem of the formSEMδ,ε(A,B)
with fixed finite setsA andB”; likewise we do so forSEMδ,ε(·, B) andSEMδ,ε(A, ·).

As we noted, for supp- and suppmin-equivalence, there is no difference between
normal and disjunctive programs. For stable-equivalence,allowing disjunctions in the
heads of rules affects the complexity. Thus, in the case of stable-equivalence, we distin-
guish versions of the problemsSTABLEδ,ε(α, β), where the input programs are normal.6

We denote these problems bySTABLEn
δ,ε(α, β).

Direct-direct problems for the semantics of supported and supported minimal mod-
els were considered in [24] and their complexity was fully determined there. The com-
plexity of problemsSTABLEd,d(·, ·), was established in [20], and problems similar to
STABLEc,c(A,A) were already studied in [17]. In this paper, we complete the results
on the complexity of problemsSEMδ,ε(α, β) for all three semantics. In particular, we
establish the complexity of the problems with at least one ofδ andε being equal toc.

The complexity of problems involving the complement ofA or B is not a straight-
forward consequence of the results on direct-direct problems. In the direct-direct prob-
lems, the class of context programs is essentially finite, asthe head and body alphabets
for rules are finite. It is no longer the case for the three remaining problems, where at
least one of the alphabets is infinite and so, the class of contexts is infinite, as well.

6 We can also restrict the programs used as contexts to normal ones, since this makes no differ-
ence, cf. [20].

Finally, we note that when we changeA or B to · in the problem specification, the
resulting problem is at least as hard as the original one. Indeed for each such pair of
problems, there are some straightforward reductions from one to the other. We illustrate
these relationships in Figure 1.

A,B()

SEMδ,ε

SEMδ,ε SEMδ,ε

SEMδ,ε)

 , ()

)

.

. .

(,B

A, (.

Fig. 1.A simple comparison of the hardness of problems

4 Supp-equivalence

As the alphabet for the bodies of context programs plays no role in supp-equivalence
(cf. Theorem 1), the complexity ofSUPPd,c(A, β) andSUPPd,c(·, β) is already solved (β
is · or a setB of atoms) by the complexity of the corresponding direct-direct problems
which have been shown coNP-complete in [24]. It remains to considerSUPPc,d(A, β)
andSUPPc,d(·, β) (which coincide withSUPPc,c(A, β), and respectively,SUPPc,c(·, β)).

First, we prove an upper bound on the complexity of the problem SUPPc,d(·, ·).

Theorem 4. The problemSUPPc,d(·, ·) is in the class coNP.

Proof: It is sufficient to show thatSUPPc,d(·, ∅) is in coNP, since(P,Q,A) is a YES
instance ofSUPPc,d(·, ∅) if and only if (P,Q,A,B) is a YES instance ofSUPPc,d(·, ·).

Let Y ′ = Y ∩ (At(P) ∪ A). We will show thatY ∈ ModAc(P) if and only if
Y ′ ∈ ModAc(P). First, we note thatTP (Y) = TP (Y ′). If Y ∈ ModAc(P), then
Y |= P and Y \ TP (Y) ⊆ Ac. The former property implies thatY ′ |= P . Since
Y ′\TP (Y ′) = Y ′\TP (Y) ⊆ Y \TP (Y), the latter one implies thatY ′\TP (Y ′) ⊆ Ac.
Thus,Y ′ ∈ ModAc(P).

Conversely, letY ′ ∈ ModAc(P). ThenY ′ |= P and, consequently,Y |= P . More-
over, we also haveY ′ \ TP (Y ′) ⊆ Ac. Let y ∈ Y \ TP (Y). If y /∈ Y ′, theny /∈ A, that
is, y ∈ Ac. If y ∈ Y ′, theny ∈ Y ′ \ TP (Y ′) (we recall thatTP (Y) = TP (Y ′)). Hence,
y ∈ Ac in this case, too. It follows thatY \ TP (Y) ⊆ Ac and so,Y ∈ ModAc(P).

Next, we prove thatModAc(P) 6= ModAc(Q) or, for someY ∈ ModAc(P),
TP (Y) 6= TQ(Y) if and only if there isY ′ ⊆ At(P ∪ Q) ∪ A such thatY ′ belongs
to exactly one ofModAc(P) andModAc(Q), or Y ′ belongs to bothModAc(P) and
ModAc(Q) andTP (Y ′) 6= TQ(Y ′). Clearly, we need to prove the “only-if” implication.
To this end, we note that ifModAc(P) 6= ModAc(Q), then by the observation proved
above, there isY ′ ⊆ At(P∪Q)∪A with that property. Thus, assume thatModAc(P) =
ModAc(Q). If for someY ∈ ModAc(P), TP (Y) 6= TQ(Y) then,Y belongs to both
ModAc(P) andModAc(Q). By the argument given above,Y ′ = Y ∩ (At(P ∪Q)∪A)
belongs to bothModAc(P) andModAc(Q), andTP (Y ′) 6= TQ(Y ′).

Thus, to decide the complementary problem, we nondeterministically guessY ⊆
At(P ∪Q)∪A, and verify thatY belongs to exactly one ofModAc(P) andModAc(Q),
or thatY belongs toModAc(P) andModAc(Q), and thatTP (Y) 6= TQ(Y).

CheckingY |= P and Y |= Q can be done in polynomial time. Similarly, for
R = P or Q, Y \TR(Y) ⊆ Ac if and only if (Y \TR(Y))∩A = ∅. Thus, checkingY \
TR(Y) ⊆ Ac can be done in polynomial time, too, and so the algorithm is polynomial.
Hence, the complementary problem is in NP, which implies theassertion. 2

For the lower bound we use the problemSUPPc,d(A,B).

Theorem 5. The problemSUPPc,d(A,B) is coNP-hard.

Proof: Let us consider a CNFϕ, let Y be the set of atoms inϕ, and letY ′ = {y′ | y ∈
Y } be a set of new atoms. We define

P (ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪ {← ĉ | c is a clause inϕ}

where, for each clausec ∈ ϕ, sayc = y1 ∨ · · · ∨ yk ∨¬yk+1 ∨ · · · ∨¬ym, ĉ denotes the
the sequencey′

1, . . . , y
′
k, yk+1, . . . , ym. To simplify the notation, we writeP for P (ϕ).

One can check thatϕ has a model if and only ifP has a model. Moreover, for every
modelM of P such thatM ⊆ At(P), M is asupportedmodel ofP and, consequently,
satisfiesM = TP (M).

Next, letQ consist off and← f . As Q has no models, Theorem 1 implies thatQ
is supp-equivalent toP relative toHB(Ac, B) if and only if ModAc(P) = ∅. If M ∈
ModAc(P), then there isM ′ ⊆ At(P) such thatM ′ ∈ ModAc(P). Since every model
M ′ of P such thatM ′ ⊆ At(P) satisfiesM ′ = TP (M ′), it follows thatModAc(P) =
∅ if and only if P has no models. Thus,ϕ is unsatisfiable if and only ifQ is supp-
equivalent toP relative toHB(Ac, B), and the assertion follows. 2

We combine Theorems 4 and 5 via the relations depicted in Figure 1 and obtain:

Corollary 1. The problemSUPPδ,ε(α, β) is coNP-complete, for any combination of
δ, ε ∈ {c, d}, α ∈ {A, ·}, β ∈ {B, ·}.

5 Suppmin-equivalence

In this section, we establish the complexity for direct-complement, complement-direct
and complement-complement problems of deciding suppmin-equivalence. The com-
plexity of direct-direct problems was determined in [24].

Upper bounds. The argument consists of a series of auxiliary results. Due to space
restrictions, we omit some of the proofs. The first two lemmasare concerned with the
basic problem of deciding whether(X,Y) ∈ Mod

B′

A′ (P), whereA′ andB′ stand forA
or Ac andB or Bc, respectively.

Lemma 1. The following problems are in the class coNP: Given a programP , and sets
X, Y , A, andB, decide whether (i)(X,Y) ∈ Mod

B
Ac(P); (ii) (X,Y) ∈ Mod

Bc

A (P);
(iii) (X,Y) ∈ Mod

Bc

Ac (P).

Proof: We first show that the complementary problem to decidewhether(X,Y) /∈
Mod

B
Ac(P) is in NP. To this end, we observe that(X,Y) /∈ Mod

B
Ac(P) if and only if at

least one of the following conditions holds: (1)Y /∈ ModAc(P), (2) X 6⊆ Y |Ac∪B (3)
there isZ ⊂ Y such thatZ|Ac∪B = Y |Ac∪B andZ |= P , (4) there isZ ⊂ Y such that

Z|B = X|B , Z|Ac ⊇ X|Ac andZ |= P , (5) X|B = Y |B andY \ TP (Y) 6⊆ X. We
note that verifying any condition involvingAc can be reformulated in terms ofA. For
instance, for every setV , we haveV |Ac = V \A, andV ⊆ Ac if and only if V ∩A = ∅.
Thus, the conditions (1), (2) and (5) can be decided in polynomial time. Conditions (3)
and (4) can be decided by a nondeterministic polynomial timealgorithm. Indeed, once
we nondeterministically guessZ, all other tests can be decided in polynomial time. The
proofs for the remaining two claims use the same ideas and differ only in technical
details depending on which ofA andB is subject to the complement operation. 2

Lemma 2. For every finite setB ⊆ At , the following problems are in the class Pol:
given a programP , and setsX, Y andA, decide whether (i)(X,Y) ∈ Mod

Bc

Ac (P);
(ii) (X,Y) ∈ Mod

Bc

A (P).

Proof: In each case, the argument follows the same lines as that for Lemma 1. The
difference is in the case of the conditions (3) and (4). Underthe assumptions of this
lemma, they can be decided indeterministicpolynomial time. Indeed, let us note that
there are no more than2|B| setsZ such thatZ|Ac∪Bc = Y |Ac∪Bc (or, for the second
problem, such thatZ|A∪Bc = Y |A∪Bc). SinceB is finite and fixed, the condition (3)
can be checked in polynomial time by a simple enumeration of all possible setsZ such
thatZ ⊂ Y andZ|Ac∪Bc = Y |Ac∪Bc and checking for each of them whetherZ |= P .
For the condition (4), the argument is similar. SinceZ is constrained byZ|Bc = X|Bc ,
there are no more than2|B| possible candidate setsZ to consider in this case, too. 2

The role of the next lemma is to show that(X,Y) ∈ Mod
B
A(P) implies constraints

onX andY .

Lemma 3. Let P be a program andA,B ⊆ At . If (X,Y) ∈ Mod
B
A(P) thenX ⊆

Y ⊆ At(P) ∪A.

Lemma 3 is too weak for the membership results for complement-direct and comp-
lement-complement problems, as for these two types of problems, it only limitsY to
subsets ofAt(P) ∪ Ac, which is infinite. To handle these two classes of problems we
use the following lemma that can be derived from Theorem 2.

Lemma 4. LetP,Q be programs andA,B ⊆ At . If (X,Y) ∈ Mod
B
Ac(P)\Mod

B
Ac(Q)

then there is(X ′, Y ′) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) such thatY ′ ⊆ At(P ∪ Q) ∪ A. If

(X,Y) ∈ Mod
B
Ac(P) andTP (Y)|B 6= TQ(Y)|B , then there is(X ′, Y ′) ∈ Mod

B
Ac(P)

such thatTP (Y ′)|B 6= TQ(Y ′)|B andY ′ ⊆ At(P ∪Q) ∪A.

Theorem 6. The following problems are contained in the classΠP
2 : SUPPMINc,d(·, ·),

SUPPMINc,c(·, ·) and SUPPMINd,c(·, ·). The following problems are in the class coNP:
SUPPMINd,c(·, B), SUPPMINc,c(·, B), SUPPMINc,c(∅, ·) andSUPPMINc,d(∅, ·).

Proof: We provide a detailed argument for the problemSUPPMINc,d(·, ·). Clearly,P and
Q are not suppmin-equivalent relative toHB(Ac, B) if and only if there is(X,Y) ∈
Mod

B
Ac(P) ÷ Mod

B
Ac(Q), or (X,Y) ∈ Mod

B
Ac(P) andTP (Y)|B 6= TQ(Y)|B . By

Lemma 4,P andQ are not suppmin-equivalent relative toHB(Ac, B) if and only if
there is(X,Y) such thatX ⊆ Y ⊆ At(P ∪ Q) ∪ A and (X,Y) ∈ Mod

B
Ac(P) ÷

Mod
B
Ac(Q), or (X,Y) ∈ Mod

B
Ac(P) andTP (Y)|B 6= TQ(Y)|B .

Thus, to decide the complementary problem, it suffices to guessX,Y ⊆ At(P ∪
Q) ∪ A and check that(X,Y) ∈ Mod

B
Ac(P) ÷Mod

B
Ac(Q), or that(X,Y) is in both

sets andTP (Y)|B 6= TQ(Y)|B . The first task can be decided by NP oracles (Lemma
1(i)) and testingTP (Y)|B 6= TQ(Y)|B can be accomplished in polynomial time.

The remaining arguments are similar. The only differences are: ForSUPPMINd,c(·, ·)
andSUPPMINd,c(·, B) we use Lemma 3 to ensure that the decision algorithm can restrict
in the guessing phase to pairs(X,Y) with Y ⊆ At(P ∪ Q) ∪ A; for SUPPMINd,c(·, ·)
and SUPPMINc,c(·, ·), we use Lemma 1(ii)-(iii); to obtain a stronger upper bound for
SUPPMINd,c(·, B) and SUPPMINc,c(·, B), we make use of Lemma 2. The result for
SUPPMINc,d(∅, ·) was settled in [24] (although not directly, the case ofSUPPMINc,c(∅, ·)
follows also from [24]; we provide details in the full version). For problems involving
Bc, we testTP (Y)|Bc = TQ(Y)|Bc by comparingTP (Y) \B andTQ(Y) \B. 2

Suppmin-equivalence — lower bounds and exact complexity results. To illustrate
methods we use to obtain our results, we will provide full details for the case of direct-
complement problems. For the other two types of problems, weonly state the results.

Theorem 7. The problemSUPPMINd,c(A, ·) is ΠP
2 -hard.

Proof: Let∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y . We can assume
that A ∩ X = ∅ (if not, variables inX can be renamed). Next, we can assume that
A ⊆ Y (if not, add “dummy” tautology clauses toϕ). We will construct programs
P (ϕ) andQ(ϕ), and a setB, so that∀Y ∃Xϕ is true if and only ifP (ϕ) andQ(ϕ)
are suppmin-equivalent relative toHB(A,Bc). Since the problem to decide whether a
given QBF∀Y ∃Xϕ is true isΠP

2 -complete, the assertion will follow.
For every atomz ∈ X ∪ Y , we introduce a fresh atomz′. Given a set of “non-

primed” atomsZ, we defineZ ′ = {z′ | z ∈ Z}. In particular,A ∩ (Y ′ ∪X ′) = ∅. We
useĉ as in the proof of Theorem 5 and define the following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← z, z′ | z ∈ X ∪ Y } ∪

{← ĉ | c is a clause inϕ}.

To simplify notation, from now on we writeP for P (ϕ) andQ for Q(ϕ). We also define
B = X ∪X ′ ∪ Y ∪ Y ′. We observe thatAt(P) = At(Q) = B.

One can check that the models ofQ contained inB are sets of type

1. I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, whereJ ⊆ X, I ⊆ Y andI ∪ J |= ϕ.

Each model ofQ is also a model ofP butP has additional models contained inB, viz.

2. I ∪ (Y \ I)′ ∪X ∪X ′, for eachI ⊆ Y .

Clearly, for each modelM of Q such thatM ⊆ B, TQ(M) = M . Similarly, for each
modelM of P such thatM ⊆ B, TP (M) = M .

From these comments, it follows that for every modelM of Q (resp.P), TQ(M) =
M ∩ B (resp.TP (M) = M ∩ B). Thus, for every modelM of both P and Q,

TQ(M)|Bc = TP (M)|Bc . It follows that P andQ are suppmin-equivalent with re-
spect toHB(A,Bc) if and only if Mod

Bc

A (P) = Mod
Bc

A (Q) (indeed, we recall that if
(N,M) ∈ Mod

Bc

A (R) thenM is a model ofR).
Let us assume that∀Y ∃Xϕ is false. Hence, there exists an assignmentI ⊆ Y to

atomsY such that for everyJ ⊆ X, I ∪ J 6|= ϕ. Let N = I ∪ (Y \ I)′ ∪X ∪X ′. We
will show that(N |A∪Bc , N) ∈ Mod

Bc

A (P).
SinceN is a supported model ofP , N ∈ ModA(P). The requirement (2) for

(N |A∪Bc , N) ∈ Mod
Bc

A (P) is evident. The requirement (5) holds, sinceN \TP (N) =
∅. By the property ofI, N is a minimal model ofP . Thus, the requirements (3) and
(4) hold, too. It follows that(N |A∪Bc , N) ∈ Mod

Bc

A (P), as claimed. SinceN is not a
model ofQ, (N |A∪Bc , N) /∈ Mod

Bc

A (Q).
Let us assume that∀Y ∃Xϕ is true. First, observe thatMod

Bc

A (Q) ⊆ Mod
Bc

A (P).
Indeed, let(M,N) ∈ Mod

Bc

A (Q). It follows thatN is a model ofQ and, consequently,
of P . From our earlier comments, it follows thatTQ(N) = TP (N). SinceN\TQ(N) ⊆
A, N \ TP (N) ⊆ A. Thus,N ∈ ModA(P). Moreover, ifM |Bc = N |Bc thenN \
TQ(N) ⊆ M and, consequently,N \ TP (N) ⊆ M . Thus, the requirement (5) for
(M,N) ∈ Mod

Bc

A (P) holds. The conditionM ⊆ N |A∪Bc is evident (it holds as
(M,N) ∈ Mod

Bc

A (Q)). SinceN is a model ofQ, N = N ′ ∪ V , whereN ′ is a model
of type 1 andV ⊆ At \ B. Thus, every modelZ ⊂ N of P is also a model ofQ.
It implies that the requirements (3) and (4) for(M,N) ∈ Mod

Bc

A (P) hold. Hence,
(M,N) ∈ Mod

Bc

A (P) and, consequently,Mod
Bc

A (Q) ⊆ Mod
Bc

A (P).
We will now use the assumption that∀Y ∃Xϕ is true to prove the converse inclusion.

To this end, let us consider(M,N) ∈ Mod
Bc

A (P). If N = N ′ ∪V , whereN ′ is of type
1 andV ⊆ At \ B, then arguing as above, one can show that(M,N) ∈ Mod

Bc

A (Q).
Therefore, let us assume thatN = N ′∪V , whereN ′ is of type 2 andV ⊆ At \B. More
specifically, letN ′ = I ∪ (Y \ I)′ ∪X ∪X ′. By our assumption, there isJ ⊆ X such
thatI∪J |= ϕ. That is,Z = I∪(Y \I)′∪J∪(X \J)′ is a model ofP . Clearly,Z ⊂ N .
Moreover, sinceZ,N ⊆ B, we haveZ|A∪Bc = N |A∪Bc . Since(M,N) ∈ Mod

Bc

A (P),
the requirement (3) implies thatZ is not a model ofP , a contradiction. Hence, the latter
case is impossible andMod

Bc

A (P) ⊆ Mod
Bc

A (Q) follows.
We proved that∀Y ∃Xϕ is true if and only ifMod

Bc

A (P) = Mod
Bc

A (Q). This
completes the proof of the assertion. 2

Theorem 8. The problemSUPPMINd,c(A,B) is coNP-hard.

Proof: Consider a CNFϕ over atomsY , and the programsP (ϕ) andQ = {f ←; ← f}
from the proof of Theorem 5. We useP for P (ϕ) in the following. We already know
thatP has a model if and only ifϕ is true. We now show thatMod

Bc

A (P) 6= ∅ if and
only if ϕ is true. SinceMod

Bc

A (Q) = ∅ holds (as is easily seen), the assertion follows
by Theorem 2.

Let us assume thatP has a model. ThenP has a model, sayM , such thatM ⊆ Y ∪
Y ′. We show that(M,M) ∈ Mod

Bc

A (P). Indeed, sinceTP (M) = M , M ∈ ModA(P).
Also, sinceY ∪Y ′ ⊆ Bc, M |A∪Bc = M and so,M ⊆M |A∪Bc . Lastly,M \TP (M) =

∅ ⊆ M . Thus, the conditions (1), (2) and (5) for(M,M) ∈ Mod
Bc

A (P) hold. Since
M |A∪Bc = M andM |Bc = M , there is noZ ⊂ M such thatZ|A∪Bc = M |A∪Bc or

Z|Bc = M |Bc . Thus, also conditions (3) and (4) hold, andMod
Bc

A (P) 6= ∅ follows.
Conversely, letMod

Bc

A (P) 6= ∅ and let(N,M) ∈ Mod
Bc

A (P). ThenM ∈ ModA(P)
and, in particular,M is a model ofP . 2

Combining Theorems 7 and 8 with Theorem 6 yields the following result that fully
determines the complexity of direct-complement problems.

Corollary 2. The problemsSUPPMINd,c(A, ·) andSUPPMINd,c(·, ·) areΠP
2 -complete.

The problemsSUPPMINd,c(A,B) andSUPPMINd,c(·, B) are coNP-complete.

This concludes the more detailed discussion on the direct-complement problems.
Next, we just give the corresponding results for the remaining settings we have to study
for suppmin-equivalence, complement-complement and complement-direct problems.

Theorem 9. WithA 6= ∅, SUPPMINc,c(A, ·) andSUPPMINc,d(A,B) areΠP
2 -hard. The

problemsSUPPMINc,c(∅, ·) andSUPPMINc,c(A,B) are coNP-hard.

Combining Theorem 9 with Theorem 6 yields the following corollary completing
the picture of the complexity for suppmin-equivalence. ThecoNP-completeness results
for the complement-direct problems were already proved in [24].

Corollary 3. The problemsSUPPMINc,c(·, ·), SUPPMINc,d(·, B) and SUPPMINc,d(·, ·)
areΠP

2 -complete. ForA 6= ∅, also the problemsSUPPMINc,c(A, ·), SUPPMINc,d(A,B)
andSUPPMINc,d(A, ·), areΠP

2 -complete. Moreover, the following problems are coNP-
complete:SUPPMINc,c(∅, ·), SUPPMINc,c(A,B), SUPPMINc,c(·, B), SUPPMINc,d(∅, ·)
andSUPPMINc,d(∅, B).

6 Stable-equivalence

We turn now to stable-equivalence. Here we also consider direct-direct problems as, in
the case of fixed alphabets, they were not considered in [20].

Upper bounds.The following lemmas mirror the respective results from theprevious
section but show some interesting differences.

Lemma 5. The following problems are in the class DP in general7 and in the class Pol
for normal programs: Given a programP , and setsX, Y , A, andB, decide whether (i)
(X,Y) ∈ SE

B
A(P); (ii) (X,Y) ∈ SE

B
Ac(P); (iii) (X,Y) ∈ SE

Bc

A (P); (iv) (X,Y) ∈

SE
Bc

Ac (P).

Lemma 6. For every finite setsA,B ⊆ At , the following problem is in the class Pol:
given a programP , and setsX, Y decide whether(X,Y) ∈ SE

Bc

Ac (P).

Hence, polynomial-time model-checking fordisjunctiveprograms is only possible
for the setSE

Bc

Ac (P). Compared to Lemma 2, this is due to the more involved condi-
tion (4) for SE

Bc

Ac (P). For normalprograms the reductPY is a Horn program, which
is essential for the tractability results in Lemma 5.

The following lemmas hold for both disjunctive and normal programs.

7 The classDP consists of all problems expressible as the conjunction of a problem in NP and a
problem in coNP. However, this slight increase of complexity compared toLemma 1 does not
influence the subsequentΠP

2 -membership results, since a DP -oracle amounts to an NP-oracle.

Lemma 7. LetP be a program andA,B ⊆ At . If (X,Y) ∈ SE
B
A(P) thenX ⊆ Y ⊆

At(P) ∪A.

Lemma 8. Let P,Q be programs andA,B ⊆ At . If (X,Y) ∈ SE
B
Ac(P) \ SE

B
Ac(Q)

then there is(X ′, Y ′) ∈ SE
B
Ac(P) \ SE

B
Ac(Q) such thatY ′ ⊆ At(P ∪Q) ∪A.

We can now use the similar arguments in the previous section to obtain the following
collection of membership results:

Theorem 10. The problemSTABLEδ,ε(·, ·), is contained in the classΠP
2 , for anyδ, ε ∈

{c, d}; STABLEc,c(A,B) is contained in the class coNP. The problemSTABLEn
δ,ε(·, ·),

is contained in the class coNP for anyδ, ε ∈ {c, d}.

Stable-equivalence — lower bounds and exact complexity results. We start with
hardness for normal programs.

Theorem 11. The problemSTABLEn
δ,ε(A,B) is coNP-hard for anyδ, ε ∈ {c, d}.

Proof sketch: We use the standard reduction of UNSAT, thus let P (ϕ) andQ be as in
the proof of Theorem 5. It can be shown thatP (ϕ) has a stable model iffϕ is satisfiable.
Moreover,P (ϕ) ∪ R has no stable model (for arbitraryR) iff ϕ is not satisfiable. On
the other hand,Q∪R has no stable model, for anyR. ThusP is stable equivalent toQ
relative toC iff ϕ is unsatisfiable, whereHB(∅, ∅) ⊆ C ⊆ HB(At ,At), and thus where
C is an arbitrary class. Hence, the result holds in particularfor the desired classes. 2

We now turn to the case of disjunctive programs. We note that coNP-hardness for
STABLEc,c(A,B) follows immediately from the previous result. The remaining hard-
ness results can be shown by suitable adaptations of the reductions used in [17].

Theorem 12. The following problems are hard for the classΠP
2 : STABLEd,d(A,B),

STABLEc,d(A,B), STABLEd,c(A,B), STABLEc,c(A, ·), andSTABLEc,c(·, B).

Combining Theorems 11 and 12 with Theorem 10 yields the following corollary for
the complete picture of the complexity for stable-equivalence.

Corollary 4. The following problems areΠP
2 -complete for any combination ofδ, ε ∈

{c, d}: STABLEδ,ε(·, ·), STABLEδ,ε(A, ·), STABLEδ,ε(·, B). As well,STABLEd,d(A,B),
STABLEc,d(A,B) and STABLEd,c(A,B) are ΠP

2 -complete, whileSTABLEc,c(A,B) is
coNP-complete. The problemSTABLEn

δ,ε(α, β) is coNP-complete, for any combination
of δ, ε ∈ {c, d}, α ∈ {A, ·}, β ∈ {B, ·}.

7 Discussion

We studied the complexity of deciding relativized hyperequivalence of programs under
the semantics of stable, supported and supported minimal models. We focused on prob-
lems SEMδ,ǫ(α, β), where at least one ofδ andǫ equalsc, that is, at least one of the
alphabets for the context problems is determined as the complement of the correspond-
ing setA or B. As we noted, such problems arise naturally in the context ofmodular
design of logic programs, yet they have received essentially no attention so far.

δ ε α β SUPP SUPPMIN STABLE STABLEn

d c · coNP ΠP
2 ΠP

2 coNP
d c B coNP coNP ΠP

2 coNP
c c · or A 6= ∅ · coNP ΠP

2 ΠP
2 coNP

c c ∅ · coNP coNP ΠP
2 coNP

c c · B coNP coNP ΠP
2 coNP

c c A B coNP coNP coNP coNP
c d · or A 6= ∅ coNP ΠP

2 ΠP
2 coNP

c d ∅ coNP coNP ΠP
2 coNP

Table 1.Complexity ofSEMδ,ε(α, β); all entries are completeness results.

Table 1 summarizes the results. It shows that the problems concerning supp-equiva-
lence (no normality restriction), and stable-equivalencefor normal programs are all
coNP-complete (as are the corresponding direct-direct problems, studied in [24] and
here). The situation is more diversified for suppmin-equivalence and stable-equivalence
(no normality restriction) with some problems being coNP- and othersΠP

2 -complete.
For suppmin-equivalence lower complexity requires thatB be a part of problem spec-
ification, or thatA be a part of problem specification and be set to∅. For stable-
equivalence, the lower complexity only holds for the complement-complement prob-
lem with bothA andB fixed as part of the problem specification. We also note that
the complexity of problems for stable-equivalence is always at least that for suppmin-
equivalence. Furthermore, our complexity results suggestpossible algorithms for test-
ing the equivalence notions under consideration. One such approach is to reduce the
given characterizations to quantified Boolean formulas (QBFs) along the lines of previ-
ous work, e.g. [22], and then use extant solvers for QBFs to decide equivalence.

There are several questions worthy of further investigations. For instance, while
stable-equivalence when only parts of models are compared was studied [21, 22], no
similar results are available for supp- and suppmin-equivalence. Also the complexity
of the corresponding complement-direct, direct-complement and complement-comple-
ment problems for the three semantics in that setting has yetto be established.

Acknowledgments
We acknowledge support from the NSF (grant IIS-0325063), the KSEF (grant KSEF-
1036-RDE-008), and the Austrian Science Fund (grants P18019-N04, P20704-N18).

References

1. Marek, V., Truszczýnski, M.: Stable models and an alternative logic programming paradigm.
In Apt, K., Marek, W., Truszczýnski, M., Warren, D., eds.: The Logic Programming
Paradigm: A 25-Year Perspective. Springer, Berlin (1999) 375–398

2. Niemel̈a, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence25 (1999) 241–273

3. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-prolog
perspective. Artificial Intelligence138(2002) 3–38

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub,T., Truszczýnski, M.: The
first answer set programming system competition. Proceedings of LPNMR 2007. Vol. 4483
of LNAI., Springer (2007) 3–17

6. Gelfond, M.: Representing knowledge in A-Prolog. In Kakas, A., Sadri, F., eds.: Compu-
tational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II. Vol. 2408 of LNCS. Springer (2002) 413–451

7. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics16 (2006) 35–86

8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceed-
ings of ECAI 2006, IOS Press (2006) 412–416

9. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive
stable models. Proceedings of LPNMR 2007. Vol. 4483 of LNAI., Springer (2007) 175–187

10. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. Pro-
ceedings of POPL-1989. (1989) 134–142

11. Lifschitz, V., Turner, H.: Splitting a logic program. Proceedings ofICLP 1994. (1994) 23–37
12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-

tions on Computational Logic2(4) (2001) 526–541
13. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-

tional logic. Proceedings of KR 2002, Morgan Kaufmann (2002) 170–176
14. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory

and Practice of Logic Programming3 (2003) 609–622
15. de Jongh, D., Hendriks, L.: Characterizations of strongly equivalent logic programs in inter-

mediate logics. Theory and Practice of Logic Programming3 (2003) 259–270
16. Eiter, T., Fink, M.: Uniform equivalence of logic programs underthe stable model semantics.

Proceedings of ICLP 2003. Vol. 2916 of LNCS., Springer (2003) 224–238
17. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences

in answer set programming. ACM Transactions on Computational Logic8 (2007) 53 pages.
18. Sagiv, Y.: Optimizing datalog programs. In Minker, J., ed.: Foundations of Deductive

Databases and Logic Programming. Morgan Kaufmann (1988) 659–698
19. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. Proceedings of JELIA

2004. Vol. 3229 of LNCS., Springer (2004) 174–186
20. Woltran, S.: A common view on strong, uniform, and other notions ofequivalence in answer-

set programming. Theory and Practice of Logic Programming8 (2008) 217–234
21. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences inanswer-set programming.

Proceedings of IJCAI 2005, Morgan Kaufmann (2005) 97–102
22. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored:

Relativised uniform equivalence with answer-set projection. Proceedings of AAAI 2007,
AAAI Press (2007) 458–464

23. Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysingand extending well-founded
and partial stable semantics using partial equilibrium logic. Proceedings ofICLP 2006. Vol.
4079 of LNCS., Springer (2006) 346–360

24. Truszczýnski, M., Woltran, S.: Hyperequivalence of logic programs with respect to supported
models. Proceedings of AAAI 2008, AAAI Press (2008) 560–565

25. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press, New York-London (1978) 293–322

26. Erdogan, S., Lifschitz, V.: Definitions in answer set programming. Proceedings of LPNMR
2004, Vol. 2923 of LNAI., Springer (2004) 114–126

27. Apt, K.: Logic programming. In van Leeuven, J., ed.: Handbook of Theoretical Computer
Science. Elsevier, Amsterdam (1990) 493–574

