Relativized Hyperequivalence of Logic Programs for
Modular Programming

Mirostaw Truszczpski' and Stefan Woltrah

! Department of Computer Science, University of Kentucky, Lexingkon40506, USA
2 Institut fur Informationssysteme 184/2, Technische Univétaltien, Favoritenstrale 9-11,
A-1040 Vienna, Austria,

Abstract. A recent framework of relativized hyperequivalence of prografas
fers a unifying generalization of strong and uniform equivalencesdirss to be
especially well suited for applications in program optimization and modutar pr
gramming due to its flexibility that allows us to restrict, independently of each
other, the head and body alphabets in context programs. We studyireldti
hyperequivalence for the three semantics of logic programs givetelne, sup-
ported and supported minimal models. For each semantics, we identifyfues

of contexts, depending on whether the head and body alphabets enalgisctly

or as thecomplemenof a given set. Hyperequivalence relative to contexts where
the head and body alphabets are specified directly has been studiesl bethis
paper, we establish the complexity of deciding relativized hyperequivalevrt

the three other types of context programs.

1 Introduction

We study variants of relativized hyperequivalence thatelevant for the development
and analysis of logic programs with modular structure. Oaimresults concern the
complexity of deciding relativized hyperequivalence foe three major semantics of
logic programs given by stable, supported and supportedmalrmodels.

Logic programmingvith the semantics of stable models, nowadays often reféore
asanswer-set programmings a computational paradigm for knowledge representation
as well as modeling and solving of constraint problems [1H#}ecent years, it has
been steadily attracting more attention. One reason isati@wer-set programming is
truly declarative. Unlike in, say, Prolog, the order of miie programs and the order of
literals in rules have no effect on the meaning of the progi@aatondly, the efficiency
of the latest tools for processing programs, especiallyese] reached the level that
makes it feasible to use them for problems of practical irrgrare [5].

It is broadly recognized in software engineering that madpfograms are easier to
design, analyze and implement. Hence, essentially allrproging languages and en-
vironments support the development of modular programesoftingly, there has been
much work recently to establish foundationswddularanswer-set programming. One
line of investigations has focused on the notion of an ansgeprogranmodule[6—
9]. This work builds on ideas for compositional semantictogfc programs proposed
in [10] and encompasses earlier results on stratificatiopasgram splitting[11].



The other main line of research, to which our paper belongs centered on pro-
gram equivalence and, especially, on the concept of equigal for substitution. Pro-
gramsP and@ areequivalent for substitutiowrt a clas<’ of programs calledontexts
if for every contextR € C, P U R and@ U R have the same stable models. Thus, if a
logic program is the union of progranisand R, whereR < C, thenP can be replaced
with @, with the guarantee that the semantics is preserved nomadite R is (as long
asitis inC) precisely wherP and( are equivalent for substitution wét If C contains
the empty program (which is typically the case), the eqeiveé for substitution wid
implies the standard equivalence under the stable-monlrstics® The converse is not
true. We refer to these stronger forms of equivalence collelstizehyperequivalence

Hyperequivalence wrt the class all programs, known more commonly asong
equivalencewas proposed and studied in [12]. That work prompted ekterigvesti-
gations of the concept that resulted in new characterizatip3, 14] and connections
to certain non-standard logics [15]. Hyperequivalenceaaritexts consisting of facts
was studied in [16, 17]. This version of hyperequivalenaevin asuniform equiva-
lence appeared first in the database area in the setting of DATAB®d>query equiva-
lence [18]. Hyperequivalence wrt contexts restricted tivargalphabet, orelativized
hyperequivalence, was proposed in [17, 19]. It was gerzerin [20] to allow contexts
that use (possibly) different alphabets for the heads adiEbmf rules. The approach
offers a unifying framework for strong and uniform equivate. Hyperequivalence, in
which one compares projections of answer sets on some @¢sysets of atoms rather
than entire answer sets was investigated in [21, 22].

All those results concern the stable-model semantics ajrpros. There has been
little work on other semantics, with [23] long being a notabingle exception. Recently
however, [24] introduced and investigated relativizeddrgguivalence of programs un-
der the semantics of supported models [25] and supporteinaimodels, two other
major semantics of logic programs. [24] characterizedehesiants of hyperequiva-
lence and established the complexity of some associatésialeproblems.

In this paper, we continue research of relativized hypevatgnce under all three
major semantics of logic programs. As in [20, 24], we focuscontexts of the form
HB(A, B), whereHB(A, B) stands for the set of all programs that use elements from
A in the heads and atoms froB in the bodies of rules. Our main goal is to establish
the complexity of deciding whether two programs are hypeiredent (relative to a
specified semantics) wi3(A, B). We consider the cases whehand B are either
specified directly or in terms of their complement. As we paint in the following
section, such contexts arise naturally when we design raothgdic programs.

2 Motivation

In the paper we consider finite propositional programs alypver a fixed countable
infinite set of atomsi¢. For a set of atom&’, we defineX© = At \ X.

A logic program isA-definingif it specifies the definitions of atoms 4. The def-
initions may be recursive, they may involigerfaceatoms, that is, atoms defined in

8 Two programs are equivalent under the stable-model semantics ihthaythe same stable
models.



other modules, as well as atoms used locally to represert s@@ded auxiliary con-
cepts. LetL be the set of local atoms, and Ietbe a particular logic program expressing
the definitions. ForP to behave properly when combined with other programs, these
“context” programs must not have any occurrences of atoors ft and must have
no atoms fromA in the heads of their rules. In our terminology, these areipety
programs ifHB((A U L), L¢).4

The definitions of atoms iM can in general be captured by several differdnt
defining programs. A key question concerning such programiether they are equiv-
alent. Clearly, twod-defining programg” and(, both using atoms fromh to represent
local auxiliary concepts, should be regarded as equivélehey behave in the same
way in the context of any program frohd3((AU L)<, L¢). In other words, the notion of
equivalence that is appropriate in our setting is hyperedeince wrtHB((AUL)¢, L¢)
under a selected semantics (stable, supported or suppoméaal).

Example 1.Let us assume that = {a, b} and thatc andd are interface atoms (atoms
defined elsewhere). We need a module that works as follows:

1. If ¢ andd are both true, exactly one afandb must be true
2. If cis true andi is false, onlya must be true

3. If dis true and: is false, onlyb must be true

4. If candd are both falseg andb must be false.

We point out that:t andd may depend om andb and so, in some cases the overall
program may have no models of a particular type (to be comcfet a time being we
fix attention to stable models).

One way to express above conditions is by means of the fallgu, b }-defining
programP (in this example we assume programs without local atomsjsha = 0):

a < c,notb; b+« d,nota.

Combining P with programs that specify fact$e, d}, {c}, {d} and, it is easy to see
that P behaves as required. For instanBe, {c} has exactly one stable modegl, c}.
However,P may also be combined with more complex programs. For instdat
us consider the progralR = {¢ < notd; d «— a,notc}. Here,d can only be true
if a is true andc is false. But therdb must be true and must befalsg a contradiction.
Thus,d must be false and must be true. According to the specifications, there should
be exactly one stable model fétU R in this case{a, c}. It is easy to verify that it is
indeed the case.
The specifications fos andb can also be expressed by otHer, b}-defining pro-
grams, in particular, by the following prograf
a <+ c¢,d,notb; b« c,d,nota; a< c,notd; b« d,notc.
The question arises wheth@rbehaves in the same way Bselative to programs from
HB({a,b}c,0°) = HB({a, b}, At). For all contexts considered earlier, it is the case.
However, in general, it is not so. For instanceRit= {c < ; d < a} then,{a,c,d} is
a stable model oP U R, while @ U R has no stable models. ThuB,and@ cannot be
viewed as equivalera, b}-defining programs. a

4 A-defining programs were introduced in [26]. However, that workstdered more restricted
classes of programs with whicli-defining programs could be combined.



A similar scenario is as follows: We call a prografacompletingif it completes
partial and non-recursive definitions of atomsdrgiven elsewhere in the overall pro-
gram (which, for instance, might specify the base condgifor a recursive definition
of atoms inA). Assuming that” is an implementation of such a module (again with
as a set of local atoms}, can be combined with any prografithat has no occurrences
of atoms fromL and no occurrences of atoms frafnin the bodies of its rules. This is
precisely the class(B(L, (AU L)°).

One can also construct scenarios that give rise to hyperguce wrt context
classesi{B(A, B), whereA or B is specified directly. Thus, hyperequivalence wrt con-
text classe${B(A, B), where each ofA and B is specified directly or in terms of its
complement is of interest. Our goal is to study the compyexitdeciding whether two
programs are hyperequivalent relative to such classesméxis.

3 Technical Preliminaries

Basic logic programming notation and definitions.Disjunctive logic programgpro-
grams, for short) are sets of (programdes— expressions of the form

a|...|lag < b1, ..., by, notcy, ..., not cy, (1)

whereaq;, b; and¢; are atoms inAt, ‘|" stands for the disjunction, ‘" stands for the
conjunction, anchot is thedefaultnegation. Ifk = 0, the rule is aconstraint If £ < 1,
the rule isnormal Programs consisting of normal rules are caliedmal

We often write the rule (1) a¢f < B™,not B~, whereH = {ay,...,ax},
Bt = {by,...,bp}andB~ = {c1,...,c,}. We call H the headof the rule, and the
conjunctionBT, not B~, thebodyof the rule. The set®+ and B~ form the positive
and negative body of the rule. Given a ruleve write H (), B(r), B (r) and B~ (r)
to denote the head, the body, the positive body and the nedaidy ofr, respectively.
For a programP, we sett (P) = {J,.p H(r),andB*(P) = |, p BT (r) U B~ (r).

For an interpretatiol/ C At and a ruler, we define entailment8/ = B(r),
M = H(r) andM |= r in the standard way. An interpretatidd C At is amodelof
a programP (M = P), if M = r for everyr € P.

Thereductof a disjunctive logic progran® wrt a setM of atoms, denoted b,
is the program{H (r) < B*(r) | r € P, M N B~ (r) = 0}. A setM of atoms is a
stable modebf P if M is a minimal model (wrt inclusion) oP?.

If a set M of atoms is a minimal hitting set ofH(r) |r € P, M = B(r)},
then M is asupported modebf P. M is asupported minimal modeif P if it is a
supported model of” and a minimal model ofP. We recall that each stable model
is also supported, but (generally) not vice versa. Supgariedels of anormal logic
programP have a useful characterization in terms of the (partial}step provability
operatorTp, defined as follows. ForMl C At, if there is a constraint € P such
that M = B(r) (thatis,M [~ r), thenTp(M) is undefined. Otherwis&p (M) =
\U{H(r) |r € P, M = B(r)}. Whenever we us&p (M) in a relation such as (proper)
inclusion, equality or inequality, we always implicitlysasne thafp (M) is defined.

It is well known thatM is a model ofP if and only if Tp (M) C M (thatis, Tp is
defined forM and satisfie§'s(M) C M). Similarly, M is asupportedmodel of P if
Tp(M) = M (thatis, Tp is defined forM and satisfie§'p (M) = M) [27].



Foraruler = aq|...|ax <« B, wherek > 1, ashiftof r is a normal program rule
of the form
a; <— B,notay,...,nota;_1,not a;y1,...,notag,

wherei = 1,..., k. If ris normal, the onlghiftof r is r itself. A program consisting of
all shifts of rules in a progran® is theshift of P. We denote it byh(P). It is evident
that a setM of atoms is a (minimal) model aP if and only if M is a (minimal) model

of sh(P). Itis easy to check thal/ is a supported (minimal) model & if and only if

it is a supported (minimal) model ah(P). Moreover,M is a supported model d? if
and only ifT;,py (M) = M. Thus, in all results concerning supported models, we will
use implicitly the shift of programs involved (see also [B3H] further details).

Characterizations of hyperequivalence of programsLet C be a class of (disjunctive)
logic programs. ProgramB and @ are supp-equivalen{suppmin-equivalenstable-
equivalent respectively) relative t@ if for every programRk € C, PU R andQ U R
have the same supported (supported minimal, stable, tasgigrmodels.

In this paper, we are interested in equivalence of all thyped relative to classes of
programs defined by theeadandbody alphabetsLet A, B C At. By HB(A, B) we
denote the class of all progranissuch thatf (P) C A and B*(P) C B. Hence, the
empty program is contained in any sueiS(A, B).

For supp-equivalence and suppmin-equivalence, we neddltb@ing concept in-
troduced in [24]. Given a progratfi, and a setd C A¢, we define

Mod4(P) = {Y C At|Y = PandY \ Tp(Y) C A}.

Theorem 1. Let P and @ be programsA C At, andC a class of programs such that
HB(A,0) C C C HB(A, At). Then,P and(Q are supp-equivalent relative ®if and
only if Mod 4(P) = Mod 4(Q) and for everyY” € Mod 4(P), Tp(Y) =Tg(Y).

To characterize suppmin-equivalence, we use the?\&mtf(P) (following [24]),
which consists of all pair6X, Y’) such that

Y € MOdA(P)

X CYlaun

foreachZ C Y suchthaZ|aup = Y|aus, Z = P
foreachZ c Y suchthaZ|g = X|gpandZ|4 D X|s, Z £ P
|fX|B :Y|B,thenY\Tp(Y) C X.

agprwNPE

Theorem 2. Let A, B C At and let P, () be programs. Then?” and @) are suppmin-
equivalent relative td{B(A, B) if and only if Mod % (P) = Mod®(Q) and for every
(X,Y) € Mod(P), Tp(Y)|5 = To(Y)|5.

Relativized stable-equivalence of programs was chaiaetkin [20]. We define
SEZ(P) to consist of all pair§ X, ') such thaf

1.YEP
2. X =Y orjointly X C Y|aup andX|a C Y|a

5 We use a slightly different presentation than [20].



3. foreachZ C Y suchthatZ|4 = Y|4, Z [= PY

4. foreachZ C Y such thatZ|p C X|p, Z|a 2 X|a, and eitherZ|g C X|p or
Z|ADX|A,Z|#PY

5. there isZ C Y such thatX|4up = Z|aup andZ = PY.

Theorem 3. Let A, B C At and let P, Q be programs. ThenP and @) are stable-
equivalent relative t6{B(A, B) if and only if SEX (P) = SE5(Q).

Decision problems.We study problems of deciding hyperequivalence relativerts
gram classe$(B(A’, B’), where A’ and B’ stand either for finite sets or for comple-
ments of finite sets. In the former case, the set is gdiegctly. In the latter, it is spec-
ified by its finitecomplementthe set itself is infinite). Thus, we obtain the classes of
direct-direct direct-complemenitomplement-direcand complement-complemede-
cision problems. We denote them using strings of the feem; . (o, 3), where (1)sEm
stands foilSUPR suPPMINOr STABLE and identifies the semantics relative to which we
define hyperequivalence; (2)ande stand ford or ¢ (direct and complement, respec-
tively), and specify one of the four classes of problems imeet above; (3) is either
-or A, whereA C Atisfinite. If « = A, thena specifies dixedalphabet for the heads
of rules in contexts: eithed or the complementi¢ of A, depending on whethér= d

or ¢. The parameter does not belong to and does not vary with.ifipat = -, then
the specificatioM of the head alphabet is part of the input and defines H @s A,
again according td; (4) 3 is either- or B, whereB C At is finite. It obeys the same
conventions as but defines the body alphabet according to the value of

For instancesuPPMIN; (4, -), whereA C At is finite, stands for the following
problem: given program® and(@), and a sef3, decide whetheP and(@ are suppmin-
equivalent wrtH5( A, B¢). With some abuse of notation, we often talk about “the prob-
lemsewms . (A, B)" as a shorthand for “an arbitrary problem of the fosmm; . (A, B)
with fixed finite sets4 and B”; likewise we do so foISEM; . (-, B) andSEMs . (A4, -).

As we noted, for supp- and suppmin-equivalence, there isifferehce between
normal and disjunctive programs. For stable-equivalealbewing disjunctions in the
heads of rules affects the complexity. Thus, in the caseablestequivalence, we distin-
guish versions of the problensgABLE; . («, 3), where the input programs are norrfial.
We denote these problems BYABLE} _(«, 3).

Direct-direct problems for the semantics of supported ampsrted minimal mod-
els were considered in [24] and their complexity was fullyedmined there. The com-
plexity of problemssTABLE, 4(-, ), was established in [20], and problems similar to
STABLE. (A, A) were already studied in [17]. In this paper, we complete #sailts
on the complexity of problemsewm; . («, 5) for all three semantics. In particular, we
establish the complexity of the problems with at least onéaride being equal ta.

The complexity of problems involving the complementbbr B is not a straight-
forward consequence of the results on direct-direct problén the direct-direct prob-
lems, the class of context programs is essentially finitthesiead and body alphabets
for rules are finite. It is no longer the case for the three iaing problems, where at
least one of the alphabets is infinite and so, the class oégtmis infinite, as well.

5 We can also restrict the programs used as contexts to normal onesttssxmakes no differ-
ence, cf. [20].



Finally, we note that when we changeor B to - in the problem specification, the
resulting problem is at least as hard as the original oneedddor each such pair of
problems, there are some straightforward reductions froeto the other. We illustrate
these relationships in Figure 1.

SEMg ¢(* ,B)

SEM 5 ¢(AB) SEMge( -, )

AN
/7

Fig. 1. A simple comparison of the hardness of problems

SEMg ¢(A, *)

4 Supp-equivalence

As the alphabet for the bodies of context programs plays t@inosupp-equivalence

(cf. Theorem 1), the complexity afupPr; (4, 3) andsuPr, .(-, 8) is already solved{

is - or a setB of atoms) by the complexity of the corresponding direcedimproblems

which have been shown coNP-complete in [24]. It remains tositersupPr. 4(A, 5)

andsupPr. 4(+, ) (which coincide withsupr. . (4, ), and respective\suPP. .(-, 3)).
First, we prove an upper bound on the complexity of the proderr. 4(-, -).

Theorem 4. The problensuPr. 4(-, -) is in the class coNP.

Proof: It is sufficient to show thasuPP. 4(-,0) is in coNP, sincg P, @, A) is a YES
instance oSUPPR. 4(-, () if and only if (P, Q, A, B) is a YES instance &dUPPR. 4(-, -).

LetY' =Y n (At(P) U A). We will show thatY € Mod 4.(P) if and only if
Y’ € Moda-(P). First, we note thall'p(Y) = Tp(Y’). If Y € Mod 4-(P), then
Y E PandY \ Tp(Y) C Ac. The former property implies that’ = P. Since
Y'\Tp(Y')=Y'\Tp(Y) CY\Tp(Y), the latter one implies that’\Tp(Y"') C A°.
Thus,Y’ € Mod a<(P).

Conversely, let”’ € Mod 4-(P). ThenY’ = P and, consequentlyty = P. More-
over, we also hav&”’ \ Tp(Y') C Ac. Lety e Y\ Tp(Y). If y ¢ Y, theny ¢ A, that
is,y € Ac. If y € Y/, theny € Y\ Tp(Y") (we recall thal’»(Y') = Tp(Y")). Hence,
y € Ainthis case, too. It follows that \ Tp(Y) C A°and soY € Mod 4-(P).

Next, we prove thatMod oc(P) # Mod 4-(Q) or, for someY € Mod-(P),
Tp(Y) # To(Y) if and only if there isY’ C At(P U Q) U A such thaty” belongs
to exactly one ofMod 4 (P) and Mod 4-(Q), or Y’ belongs to bothMod 4-(P) and
Mod 4-(Q) andTp(Y") # T (Y'). Clearly, we need to prove the “only-if” implication.
To this end, we note that i#/od 4 (P) # Mod 4-(Q), then by the observation proved
above, there i¥” C At(PUQ)U A with that property. Thus, assume thdbd 4. (P) =
Mod 4-(Q). If for someY € Mod 4-(P), Tp(Y) # To(Y) then,Y belongs to both
Mod 4-(P) and Mod 4-(Q). By the argument given abovE,] = Y N (A¢{(PUQ)U A)
belongs to both\/od 4 (P) and Mod 4-(Q), andTp(Y") # To(Y”).

Thus, to decide the complementary problem, we nondetestiaally guessy” C
At(PUQ)UA, and verify thatt” belongs to exactly one dffod 4. (P) andMod 4. (Q),
or thatY” belongs taMod 4-(P) and Mod 4 (Q), and thatl’p (Y) # To(Y).



CheckingY = P andY | @ can be done in polynomial time. Similarly, for
R=PorQ,Y\Tr(Y) C A¢ifand only if (Y \ Tr(Y)) N A = (. Thus, checking”" \
Tr(Y) C A can be done in polynomial time, too, and so the algorithm fgrpomial.
Hence, the complementary problem is in NP, which impliesasertion. m]

For the lower bound we use the problemprr. ;(A4, B).

Theorem 5. The problensuPr. 4(A, B) is coNP-hard.

Proof: Let us consider a CNE, letY be the set of atoms ip, and letY” = {y/ |y €
Y} be a set of new atoms. We define

P(p) ={y —noty’; y — noty |y € Y} U{— ¢| cisaclause in}

where, for each clausec ¢, sayc =y V- Vyr Vypt1 V- -V 2y, ¢ denotes the
the sequencg, ..., ¥}, Yk+1, - - -, Ym. 10 simplify the notation, we writé” for P(y).
One can check that has a model if and only iP has a model. Moreover, for every
modelM of P such thatM C At(P), M is asupportednodel of P and, consequently,
satisfiesM = Tp(M).

Next, let@ consist off and« f. As Q has no models, Theorem 1 implies tlgat
is supp-equivalent t@ relative toHB(A¢, B) if and only if Mod 4-(P) = 0. If M €
Mod 4 (P), then there is\I’ C At(P) such thatM’ € Mod 4-(P). Since every model
M’ of P such thatM’ C At(P) satisfiesM’ = Tp(M'), it follows that Mod 4. (P) =
(¢ if and only if P has no models. Thus; is unsatisfiable if and only if) is supp-
equivalent taP relative toHB(A¢, B), and the assertion follows. O

We combine Theorems 4 and 5 via the relations depicted inr€ityand obtain:

Corollary 1. The problemsurr . («, 5) is coNP-complete, for any combination of
d,e € {c,d},a € {A,-},B€{B, }.

5 Suppmin-equivalence

In this section, we establish the complexity for direct-@d@ment, complement-direct
and complement-complement problems of deciding suppmiivalence. The com-
plexity of direct-direct problems was determined in [24].

Upper bounds. The argument consists of a series of auxiliary results. Duspace
restrictions, we omit some of the proofs. The first two lemmgsconcerned with the

basic problem of deciding whethék,Y") € ModB,,(P), whereA’ and B’ stand forA
or A° and B or B¢, respectively.

Lemma 1. The following problems are in the class coNP: Given a progia,rancd sets
X, Y, A, and B, decide whether (i§X,Y) € Mod5.(P); (i) (X,Y) € Mod§ (P);
(i) (X,Y) e Mod5: (P).

Proof: We first show that the complementary problem to dewitiether(X,Y) ¢
Mod%. (P) is in NP. To this end, we observe tHat, Y) ¢ Mod%.(P) if and only if at
least one of the following conditions holds: (Y)¢ Mod 4<(P), (2) X € Y|acus (3)
thereisZ C Y such thatZ| scup = Y|aeup andZ = P, (4) there isZ C Y such that



Z‘B = X|B, Z|AC D X|Ac andZ ': P, (5)X|B = Y‘B andY\Tp(Y) Z X.We
note that verifying any condition involving¢ can be reformulated in terms daf. For
instance, for every séf, we havel’| 4. = V\ A,andV C A¢ifandonlyif VN A = 0.
Thus, the conditions (1), (2) and (5) can be decided in patyiabtime. Conditions (3)
and (4) can be decided by a nondeterministic polynomial @ilgerithm. Indeed, once
we nondeterministically guegs, all other tests can be decided in polynomial time. The
proofs for the remaining two claims use the same ideas affier difily in technical
details depending on which of and B is subject to the complement operation. O

Lemma 2. For every finite sef3 C At, the following problems are in the class Pol:
given a programP, and setsX, Y and A4, decide whether (i{X,Y) € Mod%. (P);
(i) (X,Y) € Mod5 (P).

Proof: In each case, the argument follows the same linesaasdhLemma 1. The
difference is in the case of the conditions (3) and (4). Untlerassumptions of this
lemma, they can be decided dieterministicpolynomial time. Indeed, let us note that
there are no more thati®! setsZ such thatZ| 4c,g- = Y| acupe (or, for the second
problem, such tha¥|sup- = Y|aug-). SinceB is finite and fixed, the condition (3)
can be checked in polynomial time by a simple enumeratioti pbasible setsZ such
thatZ C Y andZ|scupe = Y|acupe and checking for each of them whethér= P.
For the condition (4), the argument is similar. Sirff€és constrained byZ|z. = X|p-,
there are no more than”! possible candidate sefsto consider in this case, too. O

The role of the next lemma is to show tHé, Y') € Mod% (P) implies constraints
on X andY.

Lemma 3. Let P be a program and4, B C At. If (X,Y) € Mod%(P) thenX C
Y C At(P)U A.

Lemma 3 is too weak for the membership results for complerdeatt and comp-
lement-complement problems, as for these two types of prad) it only limitsY” to
subsets ofd¢(P) U A, which is infinite. To handle these two classes of problems we
use the following lemma that can be derived from Theorem 2.

Lemma 4. LetP,Q be programs andi, B C At. If (X,Y) € Mod%.(P)\Mod%.(Q)
then there i X', Y’) € Mod5.(P) \ Mod%.(Q) such thaty’” C At(P U Q) U A. If
(X,Y) € Mod5.(P)andTr(Y)|p # To(Y)|5, then there i X, Y") € Mod%.(P)
such thatl'p(Y')|p # To(Y')|p andY’ C At(PU Q) U A.

Theorem 6. The following problems are contained in the cldig: SUPPMIN. 4(-, ),
SUPPMIN, (-, ) and SUPPMINy (-, -). The following problems are in the class coNP:
SUPPMINg (-, B), SUPPMIN. (-, B), SUPPMIN. (0}, -) and SUPPMIN. (0, -).

Proof: We provide a detailed argument for the probiwepPmIN. 4(-, ). Clearly,P and
@ are not suppmin-equivalent relative %8 (A¢, B) if and only if there is(X,Y) €
Mod%5.(P) + Mod5.(Q), or (X,Y) € Mod5.(P) andTp(Y)|p # To(Y)|s. By
Lemma 4,P and @ are not suppmin-equivalent relative 23(A¢, B) if and only if
there is(X,Y) such thatX C Y C At(PUQ)U A and(X,Y) € Mod%.(P) +
Mod5.(Q), or (X,Y) € Mod5.(P)andTr(Y)|p # To(Y)|5.



Thus, to decide the complementary problem, it suffices tegieY C At(P U
Q) U A and check thatX,Y) € Mod5.(P) + Mod%.(Q), or that(X,Y) is in both
sets andl'»(Y)|p # To(Y)|s. The first task can be decided by NP oracles (Lemma
1(i)) and testind’'p(Y')| 5 # To(Y)|s can be accomplished in polynomial time.

The remaining arguments are similar. The only differenceskorsuPPMINg (-, -)
andsupPPMIN; (-, B) we use Lemma 3 to ensure that the decision algorithm camatestr
in the guessing phase to pa(X,Y") with Y C At(P U Q) U A; for SUPPMINg (-, -)
and SUPPMIN. (-, -), we use Lemma 1(ii)-(iii); to obtain a stronger upper bouad f
SUPPMIN; (-, B) and SUPPMIN. .(-, B), we make use of Lemma 2. The result for
SUPPMIN. (0, -) was settled in [24] (although not directly, the cassoPPMIN. (0, -)
follows also from [24]; we provide details in the full versip For problems involving
B¢, we testl'p(Y)|ge = To(Y)|s- by comparindgl’ps(Y) \ B andTg(Y) \ B. O
Suppmin-equivalence — lower bounds and exact complexity sailts. To illustrate

methods we use to obtain our results, we will provide fulbdlstfor the case of direct-
complement problems. For the other two types of problemsynie state the results.

Theorem 7. The problensUPPMINg (A4, -) is 114 -hard.
Proof: LetvY3X ¢ be a QBF, where is a CNF formula oveX U Y. We can assume
that A N X = { (if not, variables inX can be renamed). Next, we can assume that
A C Y (if not, add “dummy” tautology clauses tp). We will construct programs
P(p) andQ(yp), and a setB, so thatvY3X ¢ is true if and only if P(p) and Q(¢)
are suppmin-equivalent relative 1B ( A, B¢). Since the problem to decide whether a
given QBFYY 3X ¢ is true isI1{’-complete, the assertion will follow.

For every atom: € X U Y, we introduce a fresh atorf. Given a set of “non-
primed” atomsZ, we defineZ’ = {2’ | z € Z}. In particular,A N (Y’ U X’) = (). We
use¢ as in the proof of Theorem 5 and define the following programs:

Plp)={z+mnot2'; 2 +—mnotz| 2€e XUY}U{~y,¢y/ |yeY}U
{x —uu's 2/ —uu' |z,ue X}U
{x ¢ o' —e¢|xe X, cisaclauseinp};
Qo) ={zmnotz'; 2 «—motz|2ze XUY}U{— 2,2 |z€ XUY}U
— ¢| cisaclause inp}.
np

To simplify notation, from now on we writ® for P () and@ for Q(y). We also define
B=XUX UY UY'. We observe thatlt(P) = At(Q) = B.
One can check that the models@fcontained inB are sets of type

LIUY\ND)UJUX\J),whereJ CX,ICYandlUJ [ .
Each model of) is also a model of” but P has additional models containedih viz.
2. JUXY\I)YuXUX', foreachl CY.

Clearly, for each model/ of @ such that\ C B, To(M) = M. Similarly, for each
modelM of P suchthatM C B, Tp(M) = M.

From these comments, it follows that for every mottebf @ (resp.P), To(M) =
M N B (resp.Tp(M) = M N B). Thus, for every modelM of both P and Q,



To(M)|ge = Tp(M)|g-. It follows that P and @ are suppmin-equivalent with re-
spect toHB(A, B¢) if and only if Mod5 (P) = Mod% (Q) (indeed, we recall that if
(N, M) € Mod% (R) thenM is a model ofR).

Let us assume thaty3X ¢ is false. Hence, there exists an assignmeqt Y to
atomsY such that foreveryy C X, JUJ = p. Let N =TU (Y \I) UX UX'. We
will show that(N|4upe, N) € Mod5 (P).

Since N is a supported model aP, N € Mod,(P). The requirement (2) for
(N|aupe, N) € Mod5" (P) is evident. The requirement (5) holds, sifé& Tp(N) =
(. By the property off, N is a minimal model ofP. Thus, the requirements (3) and
(4) hold, too. It follows that N| 4=, N) € Mod% (P), as claimed. Sincé/ is not a
model ofQ, (N|aupe, N) ¢ Mod5 (Q).

Let us assume thaty3X ¢ is true. First, observe thatlod (Q) C Mod% (P).
Indeed, le{ M, N) € Mod% (Q). It follows that N is a model ofQ and, consequently,
of P. From our earlier comments, it follows tHB, (N) = T (N). SinceN\To(N) C
A, N\ Tp(N) C A. Thus,N € Mod 4(P). Moreover, ifM|ge = N|g- thenN \
To(N) € M and, consequentlyy \ T»(N) C M. Thus, the requirement (5) for
(M,N) € Mod5 (P) holds. The conditiom/ C N|4ugp- is evident (it holds as
(M,N) € Mod5"(Q)). SinceN is a model of, N = N’ UV, whereN’ is a model
of type 1 andV C At \ B. Thus, every mode¥ C N of P is also a model ofy.

It implies that the requirements (3) and (4) fo¥/, N) € Mod% (P) hold. Hence,
(M,N) € Mod%" (P) and, consequentiWod5 (Q) C Mod% (P).

We will now use the assumption th&t"3.X o is true to prove the converse inclusion.
To this end, let us considén/, N) € Modf{c (P).If N = N'UV,whereN'is of type
1 andV C At \ B, then arguing as above, one can show thdt N) € Mod% (Q).
Therefore, let us assume thidt= N'UV, whereN' is of type 2 and/ C At\ B. More
specifically, letN' = T U (Y \ I)’ U X U X’. By our assumption, there is C X such
that/UJ = ¢. Thatis,Z = TU(Y'\I)UJU(X\J) isamodel ofP. Clearly,Z C N.
Moreover, sinceZ, N C B, we haveZ| e = N|aup-. Since(M, N) € Mod% (P),
the requirement (3) implies thatis not a model of?, a contradiction. Hence, the latter
case is impossible antlod s (P) C Mod% (Q) follows.

We proved thatyY'3X ¢ is true if and only if Mod% (P) = Mod% (Q). This
completes the proof of the assertion. ]

Theorem 8. The problensupPPMIN; (A, B) is coNP-hard.

Proof: Consider a CNE over atoms”, and the program®B(y) andQ = {f «—; <« f}
from the proof of Theorem 5. We uge for P(y) in the following. We already know
that P has a model if and only if is true. We now show thatZod% (P) # 0 if and
only if ¢ is true. SinceModﬁc(Q) = () holds (as is easily seen), the assertion follows
by Theorem 2.

Let us assume thdt has a model. TheR has a model, say/, such that\/ C YU
Y’.We show thatM, M) € Mod% (P).Indeed, sinc&p (M) = M, M € Mod 4(P).
Also, sinceY UY’ C B¢, M|aupe = M andsoM C M|aup.. Lastly, M\Tp(M) =
() C M. Thus, the conditions (1), (2) and (5) fob, M) € Mod5 (P) hold. Since
M|aupe = M andM|g. = M, there isnaZ C M such thatZ|aup. = M|aup- OF




Z|ge = M|pe. Thus, also conditions (3) and (4) hold, ahtbds (P) # 0 follows.
Conversely, letod5 (P) # 0 and let(N, M) € Mod%5 (P). ThenM € Mod 4(P)
and, in particular) is a model ofP. ]

Combining Theorems 7 and 8 with Theorem 6 yields the follgwiesult that fully
determines the complexity of direct-complement problems.

Corollary 2. The problemsuPPMIN (A, -) and SUPPMINg (-, -) are I1F-complete.
The problemsupPPMIN; (A, B) and SUPPMIN; (-, B) are coNP-complete.

This concludes the more detailed discussion on the dirtiptement problems.
Next, we just give the corresponding results for the remngijiisiettings we have to study
for suppmin-equivalence, complement-complement and tammgnt-direct problems.

Theorem 9. With A # (), SUPPMIN. (A, -) and SUPPMIN. 4(A, B) are I1£'-hard. The
problemssuPPMIN. (0, -) andSUPPMIN. .(A, B) are coNP-hard.

Combining Theorem 9 with Theorem 6 yields the following dtany completing
the picture of the complexity for suppmin-equivalence. ThBlP-completeness results
for the complement-direct problems were already prove@4q. [

Corollary 3. The problemsuPPMIN. (-, ), SUPPMIN. 4(-, B) and SUPPMIN. 4(-, -)

are ITY-complete. Ford # 0, also the problemsuPPMIN. .(A, -), SUPPMIN, 4(A, B)
andSUPPMIN. 4(A4, -), are IT¥’-complete. Moreover, the following problems are coNP-
complete:SUPPMIN. (0, -), SUPPMIN. .(A, B), SUPPMIN. (-, B), SUPPMIN. (0, -)
andsuPPMIN. 4(0, B).

6 Stable-equivalence

We turn now to stable-equivalence. Here we also considect@iirect problems as, in
the case of fixed alphabets, they were not considered in [20].

Upper bounds. The following lemmas mirror the respective results from pinevious
section but show some interesting differences.

Lemma 5. The following problems are in the clas$’Iin general and in the class Pol
for normal programs: Given a prograt?, and setsX, Y, A, andfg, decide whether (i)
(X,Y) € SEZ(P); (i) (X,Y) € SER.(P); (ii)) (X,Y) € SE} (P); (iv) (X,Y) €
SES.(P).

Lemma 6. For every finite setsl, B C At, the following problem is in the class Pol:
given a programP, and setsX, Y decide whethe(X,Y) € SEX. (P).

Hence, polynomial-time model-checking fdisjunctiveprograms is only possible
for the setSEL. (P). Compared to Lemma 2, this is due to the more involved condi-
tion (4) for SEBZ(P). For normal programs the redud?Y is a Horn program, which
is essential for the tractability results in Lemma 5.

The following lemmas hold for both disjunctive and normajgmams.

" The classDT consists of all problems expressible as the conjunction of a problem imdIR a
problem in coNP. However, this slight increase of complexity comparéénoma 1 does not
influence the subsequemt, -membership results, since & Bbracle amounts to an NP-oracle.



Lemma 7. Let P be a program andd, B C At. If (X,Y) € SE5(P)thenX CY C
At(P)U A.

Lemma 8. Let P, Q be programs andi, B C At. If (X,Y) € SEZ.(P)\ SEZ.(Q)
then there i X", Y") € SE5.(P) \ SE5.(Q) such thaty” C At(PUQ) U A.

We can now use the similar arguments in the previous sediobttin the following
collection of membership results:

Theorem 10. The problensTABLE; . (-, -), is contained in the clas8?’, for anyd, e €
{c,d}; STABLE. (4, B) is contained in the class coNP. The problemaBLE; (-, -),
is contained in the class coNP for anye € {c,d}.

Stable-equivalence — lower bounds and exact complexity rais. We start with
hardness for normal programs.

Theorem 11. The problensTABLE} (A, B) is coNP-hard for any, e € {c, d}.

Proof sketch: We use the standard reduction of UNSAT, thu®(g) andQ be as in
the proof of Theorem 5. It can be shown tl#tp) has a stable model iff is satisfiable.
Moreover,P(¢) U R has no stable model (for arbitrafy) iff o is not satisfiable. On
the other handy U R has no stable model, for ardy. ThusP is stable equivalent tq)
relative toC iff ¢ is unsatisfiable, wher&B(0,0) C C C HB(At, At), and thus where
C is an arbitrary class. Hence, the result holds in partidalathe desired classes. O

We now turn to the case of disjunctive programs. We note tbiPehardness for
STABLE. (A, B) follows immediately from the previous result. The remagnimard-
ness results can be shown by suitable adaptations of thetieasiused in [17].

Theorem 12. The following problems are hard for the clags’: STABLE, 4(A, B),
STABLE. 4(A, B), STABLE4 (4, B), STABLE. (4, -), andSTABLE, (-, B).

Combining Theorems 11 and 12 with Theorem 10 yields thevigtig corollary for
the complete picture of the complexity for stable-equinake

Corollary 4. The following problems aréll’-complete for any combination éfs
{c,d}: STABLEs(+,-), STABLE;s (A, ), STABLEs (-, B). As well,STABLE; 4(A, B),
STABLE. 4(A, B) and STABLE, (A, B) are I1F-complete, WhileSTABLE, (A4, B) is
coNP-complete. The problesTABLE; _(«, 3) is coNP-complete, for any combination
ofd,e € {c,d}, € {A,-}, B € {B,}.

7 Discussion

We studied the complexity of deciding relativized hypelieglence of programs under
the semantics of stable, supported and supported minimaéisidNe focused on prob-
lemssewm;s (o, 3), where at least one of ande equalse, that is, at least one of the
alphabets for the context problems is determined as the leonemt of the correspond-
ing setA or B. As we noted, such problems arise naturally in the contexbadular
design of logic programs, yet they have received essentiallattention so far.



dle «@ [1|SUPPSUPPMIN STABLE|STABLE™
dlc llcoNR  IIF IIF | coNP
dlc Bl[coNP coNP | II¥ | coNP
cle|-or A #£0[ - [[coNPl 11T T | coNP
cle 1] -|lcoNP coNP | ITF¥ | coNP
cle . B||coNP coNP | IIf | coNP
cle A B||coNP coNP | coNP | coNP
cld]-orA#0] [[coNF 113 Y | coNP
cld 0 coNP coNP | II¥ | coNP

Table 1. Complexity of SEMs - (v, 3); all entries are completeness results.

Table 1 summarizes the results. It shows that the problemsecning supp-equiva-
lence (no normality restriction), and stable-equivalefarenormal programs are all
coNP-complete (as are the corresponding direct-diredilenas, studied in [24] and
here). The situation is more diversified for suppmin-edeee and stable-equivalence
(no normality restriction) with some problems being coNRe athersiTZ -complete.
For suppmin-equivalence lower complexity requires thadie a part of problem spec-
ification, or thatA be a part of problem specification and be set)td~or stable-
equivalence, the lower complexity only holds for the compdat-complement prob-
lem with both A and B fixed as part of the problem specification. We also note that
the complexity of problems for stable-equivalence is alvalleast that for suppmin-
equivalence. Furthermore, our complexity results suggessible algorithms for test-
ing the equivalence notions under consideration. One spploach is to reduce the
given characterizations to quantified Boolean formulasE€long the lines of previ-
ous work, e.g. [22], and then use extant solvers for QBFs taldeequivalence.

There are several questions worthy of further investigatid-or instance, while
stable-equivalence when only parts of models are compaesdstudied [21, 22], no
similar results are available for supp- and suppmin-edgiae. Also the complexity
of the corresponding complement-direct, direct-complena@d complement-comple-
ment problems for the three semantics in that setting hatoym established.
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