
Declarative Semantics for Revision Programming and
Connections to Active Integrity Constraints

Luciano Caroprese1 and Mirosław Truszczyński2

1 Università della Calabria, 87030 Rende, Italy, caroprese@deis.unical.it
2 Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA,

mirek@cs.uky.edu

Abstract. We investigate revision programming, a formalism to describe con-
straints on belief sets (databases, knowledge bases), and to specify preferred ways
to enforce them. We propose several semantics for revision programs combining
ideas from logic programming and active integrity constraints, a formalism to
model preferred ways to enforce integrity constraints on databases. We present
results on the complexity of the semantics we introduce. We also show that all
these semantics are invariant under “shifting.” Finally, we prove that from the
perspective of a broad semantic landscape of revision programming, there is a di-
rect correspondence between revision programs and active integrity constraints.

1 Introduction

Revision programming [1, 2] was proposed as a formalism to describe revisions of sets
(state descriptions, belief sets, databases, etc). To focus our attention, we will discuss
revision programs here in the context of databases but, as just noted, their applicability
goes beyond that setting.

Revision programs consist of revision rules. They specify conditions a revised data-
base has to satisfy, as well as preferred ways to enforce them. To describe formally
the meaning of normal revision programs, researchers proposed the semantics of justi-
fied and supported revisions [2], motivated by the stable-model semantics [3] and the
supported-model semantics [4] of logic programs, respectively. The semantics of justi-
fied revisions was later generalized to the case of disjunctive revision programs in [5].
In this paper, for consistency with other notation, we refer to it as the semantics of
justified weak revisions.

The definitions of the two semantics of revision programs do not directly take into
account the postulate of the minimality of change, which prefers as the results of revi-
sion those databases that differ minimally from the original ones. Not surprisingly, the
postulate holds neither for justified weak revisions, a shortcoming that has apparently
been overlooked so far, nor for the semantics of supported revisions. Second, while in
the restricted case of normal revision programs justified weak revisions are change-
minimal, it is a side-effect of other aspects of the definition rather than a result of an
explicit design decision. Since the minimality of change is among the most basic prin-
ciples of database update, belief revision and nonmonotonic reasoning (cf. for instance,
[6, 7]), it is important to study its effect on the semantics of revision programs. This is
one of the objectives of this paper.

The theory of revision programs we develop here follows our recent investigations
of active integrity constraints [8]. An integrity constraint is a condition on a database.
If the database violates an integrity constraint, it needs to be repaired — updated so that
the integrity constraint holds again. Often, there are several ways to do so. An active
integrity constraint encodes explicitly both an integrity constraint and preferred basic ac-
tions to repair it, if it is violated. To specify the meaning of active integrity constraints,
[9] proposed the notion of a founded repair. Founded repairs are change-minimal and
satisfy a certain groundedness condition. In [8], we proposed several additional seman-
tics for active integrity constraints. Together with founded repairs, they cover a spectrum
of features one might require of database repairs. The class consists of the semantics of
weak repairs, repairs, founded weak repairs, founded repairs, justified weak repairs, and
justified repairs. The term weak points to the fact that the corresponding semantics is
not required to have the minimality of change property. The terms founded and justified
refer to different “grounding” principles used in defining the semantics.

We show1 that this general schema for defining repairs can be lifted to revision
programs, and yields the semantics of weak revisions, revisions, founded weak revi-
sions, founded revisions, justified weak revisions, and justified revisions. We show that
the semantics of founded weak revisions is an extension of the semantics of supported
revisions to the case of disjunctive revision programs, and observe that the semantics
presented in [5] appears in the schema under the name of justified weak revisions, as it
does not satisfy the minimality-of-change property.

The relationship to active integrity constraints is not coincidental. Active integrity
constraints, while different in several technical details, share with revision programs the
same basic motivation of guiding the database update process through user-specified
preferences. To make the connection between the two formalisms precise and explicit,
we present a mapping from active integrity constraints to revision programs, under
which the corresponding semantics on each side coincide.

The class of revision programs is in a certain sense broader than the class of active
integrity constraints. There is a precise match between the two, however, if we limit
attention to a subclass of revision programs that we refer to as proper. We prove that
the restriction does not affect the expressive power of revision programming. Thus, our
results show that both formalisms, even though syntactically different and originally
endowed with different semantics, can be regarded as notational variants of each other.

One of the properties we establish for all semantics we discuss here is invariance
under shifting. We use it to relate revision programs and logic programs of Lifschitz
and Woo [10], aligning justified weak repairs with answer sets. We also point out that
all other semantics of revision programs can be adapted for Lifschitz-Woo programs.

2 Revision Programming — an Overview

In this section we review the basic terminology of revision programming, and recall
the two semantics introduced in [1, 2, 5]: the semantics of supported revisions, and the

1 We omit proofs due to space restrictions. They can be found at www.ca.uky.edu/ai/
rp-full.pdf.

semantics of justified weak revisions (originally referred to in [5] as justified revisions
and renamed here for consistency with the general naming schema we use).

We consider a finite set At of propositional atoms, representing all ground atoms in
a language of predicate logic with a finite set of constants and with no function symbols.
Databases are subsets of At . A revision literal is an expression in(a) or out(a), where
a ∈ At . Revision literals in(a) and out(a) are duals of each other. If α is a revision
literal, we denote its dual by αD. We extend this notation to sets of revision literals. We
say that a set of revision literals is consistent if it does not contain a pair of dual literals.
Revision literals represent elementary updates one can apply to a database. We define
the result of applying a consistent set U of revision literals to a database I as follows:

I ⊕ U = (I ∪ {a | in(a) ∈ U}) \ {a | out(a) ∈ U}.

A revision rule is an expression of the form

r = α1| . . . |αk ← β1, . . . , βm, (1)

where k,m ≥ 0, k+m ≥ 1, and αi and βj are revision literals. The set {α1, . . . , αk} is
the head of the rule (1); we denote it by head(r). Similarly, the set {β1, . . . , βm} is the
body of the rule (1); we denote it by body(r). A revision rule is normal if |head(r)| ≤ 1.
A revision program is a collection of revision rules. A revision program is normal if all
its rules are normal.

A database D satisfies a revision literal in(a) (out(b), respectively), if a ∈ D (b /∈
D, respectively). A database D satisfies a revision rule (1) if it satisfies at least one
literal αi, 1 ≤ i ≤ k, whenever it satisfies every literal βj , 1 ≤ j ≤ m. Finally, a
database D satisfies a revision program P , if D satisfies every rule in P . We use the
symbol |= to denote the satisfaction relation.

For revision literals α = in(a) and β = out(b), we set lit(α) = a and lit(β) =
not b. We extend this notation to sets of revision literals. We note that every database
interprets revision literals and the corresponding propositional literals in the same way.
That is, for every database I and for every set of revision literals L, I |= L if and only
if I |= lit(L).

It follows that a revision rule (1) specifies an integrity constraint equivalent to the
propositional formula: lit(β1), . . . , lit(βm) ⊃ lit(α1), . . . , lit(αk). However, a revi-
sion rule is not only an integrity constraint. Through its syntax, it also encodes a prefer-
ence on how to “fix” a database, when it violates the constraint. Not satisfying a revision
rule r means satisfying all revision literals in the body of r and not satisfying any of the
revision literals in the head of r. Thus, enforcing the constraint means constructing a
database that (1) does not satisfy some revision literal in the body of r, or (2) satisfies at
least one revision literal in the head of r. The underlying idea of revision programming
is to prefer those revisions that result in databases with the property (2).

As an example, let us consider the revision rule r = in(a)← out(b), and the empty
database I. Clearly, I does not satisfy r. Although I can be fixed either by inserting
a, so that head(r) becomes true, or by inserting b, so that body(r) becomes false, the
syntax of r makes the former preferred.

Normal revision programs were introduced and studied in [1, 2] and the semantics
of supported and justified weak revisions for normal revision programs were proposed

there. In [5], the formalism was extended to allow disjunctions of revision literals in
the heads of rules, and the semantics of justified weak revisions was generalized to that
case. We will now recall these definitions.

First, we define the notion of the inertia set. Let I and R be databases. We define
the inertia set wrt I andR, denoted I(I,R), by setting

I(I,R) = {in(a) | a ∈ I ∩R} ∪ {out(a) | a /∈ I ∪R}.

In other words, I(I,R) is the set of all no-effect revision literals for I and R, that is,
revision literals that have no effect when revising I intoR.

Now, let P be a normal revision program and R be a database. By PR we denote
the program obtained from P by removing each rule r ∈ P such thatR 6|= body(r).

Definition 1 (SUPPORTED UPDATES AND SUPPORTED REVISIONS). Let P be a nor-
mal revision program and I a database. A set U of revision literals is a supported update
of I wrt P if U is consistent and U = head(PI⊕U). A set E is a supported revision of
I wrt P if E = U \ I(I, I ⊕ U). 2

Intuitively, a consistent set U of revision literals is a supported update if it is precisely
the set of literals “supported” by P and the database resulting from updating I with U .
Eliminating from a supported revision all no-effect literals yields a supported revision.

While not evident explicitly from the definition, supported updates and revisions
guarantee constraint enforcement (cf.[2]).

Proposition 1. Let P be a normal revision program and I a database. If E is a sup-
ported revision of P , then I ⊕ E |= P . 2

Supported updates do not take into account the inertia set. Supported revisions do,
but only superficially: simply removing no-effect literals from the corresponding sup-
ported update. Consequently, supported updates and revisions allow for a possibility for
circularity of support and non-minimality.

Example 1. Let P be a revision program containing the rules {in(a)← in(b), in(b)←
in(a), in(c)← out(d)}, and let I the empty database. I does not satisfy P as it violates
the rule in(c) ← out(d). One can check that set U = {in(a), in(b), in(c)} modeling
the insertions of a, b and c, is a supported update and a supported revision. However it
is not minimal as its subset {in(c)} is sufficient to guarantee the satisfaction of P . 2

The problem in the previous example is the circularity of support between in(a) and
in(b). Each of them supports the other one but the set containing both is superfluous.
To address the problem, [1, 2] proposed for normal revision programs the semantics
of justified weak revisions, later extended to the disjunctive case in [5]. The idea was
to “ground” justified weak revisions in the program and the inertia set by means of a
minimal closure.

A set U of revision literals is closed under a revision program P (not necessarily
normal) if for every rule r ∈ P , whenever body(r) ⊆ U , then head(r) ∩ U 6= ∅. If U is
closed under P and for every set U ′ ⊆ U closed under P , we have U ′ = U , then U is a
minimal closed set for P . Clearly, in general a revision program may admit more than
one minimal closed set of revision literals.

Definition 2. [JUSTIFIED UPDATES AND JUSTIFIED WEAK REVISIONS] Let P be a
revision program and let I be a database. A consistent set U of revision literals is a
P -justified update for I if it is a minimal set closed under P ∪ I(I, I ⊕ U).

If U is a P -justified update for I, then U \I(I, I⊕U) is a P -justified weak revision
for I. 2

The inertia set plays an essential role in the definition, as it is used directly in the defini-
tion of a P -justified update. Again, it is not self-evident from the definition that justified
updates and justified weak revisions, when applied to an initial database yield a database
satisfying the program. However, the definition does indeed imply so [2, 5].

Proposition 2. Let P be a revision program and I a database. If U is a justified update
or justified weak revision of P , then I ⊕ U |= P . 2

3 A Family of Declarative Semantics for Revision Programming

The two semantics in the previous section were defined based on how revisions are
“grounded” in a program, an initial database, and the inertia set. Two fundamental pos-
tulates of constraint enforcement and minimality of change played no explicit role in
that research. The first one is no problem as it is a side effect of each of the two types
of groundedness considered (cf. Propositions 1 and 2). The second one simply does
not hold for supported revisions. And while [2] proved that justified weak revisions are
change-minimal in the case of normal revision programs, it is not so in the general case.

Example 2. LetP be a revision program consisting of the rules {in(a)|out(b)← out(c),
out(a)|in(b) ← out(c)} and the I the empty database. It is easy to verify that set
U = {in(a), in(b)} is a justified weak revision. However it is not minimal as I is al-
ready consistent and no update is needed. 2

We will now develop a range of semantics for revision programs by taking the postu-
lates of constraint enforcement and minimality of change explicitly into consideration.

Definition 3. [WEAK REVISIONS AND REVISIONS] A set U of revision literals is a
weak revision of I wrt a revision program P if (1) U ∩ I(I, I ⊕ U) = ∅ (relevance —
all revision literals in U actually change I or, in other words, none of them is a no-effect
literal wrt I and I ⊕ U); and (2) I ⊕ U |= P (constraint enforcement). Further, U is
a revision of I wrt a revision program P if it is a weak revision and for every U ′ ⊆ U ,
I ⊕ U ′ |= P implies that U ′ = U (minimality of change). 2

Example 3. Let P be a revision program consisting of a rule out(b) ← in(a), and let
I = {a, b} be a database. Clearly, I does not satisfy P . The program P has three weak
revisions: U1 = {out(a)}, U2 = {out(b)} and U3 = {out(a), out(b)}, respectively.
The sets U1 and U2 are revisions. The set U3 is not. 2

(Weak) revisions do not reflect the preferences on how to revise a database encoded
in the syntax of revision rules. We will now introduce semantics that aim to capture
that preference. First, we define a new semantics for revision programs by imposing
change-minimality on justified weak revisions.

Definition 4. [JUSTIFIED REVISIONS] Let P be a revision program and let I be a
database. A P -justified weak revision E for I is a P -justified revision for I if E is a
revision of I wrt P (that is, for every set E ′ ⊆ E such that I ⊕ E ′ |= P , E ′ = E). 2

Justified revisions have several useful properties. They are change-minimal and are
grounded in the program and the inertia set. However, as stable models of logic pro-
grams, with which they share several similarities, justified revisions are not designed to
handle reasoning by cases.

Example 4. Let P = {in(b) ← in(a), in(b) ← out(a), in(a) ← in(b)} and let
I = ∅. A possible interpretation of the first two revision rules could be that no matter
what the status of a is, b must be in the database. By the third rule a must belong to the
database, too. Thus, the program justifies the set R = {in(a), in(b)} as a revision of I
(assuming that we allow reasoning by cases). It is easy to verify thatR = {in(a), in(b)}
is a revision of I. However, it is not P -justified (weak) revision of I. 2

To provide a semantics capturing such justifications, we introduce now the concept
of foundedness and the semantics of founded (weak) revisions,

Definition 5. [FOUNDED (WEAK) REVISIONS] Let I be a database, P a revision pro-
gram and, and E a consistent set of revision literals.

1. A revision literal α is P -founded wrt I and E if there is r ∈ P such that α ∈
head(r), I ⊕ E |= body(r), and I ⊕ E |= βD, for every β ∈ head(r) \ {α}.

2. The set E is P -founded wrt I if every element of E is P -founded wrt I and E .
3. E is a P -founded (weak) revision for I if E is a (weak) revision of I wrt P and E

is P -founded wrt I. 2

One can verity that revisionR in Example 4 is founded. We also note that condition
(3) of the definition guarantees that founded (weak) revisions enforce constraints of
the revision program. Next, directly from the definition, it follows that founded weak
revisions are weak revisions. Similarly, founded revisions are revisions and so, they are
change-minimal. Furthermore, founded revisions are founded weak revisions. However,
there are (weak) revisions that are not founded, and founded weak revisions are not
necessarily founded revisions, that is, are not change-minimal. The latter observation
shows that foundedness is too weak a condition to guarantee change-minimality.

Example 5. LetP be the revision program containing the rules {in(b)← in(a), in(a)←
in(b), in(c) ← out(d)} and I the empty database. The set {in(d)} is a revision of I
wrt P . Therefore it is a weak revision of I wrt P . However, it is not a P -founded
weak revision for I. Therefore, it is not a P -founded revision for I, either. The set
{in(c), in(a), in(b)} is a P -founded weak revision for I but not a P -founded revision
for I. Indeed, {in(c)} is also a revision of I wrt P . 2

In the case of normal revision programs, founded weak revisions coincide with sup-
ported revisions.

Theorem 1. Let P be a normal revision program and I a database. A set E of revision
literals is a P -founded weak revision of I if and only if E is a P -supported revision of
I. 2

Foundedness is less restrictive than the condition defining justified updates, which
is behind justified (weak) revisions.

Theorem 2. Let P be a revision program and let I be a database. If a set E of revision
literals is a P -justified (weak) revision of I, then it is a P -founded (weak) revision of
I. 2

The converse implications do not hold in general (cf. Example 4).
To summarize our discussion so far, revision programs can be assigned the seman-

tics of (weak) revisions, justified (weak) revisions and founded (weak) revisions. Let us
denote the classes of the corresponding types of revisions by Rev(I, P), WRev(I, P),
JRev(I, P), JWRev(I, P), FRev(I, P) and FWRev(I, P). The containment re-
lations are demonstrated in Figure 1. None of the containment relations can be replaced
with the equality.

JRev(I, P) ⊆ FRev(I, P) ⊆ Rev(I, P)⊆ ⊆ ⊆

JWRev(I, P) ⊆ FWRev(I, P) ⊆WRev(I, P)

Fig. 1. The containment relations for the semantics for revision programs

4 Properties of the semantics

In this section, we will present several properties of the semantics we introduced here.
Specifically, we exhibit two cases when justified weak revisions and justified revisions
coincide, we present some complexity results and discuss the shifting property.

Programs whose justified weak revisions are change-minimal. In general, justified
weak revisions are not change-minimal. However, for normal revision programs, justi-
fied weak revisions are change-minimal [2]. The change-minimality holds also in the
following setting.

Theorem 3. Let I be a database and P a revision program such that for each revision
literal α ∈

⋃
r∈P head(r), I |= lit(αD). If E is a P -justified weak revision of I, then

E is a P -justified revision of I. 2

Theorem 3 concerns the case when each revision literal in the head of a revision
rule, if applied, would change the status of the underlying atom in the database. For
instance, if the initial database is empty and all revision literals prescribed by revision
rules are positive (i.e. of the form in(a)), then justified weak revisions are guaranteed
to be minimal and so, are justified revisions.

Computation and Complexity Results for Revision Programming. In this section we
present the complexity of the basic reasoning task associated with revision programs:
deciding the existence of a (weak) revision of a particular type.

Theorem 4. Let I be a database and P a normal revision program. Then checking if
there exists a P -justified revision (P -justified weak revision, respectively) for I is an
NP-complete problem. 2

Theorem 5. Let I be a database and P a revision program. Then checking if there
exists a P -justified revision (P -justified weak revision, respectively) for I is a ΣP

2 -
complete problem. 2

Theorem 6. Let I be a database and P a revision program. Then checking if there
exists a P -founded revision (P -founded weak revision, respectively) for I is a ΣP

2 -
complete (NP-complete, respectively) problem. 2

These results show that the condition defining justified updates already makes the
problem of the existence of a justified weak revision ΣP

2 -complete. Imposing, in ad-
dition, the minimality of change (considering justified revisions) does not increase the
complexity. Foundedness is an “easier” condition. Deciding the existence of a founded
weak revision is NP-complete. In this setting, imposing the minimality of change (switch-
ing to founded revisions) makes a difference. The complexity grows to ΣP

2 -complete.
Shifting theorem for revision programs. We will now study invariance under shifting
[2]. Shifting consists of transforming an instance 〈I, P 〉 of the database repair problem
to an isomorphic instance 〈I ′, P ′〉 by “shifting” I to I ′ and changing P to P ′ to reflect
the “shift” of the database. A semantics for database revision has the shifting property
if the revisions of the “shifted” instance 〈I ′, P ′〉 are precisely the results of modifying
the revisions of the original instance 〈I, P 〉 according to the shift I → I ′. The shifting
property is important. If it holds for a semantics, the study of that semantics can be re-
duced to the case when the input database is empty. Often, it allows us to relate revision
programming and logic programming with negation.

Example 6. Let I = {a, b} and let P = {out(a)|out(b) ←}. There are two justified
(and so, also founded) revisions for 〈I, P 〉: E1 = {out(a)} and E2 = {out(b)}. Let
W = {a}. To “shift” the instance 〈I, P 〉 wrtW , we first modify I by changing the sta-
tus in I of elements inW , in our case, of a. Since a ∈ I, we remove it. Thus, I “shifted”
wrtW becomes J = {b}. Next, we modify P correspondingly, replacing revision lit-
erals involving a by their duals. That results in P ′ = {in(a)|out(b) ←}. The resulting
instance 〈J , P ′〉 has two founded/justified revisions: {in(a)} and {out(b)}. They can
be obtained from the founded/justified revisions for 〈I, P 〉 by replacing out(a) with
in(a) and in(a) with out(a) (the latter does not apply in this example). In other words,
the original update problem and its shifted version are isomorphic. 2

The situation presented in Example 6 is not coincidental. In this section we present
results showing that the semantics of (weak) revisions, founded (weak) revisions and
justified (weak) revisions satisfy the shifting property. We start by observing that shift-
ing a database I to a database I ′ can be modeled by means of the symmetric difference
operator. Namely, we have I ′ = I ÷W , whereW = I ÷ I ′. This identity shows that
one can shift any database I into any database I ′ by forming a symmetric difference
of I with some set of atoms W (specifically, W = I ÷ I ′). We will now extend the
operation of shifting a database wrtW to the case of revision literals and (resp. revision
rules and revision programs). To this end, we introduce a shifting operator TW .

Definition 6. LetW be a database and ` a revision literal. We define

TW(`) =
{
`D if the atom of ` is inW
` if the atom of ` is not inW

and we extend this definition to sets of revision literals. Furthermore, if op is an op-
erator on sets of revision literals (such as conjunction or disjunction), for every set X
of revision literals we define TW(op(X)) = op(TW(X)). Finally, for a revision rule
r = α1| . . . |αk ← β1, . . . , βm, we set TW(r) = TW(α1| . . . |αk)← TW(β1, . . . , βm),
and for a revision program P , TW(P) = {TW(r) | r ∈ P}.2 2

Theorem 7. (SHIFTING THEOREM FOR REVISION PROGRAMS) Let I andW be data-
bases. For every revision program G and every consistent set E of revision literals:

1. E is a (weak) revision for I wrt G if and only if TW(E) is a (weak) revision for I
wrt TW(G)

2. E is a G-justified (weak) revision for I if and only if TW(E) is a TW(G)-justified
(weak) revision for I

3. E is a G-founded (weak) revision for I if and only if TW(E) is a TW(G)-founded
(weak) revision for I

5 Connections between Revision Programs and Active Integrity
Constraints

We will now relate revision programs to active integrity constraints [9], an earlier for-
malism for expressing integrity constraints and preferred ways to enforce them.
Active integrity constraints — an overview. An update action is an expression +a or
−a, where a ∈ At . It states that a is to be inserted or deleted, respectively. A set U of
update actions is consistent if it does not contain update actions +a and −a, for any
a ∈ At . For a database D and a consistent set U of update actions, we define the result
of updating D by means of U as the database

D ◦ U = (D ∪ {a | + a ∈ U}) \ {a | − a ∈ U}.

An integrity constraint is a formula r = L1, . . . , Lm ⊃ ⊥, where Li, 1 ≤ i ≤ m,
are propositional literals (atoms a and their negations not a, for a ∈ At), and ‘,’ stands
for the conjunction. A database D satisfies an integrity constraint r, if D – viewed as
a propositional interpretation – satisfies r. Given a set η of integrity constraints and a
database I, the problem of database repair is to update I with a set of update actions
so that the resulting database satisfies all integrity constraints in η.

Definition 7. [WEAK REPAIRS AND REPAIRS] Let I be a database and η a set of
integrity constraints. A weak repair for 〈I, η〉 is a consistent set U of update actions
such that ({+a | a ∈ I} ∪ {−a | a ∈ At \ I}) ∩ U = ∅ (“essential” update actions
only), and I ◦ U |= η (constraint enforcement).

A consistent set U of update actions is a repair for 〈I, η〉 if it is a weak repair for
〈I, η〉 and for every U ′ ⊆ U such that I ◦ U ′ |= η, U ′ = U (minimality of change). 2

2 We note that we overload the notation TW and interpret it based on the type of the argument.

Let r = a, b ⊃ ⊥, and let I = {a, b} be a database. Clearly, I 6|= r. There are three
possible weak repairs of I wrt r: {−a}, {−b} and {−a,−b}. The first two are minimal
and so, they are repairs. No weak repair and no repair is distinguished as preferred.

To model preferences on (weak) repairs, [9] modified the syntax of integrity con-
straints by allowing the user to list preferred update actions. We will now present that
approach. For a propositional literal L, we write LD for the dual literal to L. Further,
for a literal L = a (L = not a), we define ua(L) = +a (ua(L) = −a). Similarly, for
an update action α = +a (α = −a), we define lit(α) = a (lit(α) = not a). We call +a
and −a the duals of each other, and write αD to denote the dual of an update action α.
We extend the notation introduced here to sets of literals and update actions. We define
an active integrity constraint to be an expression of the form

r = L1, . . . , Lm ⊃ α1| . . . |αk (2)

where m, k ≥ 0, m+ k ≥ 1, Li are literals, αj are update actions, and

{lit(α1)D, . . . , lit(αk)D} ⊆ {L1, . . . , Lm} (3)

The set {L1, . . . , Lm} is the body of r; we denote it by body(r). Similarly, the set
{α1, . . . , αk} is the head of r; we denote it by head(r).

An active integrity constraint L1, . . . , Lm ⊃ α1| . . . |αk represents the integrity
constraintL1, . . . , Lm ⊃ ⊥. Thus, we say that a databaseD satisfies an active integrity
constraint r (D |= r) if D satisfies the corresponding integrity constraint. In this way,
the semantics of weak repairs and repairs lift to active integrity constraints. However, an
active integrity constraint is more than an integrity constraint. It also specifies preferred
update actions to use by listing them in the head.

The condition (3) ensures that an active integrity constraint supports only those
update actions that pertain to its body and can fix it. It can be restated concisely as
[lit(head(r))]D ⊆ body(r). We call literals in [lit(head(r))]D updatable by r, as they
can be affected by an update action in head(r). All other literals in body(r) are non-
updatable by r. We write up(r) and nup(r) for the sets of literals updatable and non-
updatable by r, respectively.

Let r = a, b ⊃ −b (cf. the previous example), and let I = {a, b} be a database. As
before, I 6|= r, and there are two repairs of I wrt r: {−a} and {−b}. Now, since r lists
−b as an update action to execute, the latter one is preferred. The semantics of (weak)
repairs are insensitive to such preferences. To reflect them, [9] defined founded repairs.
A related concept of a founded weak repair was introduced in [8].

Definition 8. [FOUNDED (WEAK) REPAIRS] Let I be a database, η a set of active
integrity constraints, and U a consistent set of update actions.

1. An update action α is founded wrt 〈I, η〉 and U if there is r ∈ η such that α ∈
head(r), I ◦ U |= nup(r), and I ◦ U |= βD, for every β ∈ head(r) \ {α}.

2. The set U is founded wrt 〈I, η〉 if every element of U is founded wrt 〈I, η〉 and U .
3. U is a founded (weak) repair for 〈I, η〉 if U is a (weak) repair for 〈I, η〉 and U is

founded wrt 〈I, η〉. 2

Foundedness captures a certain notion of “groundedness”. Let us assume that r ∈ η
and I 6|= r. If α is founded wrt 〈I, η〉 and U by means of r, then all literals in body(r)
other than lit(αD) are satisfied by I ◦ U . Thus, if U is to enforce r, it must contain α.

Founded repairs for 〈I, η〉, despite being change-minimal and founded in 〈I, η〉
(“grounded” in 〈I, η〉) may still be self-justified. To address the problem [8] introduced
justified (weak) repairs. To present the definition we need more terminology.

A set U of update actions is closed under an active integrity constraint r if nup(r) 6⊆
lit(U), or head(r) ∩ U 6= ∅. A set U of update actions is closed under a set η of active
integrity constraints if it is closed under every r ∈ η. A minimal set closed under η can
be viewed as “forced” by η, as all its elements are necessary (no nonempty subset can
be dropped without violating the closedness condition).

Another concept we need is that of no-effect actions. Let I and R be databases.
An update action +a (respectively, −a) is a no-effect action for (I,R) if a ∈ I ∩ R
(respectively, a /∈ I ∪ R). That is, a no-effect action does not change the status of its
underlying atom. We denote by ne(I,R) the set of all no-effect actions wrt (I,R).

Definition 9. [JUSTIFIED (WEAK) REPAIR] Let I be a database, η a set of active in-
tegrity constraints, and U a consistent set of update actions.

1. U is a justified action set for 〈I, η〉 if U is a minimal set of update actions containing
ne(I, I ◦ U) and closed under η.

2. If U is a justified action set for 〈I, η〉, then E = U \ne(I, I ◦U) is a justified weak
repair for 〈I, η〉. If in addition, for every E ′ ⊆ E such that I ◦E ′ |= η, E ′ = E , then
E is a justified repair for 〈I, η〉. 2

Clearly, (founded, justified) weak repairs are (founded, justified) repairs. One can
also show that justified (weak) repairs are founded (weak) repairs which, in turn, are
(weak) repairs. There are no other inclusions between the six classes of weak repairs
that we discussed here (cf. [8, 9] for details).
Proper revision programs and a connection to active integrity constraints. There
are striking similarities between the formalisms of revision programs and active in-
tegrity constraints. However, to relate the two, we first need to restrict the syntax of
revision programs. We then show that the restriction does not change their expressivity.

A proper revision rule is a revision rule that satisfies the following condition: the
literal in the head of the rule is not the dual of any literal in the body of the rule. A
revision program is proper if all its revision rules are proper.

Theorem 8. Let P be a revision program. There is a proper revision program P ′ such
that for every database I, (weak) revisions of I wrt P (P -founded (weak) revisions,
P -justified (weak) revisions of I, respectively) coincide with (weak) revisions of I wrt
P ′ (P ′-founded (weak) revisions, P ′-justified (weak) revisions of I, respectively).

Given a proper revision rule r of the form

α1| . . . |αk ← β1, . . . βm

we denote by AIC(r) the active integrity constraint

lit(β1), . . . , lit(βm), lit(α1)
D
, . . . , lit(αk)D ⊃ ua(α1)| . . . |ua(αk).

We note that if r is a revision constraint (k = 0), AIC(r) is simply an integrity con-
straint. The operator AIC(·) is extended to proper revision programs in the standard
way. It is easy to show that for each database D, D |= P if and only if D |= AIC(P).
We now have the following result.

Theorem 9. Let P be a proper revision program. A set E of revision literals is a (weak)
revision (resp. P -justified (weak) revision, P -founded (weak) revision) of I wrt P if and
only if ua(E) is a (weak) repair (resp. justified (weak) repair, founded (weak) repair)
for 〈I, AIC(P)〉.

The mapping AIC(·) is a bijection between proper revision programs and sets of
active integrity constraints. Thus, it establishes an exact bidirectional match between
the two formalisms (for all semantics considered). We note that the restriction to proper
programs is essential as AIC(·), when used with all revision programs, is no longer
one-to-one and, in some cases, maps semantically different rules onto the same active
integrity constraint. For instance, programs consisting of in(a)← out(a) and in(a)← ,
respectively, behave differently wrt I = ∅ (the first program does not define any jus-
tified revisions, the second one does: E = {in(a)}). Yet, both rules are mapped by
AIC(·) onto not a→ +a.

6 Discussion and Conclusions

We studied a formalisms of revision programming designed to support modeling of
constraints on databases (belief sets), as well as preferred ways to enforce them if they
are violated. Revision programming was proposed in [1, 2] and further developed in [5].
However, the earlier work focused only on one semantics, the semantics of P -justified
weak revisions. It is a limitation of the earlier work as, on the one hand, P -justified
weak revisions do not satisfy the minimality of change property and, on the other, they
may be too restrictive in situations when reasoning by cases may be justified.

Therefore, we proposed here several new declarative semantics for revision pro-
grams, by imposing the minimality of change property on P -justified revisions and/or
by modifying the groundedness condition behind justified weak revisions. We stud-
ied properties of the resulting semantics. In particular, we established the complex-
ity of several decision problems, and identified two classes of revision programs, for
which justified weak revisions are change-minimal. Revision programming shows sev-
eral similarities with the formalism of active integrity constraints [9]. We proposed an
interpretation of revision rules as active integrity constraints and proved that under that
interpretation, revision programming (restricted to proper revision programs) and the
formalism of active integrity constrains are notational variants of each other.

Finally, we also proved that all semantics we studied satisfy the shifting property.
We will now briefly point out that thanks to shifting, one can relate revision programs to
Lifschitz-Woo programs [10], which generalize disjunctive logic programs by allowing
the default negation in the heads of rules. Namely, Lifschitz-Woo programs consist of
rules of the form

a1| . . . |ak|not b1| . . . |not bm ← c1, . . . , cs,not d1, . . .not dn (4)

where each ai, bi, ci and di is an atom and not is a default negation. Given a revision
rule

in(a1)| . . . |in(ak)|out(b1)| . . . |out(bm)← in(c1), . . . , in(cs), out(d1), . . . out(dn)
(5)

there is a clear correspondence between the two. Let us denote by LW (·) a mapping
that assigns a Lifschitz-Woo rule (4) to a revision rule (5). The following result was
obtained in [5].

Theorem 10. Let P be a revision program. Then, a set U of revision literals is a P -
justified revision of ∅ if and only if U = {in(a) | a ∈ M}, where M ⊆ At is a stable
model of LW (P) (according the the definition from [10]).

Thanks to shifting, this result allows us to represent any revision program P and a
database I as a Lifschitz-Woo program so that justified revisions correspond precisely
to stable models, a property also observed in [5]. However, we proved here that shifting
holds for other semantics of revision programs, too. Thus, Theorem 10 also suggests
that all these semantics could be adapted directly to the setting of Lifschitz-Woo pro-
grams and, subsequently, to the formalism of programs with nested expressions [11]
(subsuming Lifschitz-Woo programs). It follows that these generalized variants of logic
programming can be endowed with a richer family of semantics that goes beyond the
basic one given by stable models.

References

1. Marek, W., Truszczyński, M.: Revision specifications by means of programs. Proceedings
of JELIA 1994. Volume 838 of LNCS., Springer (1994) 122–136

2. Marek, W., Truszczyński, M.: Revision programming. Theoretical Computer Science 190
(1998) 241–277

3. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. Proceedings of ICLP
1988, MIT Press (1988) 1070–1080

4. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and data bases. Plenum
Press, New York-London (1978) 293–322

5. Pivkina, I.: Revision programming: a knowledge representation formalism.
PhD thesis, Department of Computer Science, University of Kentucky (2001)
http://lib.uky.edu/ETD/ukycosc2001d00022/pivkina.pdf.

6. McCarthy, J.: Circumscription — a form of non-monotonic reasoning. Artificial Intelligence
13 (1980) 27–39

7. Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)
8. Caroprese, L., Truszczyński, M.: Declarative semantics for active integrity constraints (2008)

Submitted, available at http://www.cs.uky.edu/ai/aic-full.pdf.
9. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative semantics of production

rules for integrity maintenance. Proceedings of ICLP 2006. Volume 4079 of LNCS., Springer
(2006) 26–40

10. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonic reasoning. Proceedings of KR
1992. Morgan Kaufmann (1992) 603–614

11. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence (1999) 369–389

