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Abstract. Recently, an answer-set programming (ASP) formalism of logic pro-
graming with the answer-set semantics has been extended to the full first-order
setting. Earlier an extension of first-order logic with inductive definitions, the
logic FO(ID), was proposed as a knowledge representation formalism and de-
veloped as an alternative ASP language. We present characterizations of these
formalisms in terms of concepts of infinitary propositional logic. We use them to
find a direct connection between the first-order ASP and the logic FO(ID) under
some restrictions on the form of theories (programs) considered.

1 Introduction

Answer-set programming (ASP, for short) is a paradigm for modeling and solving search
problems and their optimization variants. To model a search problem, one constructs a
theory in some logic language so that once the theory is appended with an encoding
of a problem instance, its models represent in some direct fashion solutions to that in-
stance of the problem. The paradigm was first formulated in these terms by Marek and
Truszczyński [14] and Niemelä [16] for the formalism of logic programming with the
stable-model semantics by Gelfond and Lifschitz [10, 11], a nonmonotonic knowledge
representation formalism with informal roots in epistemic interpretations of the nega-
tion as failure and closely connected to the default logic by Reiter [20]. Logic program-
ming with the stable-model semantics and its extensions with the semantics of answer
sets [11] are to this day the most broadly used dialects of ASP.

These formalisms were originally introduced with the syntax limited to rules and
the semantics restricted to Herbrand interpretations. Recently researchers have sought
to address these limitations. In particular, Pearce and Valverde [19] introduced the quan-
tified equilibrium logic. That logic is a first-order extension of the equilibrium logic by
Pearce [18], a propositional logic with the semantics of equilibrium models. For a class
of theories that correspond to programs, equilibrium models and answer sets coincide
and so, the quantified equilibrium logic is indeed a generalization of logic programming
with the answer-set semantics to the full first-order setting. Ferraris, Lee and Lifschitz
[8], proposed an alternative approach within the language of second-order logic. They
introduced an operator SM that assigns a second-order sentence to a first-order one (in-
cidentally, the operator SM closely resembles the one used to define circumscription).
For a first-order sentence F , Ferraris et al. [8] proposed models of SM [F ] as answer



sets of F and showed that the concept generalizes that of an answer set of a proposi-
tional formula. They also proved that the semantics of sentences provided by answer
sets coincides with that of the quantified equilibrium logic.

While papers on ASP often bring up the default negation operator in logic program-
ming as the key element to its success as a modeling language, the fact is that in most
applications the default negation not is used as if it were a classical one. Arguably, the
main appeal of logic programming with the answer-set semantics as an ASP formalism
comes from its capability to capture inductive definitions. The importance of inductive
definitions for knowledge representation was argued by Denecker [1, 2], who proposed
an extension of the first-order logic with inductive definitions, the logic FO(ID), as a
knowledge representation formalism. A version of that language can be used according
to the ASP paradigm and there are fast tools to support that use of the logic FO(ID).1

The semantics of definitions in the logic FO(ID) is given by the well-founded seman-
tics extended to the case of arbitrary interpretations. As the well-founded and answer-
set semantics are related, the question arises about the relation between the first-order
extensions of ASP that we discussed earlier and the logic FO(ID).

In this work we show a class of FO(ID) theories for which the relationship is quite
direct. Under a simple translation of FO(ID) theories into programs, models of the
FO(ID) theories in that class are precisely answer sets of the program resulting from
the translation. In this way, we resolve in positive a conjecture by Vladimir Lifschitz2.
We point out that a converse embedding is possible as well.

As the main technical device in our arguments we use characterizations of the first-
order ASP and FO(ID) in the infinitary propositional logic. They are based on exten-
sions to the infinitary case of the notion of reduct [7] on the one hand, and of the al-
gebraic approach to stable and well-founded semantics [4] of general programs on the
other. For the class of theories that we call programs, the concept of the reduct can be
extended in two ways. We use one of them as a bridge to the first-order ASP as de-
veloped by Pearce and Valverde [19] and Ferraris et al. [8]. We use the other as the
connection to the logic FO(ID), and note here in passing that it also provides an alter-
native characterization of a version of the first-order ASP proposed by Denecker et al.
[3].

2 Stable models in infinitary propositional logic

Let A be a propositional signature, that is, a set of 0-ary relation symbols (or propo-
sitions). We assume the existence of a 0-ary predicate constant ⊥, different from all
symbols in A, and define sets F0,F1, . . . by induction as follows:
1. F0 = A ∪ {⊥}
2. Fi+1, where i ≥ 0, consists of expressions H∨ and H∧, for all subsets H of F0 ∪
. . . ∪ Fi, and of expressions F → G, where F,G ∈ F0 ∪ . . . ∪ Fi.

We defineLinf
A =

⋃∞
i=0 Fi. We call elements ofLinf

A infinitary formulas (overA). Each
formula F ∈ Linf

A belongs to at least one set Fi. We call the least index i of a set Fi
containing F the rank of F .

1 The IDP system, http://dtai.cs.kuleuven.be/krr/software/idp3.
2 The conjecture was communicated to me by Yulia Lierler.



The primary connectives of the language are {}∨, {}∧ and→. We define the boolean
connectives ∧, ∨, ↔ and ¬ , as well as another 0-ary predicate constant >, as short-
hands: F ∨G ::= {F,G}∨; F ∧G ::= {F,G}∧; F ↔ G ::= (F → G) ∧ (G → F );
¬F ::= F → ⊥; and > ::= ¬⊥.

The standard semantics of propositional logic extends to the case of infinitary for-
mulas. An interpretation of A is a subset of A (atoms in the subset are true and all
the other ones are false). We denote the set of all interpretations of A by IntA. For an
interpretation I of A, and an infinitary formula F , we define the relation I |= F by
induction on the rank of a formula as follows:

1. I 6|= ⊥
2. For every p ∈ A, I |= p if p ∈ I
3. I |= H∨ if there is a formula F ∈ H such that I |= F
4. I |= H∧ if for every formula F ∈ H, I |= F
5. I |= F → G if I 6|= F or I |= G.

The concept of the reduct proposed by Ferraris [7] for the standard propositional
logic can be extended to sets of infinitary formulas. The inductive definition follows:

1. ⊥I = ⊥
2. For p ∈ A, pI = ⊥ if I 6|= p; otherwise pI = p
3. (H∧)I = ⊥ if I 6|= H∧; otherwise, (H∧)I = {GI | G ∈ H}∧
4. (H∨)I = ⊥ if I 6|= H∨; otherwise, (H∨)I = {GI | G ∈ H}∨
5. (G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI .

If F is a set of infinitary formulas, we define the reduct FI by FI = {F I | F ∈ F}.

Definition 1. Let F ⊆ Linf
A be a set of infinitary formulas. An interpretation I ∈ IntA

is a stable model of F if I is a minimal model of FI .

The use of the term model in stable model is justified. That is, stable models are
models. This is evident from the following more general property.3

Proposition 1. For every set F ⊆ Linf
A and every interpretation I ∈ IntA, I |= F if

and only if I |= FI .

If a set F of finitary formulas has no negative occurrences of variables, it has mini-
mal models and each of these models is a stable model of the formula. This property
does not hold in the case of infinitary formulas. Let Fi = {pi, pi+1, . . .}∨, i = 0, 1, . . .,
and let F = {F0, F1, . . .} (we assume here that A = {p0, p1, . . .}). It is easy to see that
there is no finite set M ⊆ A such that M |= F . On the other hand, every infinite set
M ⊆ A is a model of F . It follows that F has no minimal models. It is also easy to
show that F has no stable models.

Next, we extend the semantics of HT-interpretations to (sets of) infinitary formulas.
Our goal is to extend the equilibrium logic [18] to the infinitary case and show that
equilibrium models and stable models coincide.

3 The proofs of this result and the next two closely follow those of the corresponding results in
the finitary case [7] and we omit them.



Definition 2. An HT-interpretation is a pair 〈X,Y 〉, where X,Y ∈ IntA and X ⊆ Y .
The satisfiability relation |=ht is specified by induction as follows:

1. 〈X,Y 〉 6|=ht ⊥
2. For p ∈ A, 〈X,Y 〉 |=ht p if p ∈ X
3. 〈X,Y 〉 |=ht H∨ if there is G ∈ H such that 〈X,Y 〉 |=ht G
4. 〈X,Y 〉 |=ht H∧ if for every G ∈ H, 〈X,Y 〉 |=ht G
5. 〈X,Y 〉 |=ht G→ H if Y |= G→ H; and 〈X,Y 〉 6|=ht G or 〈X,Y 〉 |=ht H .

If 〈X,Y 〉 |=ht F , then we say that 〈X,Y 〉 is an HT-model of F . The concept of a model
and the relation |=ht extend in a standard way to sets of infinitary formulas.

The following result gathers important properties of the relation |=ht . They extend
the corresponding properties of that relation in the standard finitary setting [7, 9].

Theorem 1. For every formula F and every interpretations X,Y ∈ IntA such that
X ⊆ Y we have:

1. 〈X,Y 〉 |=ht F implies Y |= F
2. 〈X,Y 〉 |=ht ¬F if and only if Y 6|= F
3. 〈Y, Y 〉 |=ht F if and only if Y |= F .

The next result characterizes the relation |=ht in terms of the standard satisfiability
relation and the reduct.

Theorem 2. For every setF ⊆ Linf
A of infinitary formulas and for every interpretations

X,Y ∈ IntA such that X ⊆ Y , 〈X,Y 〉 |=ht F if and only if X |= FY .

Let F ⊆ Linf
A be a set of infinitary formulas. Directly extending the definition from

the finitary case, we say that an HT-interpretation 〈Y, Y 〉 is an equilibrium model of
F if 〈Y, Y 〉 |=ht F and there is no proper subset X of Y such that 〈X,Y 〉 |=ht F .
The following result connects stable and equilibrium models and follows directly from
Theorem 1(3) and Theorem 2.

Theorem 3. An interpretation Y ∈ IntA is a stable model of a set F of infinitary
formulas from Linf

A if and only if 〈Y, Y 〉 is an equilibrium model of F .

3 Stable models in first-order logic

Let σ be a signature of a language of first-order logic and let U be a set. By σU we
denote the signature obtained by adding to σ distinct symbols u∗ (names) for every
u ∈ U .

Next, let I be an interpretation of σ, that is, a structure comprising a non-empty
domain, written as |I|, and for each relation and function symbol in σ, a relation or
function on |I|, of the same arity, to interpret it. We denote by Aσ,I the set of all those
atomic formulas of the first order language Lσ|I| that are built of relation symbols in σ
and the names of elements in |I|. We identify an interpretation I of σ with its extension
I ′ to σ|I| defined by setting I ′(s) = I(s), for every s ∈ σ, and I ′(u∗) = u for every



u ∈ |I|. From now on, we use the same symbol for an interpretation I of σ and for its
(unique) extension to σ|I| defined above. We represent an interpretation I of σ (and its
extension to σ|I|) by a pair 〈If , Ir〉, where If is an interpretation of the part of σ (or
equivalently, of σ|I|) that consists of constant and function symbols in σ, and Ir is a
subset of Aσ,I that describes in the obvious way the relations in I (the interpretation of
new constants is determined and does not need to be explicitly represented). We write
Intσ for the set of all interpretations of σ (extended as described above).

Let F be a sentence in the language Lσ|I| . We define the relation I |= F following
the approach used, for instance, by Doets [6] (the definition of the value tI of a term t
in I is standard, we assume the reader is familiar with it):
1. I 6|= ⊥
2. I |= p(t1, . . . , tk) if p((tI1)

∗, . . . , (tIk)
∗) ∈ Ir

3. I |= t1 = t2 if tI1 = tI2
4. I |= F ∨G if I |= F or I |= G (the case of ∧ is analogous)
5. I |= F → G if I 6|= F or I |= G
6. I |= ∃xF (x) if for some u ∈ |I|, I |= F (u∗)
7. I |= ∀xF (x) if for every u ∈ |I|, I |= F (u∗).

Let I be an interpretation of σ and F be a sentence inLσ|I| . We define the grounding
of F with respect to I , gr I(F ), as follows:
1. gr I(⊥) = ⊥
2. gr I(p(t1, . . . , tk)) = p((tI1)

∗, . . . , (tIk)
∗)

3. gr I(t1 = t2)) = >, if tI1 = tI2, and ⊥, otherwise
4. If F = G ∨H , gr I(F ) = gr I(G) ∨ gr I(H) (the case of ∧ is analogous)
5. If F = G→ H , gr I(F ) = gr I(G)→ gr I(H)
6. If F = ∃xG(x), gr I(F ) = {gr I(G(u∗)) | u ∈ |I|}∨
7. If F = ∀xG(x), gr I(F ) = {gr I(G(u∗)) | u ∈ |I|}∧.

In addition, if F is a set of sentences from the language Lσ|I| , we define gr I(F) =
{gr I(F ) | F ∈ F}. It is clear that for every sentence F in Lσ|I| , grI(F ) is an infinitary
propositional formula in the signature Aσ,I . It is important to note that gr I(F ) depends
only on If and not on Ir.

There is a simple connection between the first-order satisfiability relation and the
one we defined earlier for the infinitary propositional logic.

Proposition 2. Let I be an interpretation of σ and F a sentence from Lσ|I| . Then I |=
F if and only if Ir |= gr I(F ).

Proof. The basis of the induction is evident. For example, let us assume that F has the
form t1 = t2. By the definition, if I |= t1 = t2 then tI1 = tI2. It follows that gr I(F ) = >
and Ir |= gr I(F ). Conversely, if Ir |= gr I(F ), then gr I(F ) 6= ⊥. Thus, tI1 = tI2 and
I |= t1 = t2.

The inductive step is simple, too. For example, let us assume that F = ∀xG(x).
By the definition, I |= F if and only if I |= G(u∗), for every u ∈ |I|. By the in-
duction hypothesis (as F is a sentence, each G(u∗) is a sentence, too), this condition
is equivalent to Ir |= gr I(G(u

∗)), for all u ∈ |I| which, in turn, is equivalent to
Ir |= {gr I(G(u∗)) | u ∈ |I|}∧. Noting that {gr I(G(u∗)) | u ∈ |I|}∧ = gr I(F )
completes the argument. The other cases for F can be handled in a similar way. 2



With the notion of grounding in hand, we now define stable models of a set of
first-order sentences.

Definition 3. Let σ be a signature. An interpretation I = 〈If , Ir〉 of σ is a stable model
of a set F of sentences from Lσ if Ir is a stable model of gr I(F).

This concept of stability is well defined as formulas in gr I(F) are infinitary propo-
sitional formulas over the signatureAσ,I and for every interpretation I of σ, Ir ⊆ Aσ,I .

By the definition of a stable model of a set of infinitary formulas over Aσ,I we have
the following direct characterization of stable models.

Proposition 3. Let σ be a signature and let F be a set of sentences from Lσ . An inter-
pretation I of σ is a stable model of F if and only if Ir is a minimal model of the reduct
[gr I(F)]I

r

.

Ferraris et al. [8] introduced an operator SM that assigns to each first-order sentence
F (in signature σ) a second-order formula SM [F ]. The details of the definition are
immaterial to our subsequent discussion and we omit them. Ferraris et al. defined an
interpretation I ∈ Intσ to be a stable model of F if I is a model of SM [F ]. We show
that our definition of stable models of a sentence is equivalent to the one based on
the operator SM . We proceed in a roundabout way through a connection between our
concept of stability and that based on the quantified logic here-and-there [19].

Following Ferraris et al. [8], we define an HT-interpretation of a first-order signature
σ as a triple I = 〈If , Ih, It〉, where If is an interpretation of the part of σ that consists
of constant and function symbols, and Ih and It are subsets of Aσ,I such that Ih ⊆ It.
Moreover, we define the relation I |=ht F , where F is a sentence from Lσ|I| , follows:

1. I 6|=ht ⊥
2. I |=ht p(t1, . . . , tk) if p((tI1)

∗, . . . , p(tIk)
∗) ∈ Ih

3. I |=ht t1 = t2 if tI1 = tI2
4. I |=ht G ∨H if I |= G or I |= H (the case of ∧ is analogous)
5. I |=ht G→ H if 〈If , It〉 |= G→ H; and I 6|=ht G or I |=ht H .
6. I |=ht ∀xG(x) if for every u ∈ |I|, I |=ht G(u

∗)
7. I |=ht ∃xG(x) if for some u ∈ |I|, I |=ht G(u

∗).

An HT-interpretation I = 〈If , Ih, It〉 is an equilibrium model of a sentence F [19]
if I |=ht F , Ih = It, and for every proper subset X of Ih, 〈If , X, It〉 6|=ht F . Ferraris
et al. [8] proved the following result.

Theorem 4 (Ferraris et al. [8]). An HT-interpretation I = 〈If , Ih, Ih〉 is an equilib-
rium model of F if and only if 〈If , Ih〉 is a stable model of F (a model of SM [F ]).

The key step in showing that these two notions of stability coincide with the one we
introduced in Definition 3 consists of showing that the first-order relation |=ht can be
expressed in terms of the relation |=ht of the infinitary propositional logic.

Proposition 4. Let I be an HT-interpretation of σ and F a sentence from Lσ|I| . Then,
I |=ht F if and only if 〈Ih, It〉 |=ht gr I(F ).



Proof. The basis of the induction is evident. For example, let us assume that F =
p(t1, . . . , tk). Then I |=ht F if and only if p((tI1)

∗, . . . , (tIk)
∗) ∈ Ih. Since gr I(F ) =

p((tI1)
∗, . . . , (tIk)

∗), that condition is equivalent to 〈Ih, It〉 |=ht gr I(F ).
The induction step is also simple. For instance, let F = G → H and let us

assume that I |=ht G → H . It follows that 〈If , It〉 |= G → H and, also, that
I 6|=ht G or I |=ht H . By Proposition 2 and by the induction hypothesis, we ob-
tain It |= gr I(G → H), and 〈Ih, It〉 6|=ht gr I(G) or 〈Ih, It〉 |=ht gr I(H). Since
gr I(G → H) = gr I(G) → gr I(H), it follows that 〈Ih, It〉 |=ht gr I(G) → gr I(H)
and, consequently, that 〈Ih, It〉 |=ht gr I(G→ H). The converse implication and other
cases for F can be reasoned in a similar way. 2

We now state and prove the result showing the equivalence of the three definitions
of stable models of a first-order sentence.

Theorem 5. The following definitions of a stable model of a sentence F are equivalent:

1. the definition in terms of the operator SM
2. the definition in terms of equilibrium models
3. the definition in terms of ground programs (Definition 3).

Proof. (1) and (2) are equivalent by Theorem 4. We will prove the equivalence of
(2) and (3). Let I be an interpretation of σ such that 〈If , Ir, Ir〉 is an equilibrium
model of F . It follows that 〈If , Ir, Ir〉 |=ht F and for every proper subset X of
Ir, 〈If , X, Ir〉 6|=ht F . The first property and Proposition 4 imply that 〈Ir, Ir〉 |=ht

gr I(F ). The second property and Proposition 4 imply that for every proper subset X
of Ir, 〈X, Ir〉 6|=ht gr I(F ). Thus, by Theorem 3, I is a stable model of gr I(F ) and,
consequently, a stable model of F according to Definition 3.

Conversely, let us assume that I is a classical interpretation of σ such that Ir is a
stable model of gr I(F ). It follows (Theorem 3) that 〈Ir, Ir〉 |=ht gr I(F ) and there
is no proper subset X of Ir such that 〈X, Ir〉 |=ht gr I(F ). Using Proposition 4, we
obtain that I is an equilibrium model of F . 2

We note that the definitions of stable models of sentences given here and in terms of
equilibrium models extend to infinite collections of sentences. The definition in terms
of the operator SM does not lend itself in any obvious way to such an extension.

4 Programs

A program (in the language of the infinitary propositional logic) is a set of program
clauses, that is, formulas F → p, where F ∈ Linf

A and p ∈ A. For consistency with the
standard logic programming notation, we write a clause F → p as p ← F . We call p
the head of the clause p← F .

Let Π be a program in the signature A. We denote by AoutΠ the set of all atoms that
appear in the heads of clauses in Π and define AinΠ = A \ AoutΠ . If the program Π is
clear from the context, we drop “Π” from the notation. We call atoms in AinΠ and AoutΠ

input and output atoms, respectively.4

4 One can consider a slightly more general setting in which we define AoutΠ as a subset of A
that contains the heads of all rules in Π (but, possibly, also some other atoms). That setting



For programs we can generalize the concept of a stable model by taking into account
a given interpretation of its input atoms.

Definition 4. LetΠ be a program in a signatureA. An interpretation I ofA is an input
stable model of Π if I is a stable model of Π ∪ (I ∩Ain).

The concept of an input stable model was introduced and studied by Lierler and
Truszczynski [13] as the basis for the formalism SM(ASP). It is closely related to mod-
els of modular logic programming systems [12, 17, 3].

Input stable models have an elegant direct characterization in terms of stable models
that extends the corresponding characterization for the finitary case given by Lierler and
Truszczynski [13]. Let Π be a program. We define Πin = Π ∪{a← ¬¬a | a ∈ Ain}.
The proof of the characterization below is similar to the one for the finitary case and we
omit it.

Proposition 5. Let Π be a program in a signature A. An interpretation I of σ is an
input stable model of Π if and only if I is a stable model of Πin.

For programs one can introduce an alternative notion of a reduct. Let F ∈ Linf
A

and I ∈ IntA. We define FI to be the formula obtained by replacing each atom p that
occurs negatively in F with ⊥, if I 6|= p, and with >, otherwise.5 For a program Π , we
define ΠI = {p← FI | p← F ∈ Π}.

We note that formulas FI have only positive occurrences of atoms. Thus, for any
two interpretations J, J ′ ∈ IntA such that J ⊆ J ′, if J |= FI then J ′ |= FI . In
particular, it follows that for every programΠ and every interpretation I ,ΠI has a least
model denoted by LM(ΠI). This observation gives rise to the notion of an ID-stable
model of a program. We introduce it below, together with the related notion of an input
ID-stable model.

Definition 5. Let Π be a program in a signature A. An interpretation I of A is an ID-
stable model of a program Π if I = LM(ΠI). An interpretation I of A is an input
ID-stable model of Π if I is an ID-stable model of Π ∪ (I ∩Ain).

It is clear that I |= Π if and only if I |= ΠI . Thus, ID-stable models of Π are
models of Π and the use of the term “model” in “ID-stable model” (and so, also in
“input ID-stable model”) is justified.

In general, stable models and ID-stable models of programs do not coincide. For
instance, let Π = {p ← ¬¬p}. One can check that I = ∅ and J = {p} are stable
models of Π . On the other hand, since p occurs positively in Π , ΠI = ΠJ = Π . The
least model of Π is ∅. Thus, I is an ID-stable model of Π but J is not!

We will now show a class of programs for which the two concepts coincide. Let N
be the set of all formulas F that satisfy the following property: every occurrence of the

reduces in a simple way to the one we consider. One just needs to extend Π with rules of the
form a← ⊥, for every a ∈ AoutΠ that is not the head of any rule in Π .

5 The only connectives in the language are {·}∨ (generalized ∨), {·}∧ (generalized ∧), and→.
Thus, the notions of a positive and negative occurrence of a propositional atom in a formula
are well defined.



implication in F has ⊥ as the consequent and no occurrence of implication in its an-
tecedent. The first requirement says that all occurrences of the implication operator can
be replaced with the negation operator, the second requirement says that the negation
operator cannot be nested.

Lemma 1. Let Π be a program in signature A and I an interpretation of A such that
I |= Π . Then ΠI ≡ {p← F I | p← F ∈ Π}.

Proof. Let p← F ∈ Π . Since I |= p← F ,

(p← F )I =

{
pI ← ⊥ if I 6|= F
p← F I if I |= F and I |= p

while

p← F I =

{
p← ⊥ if I 6|= F
p← F I if I |= F and I |= p.

Thus the assertion follows. 2

Lemma 2. For every formula F ∈ N , and every interpretation I , F I and FI have the
same models contained in I .

Proof. The proof is by induction on the rank of a formula. If F = ⊥, then F I = ⊥ =
FI and the claim is evident. If F = p, and I |= p, then pI = p and pI = p. If I 6|= p,
then pI = ⊥ and pI = p. In each case, the formulas pI and pI have the same models
that are subsets of I .

For the inductive step there are several cases to consider. First, let us assume that
F = H∨. If I 6|= F , F I = ⊥ and it has no models contained in I . Moreover, for
every G ∈ H, I 6|= G. By the induction hypothesis, the formulas GI and GI have the
same models contained in I . Since GI = ⊥, no GI has models contained in I and,
consequently, FI = {GI | G ∈ H}∨ has no models contained in I . Thus, let us assume
that I |= F . It follows that (H∨)I = {GI | G ∈ H}∨ and (H∨)I = {GI | G ∈ H}∨.
By the induction hypothesis, for every G ∈ H , GI and GI have the same models
contained in I . Thus, (H∨)I and (H∨)I have that property, too.

The argument for the case F = H∧ is similar. So, let us assume that F = G→ ⊥.
Since F ∈ N , G has no occurrences of implication and, consequently, all occurrences
of atoms in G are negative in F . It follows that if I 6|= G then FI ≡ ⊥ → ⊥ ≡ > and,
otherwise (if I |= G) FI ≡ > → ⊥ ≡ ⊥.

Moreover, if I 6|= G, then I |= F . Thus, F I = GI → ⊥ = ⊥ → ⊥ ≡ > ≡ FI .
Similarly, if I |= G then I 6|= F and, consequently, F I = ⊥. Thus, also in this case
FI ≡ F I and the assertion follows. 2

Theorem 6. Let Π be a program such that for every clause p ← G ∈ Π , G ∈ N .
Then stable and ID-stable models of Π coincide, and input stable and input ID-stable
models coincide.

Proof. Reasoning in each direction we have that I is a model of Π . By Lemmas 1 and
2, ΠI and ΠI have the same models contained in I . Thus, if I is the least model of ΠI ,
I is the least model (and, in particular, a minimal model) of ΠI . Conversely, if I is a



minimal model of ΠI , then I is a minimal model of ΠI and so, the least model of ΠI .
These two observations imply the first part of the assertion. The second part follows
from the first part and from the definitions. 2

The discussion above extends in a straightforward way to the first-order case. Let
us consider a first-order signature σ. A program clause is a formula ∀X (G → p(t)),
where t is a tuple of terms of the arity equal to the arity of p, and X is a tuple of all
free variables in G→ p(t). A program is a collection of clauses. As before, we write a
clause ∀X (G→ p(t)) as ∀X (p(t)← G) or even as p(t)← G.

First, we generalize to the first-order setting the results concerning input stable mod-
els.

Definition 6. Let Π be a program in a first-order signature σ. An interpretation I ∈
Intσ is an input stable model of Π if Ir is an input stable model of gr I(Π).

For a program Π in a first-order signature σ, we define σoutΠ to be the set of all
relation symbols occurring in the heads of clauses inΠ and σinΠ to be the set of all other
relation symbols in Π . Whenever there is no ambiguity, we drop Π from the notation.
We set Πin = Π ∪ {p(X) ← ¬¬p(X) | p ∈ σin}. We have the following result,
which can be obtained by lifting through grounding the corresponding result from the
infinitary propositional setting (Proposition 5).

Theorem 7. Let Π be a program in a first-order signature σ. An interpretation I ∈
Intσ is an input stable model of Π if and only if I is a stable model of Πin.

The concepts of ID-stable and input ID-stable models can similarly be lifted to the
first-order setting.

Definition 7. If Π is a program in a first-order signature σ, an interpretation I ∈ Intσ
is an (input) ID-stable model of Π if Ir is an (input) ID-stable model of grI(Π).

The definition of the classN extends literally to the first-order language. We define
the classN fo to consist of all first-order formulas F such that every occurrence of→ in
F has ⊥ in its consequent and no occurrence of→ in its antecedent (elements of N fo

may contain free variables). Since grounding formulas form N fo results in infinitary
propositional formulas from N , Theorem 6 lifts to the first-order setting.

Theorem 8. Let Π be a program over a first-order signature σ such that for every
clause p(t) ← G ∈ Π , G ∈ N fo . Then (input) stable and (input) ID-stable models of
Π coincide.

5 Logics PC(ID) and FO(ID)

We now consider the logic FO(ID) introduced by Denecker [2] and investigated in detail
by Denecker and Ternovska [5]. Our goal is to relate that logic to the formalism of first-
order programs under the stable model semantics. To this end, we first relate the logic
FO(ID) with the logic of (first-order) programs under the semantics of ID-stable models.
Next, we apply Theorem 8 to obtain the result we are interested in.



We start by extending the logic PC(ID), the propositional version of FO(ID), to the
infinitary propositional case. Our approach consists of a straightforward extension to
the infinitary setting of the algebraic approach developed by Denecker et al. [4].

Let A be a propositional signature and Π a program in Linf
A . The Fitting operator

for Π , ΦΠ : IntA × IntA → IntA, is defined by

ΦΠ(I, J) = {p | p← F ∈ Π and I |= FJ}.

The key monotonicity properties of the operator ΦΠ in the finitary setting extend in a
direct way to the infinitary one.

Proposition 6. For every program Π , the operator ΦΠ is monotone in the first argu-
ment and antimonotone in the second.

We recall that for a program Π in the signature A we write AoutΠ for the set of all
atoms that appear in the heads of clauses in Π and AinΠ for A \ AoutΠ . We also omit Π
from the notation whenever it is clear from the context.

For every interpretationK ∈ IntAin , we set IntA,K = {I ∈ IntA | I ∩Ain = K}.
Given a program Π and an interpretation K ∈ IntAin , we define the Fitting operator
with input K, ΦΠ,K : IntA,K × IntA,K → IntA,K , by setting

ΦΠ,K(I, J) = K ∪ ΦΠ(I, J),

where I, J ∈ IntA,K . The operator ΦΠ,K is well defined, that is, to every pair of
interpretations from IntA,K it assigns an interpretation from IntA,K . It is easy to see
that for every I, J ∈ IntA (= IntA,∅), ΦΠ,∅(I, J) = ΦΠ(I, J). Moreover, by the
previous result,ΦΠ,K is monotone in the first argument and antimonotone in the second.

Definition 8. Let Π be a program in signature A and K ∈ IntAin an interpretation.
The stable operator with input K, StΠ,K : IntA,K → IntA,K , is defined by

StΠ,K(J) = lfp(ΦΠ,K(·, J)) (where J ∈ IntA,K).

We note that input ID-stable models that we introduced in the previous section can
be characterized in terms of the operator StΠ,K .

Proposition 7. Let Π be a program in a signature A. An interpretation I ∈ IntA is an
input ID-stable model of Π if and only if StΠ,I∩Ain(I) = I .

The operator StΠ,K is a stepping stone to the fundamental concept of the logic
PC(ID): the well-founded model based on an interpretation of input atoms. To introduce
it, we define an operator WΠ,K on IntA,K × IntA,K by setting:

WΠ,K(I, J) = (StΠ,K(J),StΠ,K(I)) (where I, J ∈ IntA,K).

By Proposition 6 and the definitions of the operators ΦΠ,K and StΠ,K , for every K ∈
IntAin the operator StΠ,K is antimonotone. It follows that the operatorWΠ,K is mono-
tone with respect to the precision order ≤P defined as follows:

(I, J) ≤P (I ′, J ′) if and only if I ⊆ I ′ and J ′ ⊆ J.



The precision order is a partial order that imposes on IntA,K × IntA,K the structure of
a complete lattice, with the pair (K,A) as its least element. By the Tarski-Knaster theo-
rem, WΠ,K has a least fixpoint, and this fixpoint is the limit of the transfinite sequence
{Wα

Π,K(K,A)}α, where iterations Wα
Π,K(K,A) of the operator WΠ,K over (K,A)

are defined in the standard way. If I, J ∈ IntA,K , I ⊆ J , and WΠ,K(I, J) = (I ′, J ′),
then I ′ ⊆ J ′. Thus, for every element (I, J) in the sequence {Wα

Π,K(K,A)}α, I ⊆ J
and the limit (the least fixpoint of WΠ,K), satisfies the same property.

Let us assume that (I0, J0) is that limit. Then, we have I0 ⊆ J0 and

(I0, J0) =WΠ,K(I0, J0) = (StΠ,K(J0),StΠ,K(I0)).

It follows that I0 = StΠ,K(J0) and I0 ⊆ StΠ,K(I0). We call the pair (I0,StΠ,K(I0))
the well-founded model of Π based on input K.6 Atoms in I0 are true in the model and
those not in StΠ,K(I0) are false. All the other atoms are unknown. If I0 = StΠ,K(I0),
then we call the well-founded model total, as no atoms are unknown in it.

Before we proceed, we note two results generalizing well-known properties of sta-
ble and well-founded models of standard finitary programs to the present setting. The
first one states that the well-founded model of Π based on input K approximates all
input ID-stable models of Π such that I ∩ Ain = K. The second one relates total
well-founded and stable models.

Proposition 8. If (I0, J0) is the well-founded model of Π based on the input K, and I
is an input ID-stable model of Π such that I ∩Ain = K, then I0 ⊆ I ⊆ J0.

Proposition 9. Let Π be a program and K ∈ IntAin . If the well-founded model of Π
based on input K is total, then it is of the form (I, I), where I ∩ Ain = K and I is an
input ID-stable model of Π .

The well-founded models based on a specified input form the basis of the logic
PC(ID). We introduce this logic here in a form adapted to the infinitary setting.

Definition 9. Let A be a propositional signature. A PC(ID) theory is a pair (F,Π),
where F ⊆ Linf

A and Π is a program in A. An interpretation I ∈ IntA is an ID-model
of (F,Π) if I is a model of F and (I, I) is the well-founded model of Π based on input
I ∩Ain.

One can define a PC(ID) theory as consisting of a propositional theory in Linf
A and

a set of programs. The concept of an ID-model extends directly to that more general
setting. However, all salient features of the logic PC(ID) are captured by theories with
a single program (cf. Denecker et al. [15]), which is the reason for the restriction we
adopted.

A program Π in a signature A is total if for every K ∈ IntAin , the well-founded
model of Π based on the input K is total. Total programs are also called definitions.
A PC(ID) theory is total if its program is total. PC(ID) theories that arise naturally in
knowledge representation applications are total. From now on we focus on total PC(ID)

6 The concept of the well-founded model in the finitary propositional setting is due to Van Gelder
et al. [21].



theories and study the connection between the concepts of ID-models and ID-stable
models.

To this end, we extend the class of programs we consider. Namely, we allow pro-
grams to contain constraints, that is, clauses of the form ⊥ ← ϕ, where ϕ ∈ Linf

A .

Definition 10. Let Π be an infinitary program in a signature A and let Π ′ and Π ′′

consist of all non-constraint and constraint clauses inΠ , respectively. An interpretation
I is an input ID-stable model of Π if I is an input ID-stable model of Π ′ and a model
of Π ′′

Remark. Constraints can also be handled directly in the language of programs as we
introduced them earlier. Let Π be a program (without constraints). An atom f such
that every clause in Π with f in the head is of the form f ← ϕ ∧ ¬f is an effective
contradiction for Π . Clauses in Π with heads that are effective contradictions for Π
are called effective constraints in Π . Here, as in the finitary case, effective constraints
work as constraints. Specifically, let Π be a program without constraints (but, possibly,
with effective constraints), and let Π ′ be a program with constraints obtained from Π
by replacing each effective constraint f ← ϕ∧¬f with the constraint⊥ ← ϕ. One can
show that an interpretation I ∈ IntA is an input ID-stable model of Π if and only if I
is an input ID-stable model of Π ′ according to Definition 10. 2

Let F ⊆ Linf
A . Formulas in F can be written as constraints. Namely, we define

F← = {⊥ ← ¬ϕ | ϕ ∈ F}.

It is clear that F and F← have the same models (are equivalent). We have the following
connection between total PC(ID) theories and programs with constraints.

Theorem 9. Let F be a set of formulas from Linf
A and Π a definition in A (without

constraints). An interpretation I ∈ IntA is an ID-model of (F,Π) if and only if I is an
input ID-stable model of Π ∪ F←.

Proof. Let I be an ID-model of (F,Π). Then I is a model of F , and (I, I) is the
well-founded model of Π based on the input I ∩ Ain. By Proposition 9, I is an input
ID-stable model of Π . By Definition 10, I is an input ID-stable model of Π ∪ F←.

Conversely, let I be an input ID-stable model of Π ∪ F←. By Definition 10, I is a
model of F and an input ID-stable model of Π . Let (I0, J0) be the well-founded model
of Π based on input I ∩Ain. By Proposition 8, I0 ⊆ I ⊆ J0. Since Π is total, I0 = J0
and so, (I, I) is the well-founded model of Π based on input I ∩ Ain. Thus, I is an
ID-model of (F,Π). 2

Input stable and input ID-stable models coincide for the class of programs whose
rules have formulas from N as their bodies (Theorem 6). Under the restriction to that
class of programs, Theorem 9 implies the following connection between ID-models of
PC(ID) theories and stable models of infinitary programs.

Theorem 10. Let F ⊆ Linf
A and Π be a definition (without constraints) in A such that

for every clause p ← G ∈ Π , G ∈ N . Then an interpretation I is an ID-model for
(F,Π) if and only if I is a stable model of Πin ∪ F←.



Proof. Let I be an ID-model for (F,Π). By Theorem 9, I is an input ID-stable model
ofΠ∪F←. By the definitions and Theorem 6, I is an input stable model ofΠ∪F← and
so, by Proposition 5, a stable model of (Π ∪F←)in = Πin ∪F← (it is straightforward
to see that Proposition 5 extends to the case of programs with constraints). All these
implications can be reversed and so, the converse implication follows. 2

We now move on to the first-order case. An FO(ID) theory in a first-order signature
σ is a pair (F,Π), where F is a set of sentences in σ and Π is a program in σ. We
define the semantics of FO(ID) theories by lifting the semantics of the infinitary PC(ID)
theories. One can show that this definition is equivalent to the original one [5].

Definition 11. Let (F,Π) be an FO(ID) theory in a signature σ. An interpretation
I = 〈If , Ir〉 of σ is an ID-model of (F,Π) if Ir is an ID-model of the PC(ID) theory
(gr I(F ), gr I(Π)) (in the propositional signature Aσ,I ).

A definition Π is total, if for every interpretation I = 〈If , Ir〉, the well-founded
model of gr I(Π) based on the input Ir ∩Aσin,I is total. In particular, it follows that if
Π is total then gr I(Π) is total.

Theorem 11. Let σ be a first-order signature and let (F,Π) be an FO(ID) theory such
that Π is total. An interpretation I is an ID-model of (F,Π) if and only if I is an input
ID-stable model of Π ∪ F←.

Proof. The following statements are equivalent:

1. I is an ID-model of (F,Π)
2. Ir is an ID-model of (gr I(F ), gr I(Π))
3. Ir is an input ID-model of gr I(Π) ∪ [gr I(F )]

←

4. Ir is an input ID-model of gr I(Π) ∪ gr I(F
←) = gr I(Π ∪ F←)

5. I is an input ID-stable model of Π ∪ F←.

The equivalences (1)≡ (2) and (4)≡ (5) follow from the corresponding definitions. The
equivalence (2)≡ (3) follows from Theorem 9 and the equivalence (3)≡ (4) from the
identity [gr I(ϕ)]

← = gr I(ϕ
←), which is a direct consequence of the definition of the

operators gr I(·) and {·}←. 2

The next result connects ID-models of an FO(ID) theory whose program is a defi-
nition consisting of rules with bodies in N fo and stable models of a certain program.

Theorem 12. Let σ be a first-order signature and let (F,Π) be an FO(ID) theory such
that Π is total and for every ∀X (p(X) ← G) ∈ Π , G ∈ N fo . An interpretation I is
an ID-model of (F,Π) if and only if I is a stable model of Πin ∪ F←.

Proof. The following statements are equivalent:

1. I is an ID-model of (F,Π)
2. I is an input ID-stable model of Π ∪ F←
3. I is an input stable model of Π ∪ F←
4. I is a stable model of Πin ∪ F←.



The equivalence (1)≡ (2) follows by Theorem 11. The equivalence (2)≡ (3) follows
from the fact that Π has the same input stable and input ID-stable models (Theorem 8),
and from the definitions of input stable and input ID-stable models of programs with
constraints. Finally, the equivalence (3)≡ (4) follows from Theorem 7. 2

If F and Π are finite, Theorem 12 can be restated in terms of the operator SM .

Corollary 1. Let σ be a first-order signature and let (F,Π) be an FO(ID) theory such
that Π is total and for every rule ∀X (p(X) ← G) ∈ Π , G ∈ N fo . An interpretation
I is an ID-model of (F,Π) if and only if I is a model of SM [Πin ∪ F←].

A representation of programs in terms of FO(ID) theories is also possible. We will
outline it below. We omit proofs as they are similar to other proofs we constructed in
the paper. Let σ be a first-order signature. By σ∗ we denote the extension of σ with
relation symbol p∗ for every relation symbol p ∈ σ (p∗ must be of the same arity as p).
For a program Π , we define Π∗ to be the program obtained by replacing each negative
occurrence of an atom p(t) in the body of a rule in Π by p∗(t). It is easy to see that Π∗

is total. Next, we define Fσ = {∀X (p(X)↔ p∗(X)) | p is a relational symbol in σ}.
Finally, for an interpretation I ∈ Intσ , we define I∗ to be an interpretation of σ∗

that has the same domain as I , coincides with I on all symbols common to the two
interpretations, and interprets every relation symbol p∗ in the same way as p. One can
prove the following results.

Theorem 13. Let Π be a program in a first-order signature σ. An interpretation I ∈
Intσ is an ID-stable model of Π if and only if the interpretation I∗ is an ID-model of
(Fσ, Π

∗).

Corollary 2. Let Π be a program in a first-order signature σ such that for every rule
∀X (p(X) ← G) ∈ Π , G ∈ N fo . An interpretation I of σ is a stable model of Π if
and only if I∗ is an ID-model of (Fσ, Π∗).

6 Conclusions

We introduced characterizations of several first-order ASP logics in terms of reducts of
infinitary propositional theories. We used these characterizations to relate these logics.
Under some restrictions on program components in total FO(ID) theories, these the-
ories can be encoded as programs so that their ID-models correspond precisely with
answer-sets of the programs resulting from the translation. The restricted class of theo-
ries contains, in particular, theories that arise naturally in practical applications — their
definitions are represented by standard stratified logic programs. A converse encoding
(under similar syntactic restrictions) is possible, too. Thus, for theories arising in the
ASP practice, there is no formal difference between the logic FO(ID) and the full first-
order extension of logic programming with the answer-set semantics proposed in the
literature.
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