
Revisiting Epistemic Specifications

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

Lexington, KY 40506, USA
mirek@cs.uky.edu

In honor of Michael Gelfond on his 65th birthday!

Abstract. In 1991, Michael Gelfond introduced the language of epistemic speci-
fications. The goal was to develop tools for modeling problems that require some
form of meta-reasoning, that is, reasoning over multiple possible worlds. De-
spite their relevance to knowledge representation, epistemic specifications have
received relatively little attention so far. In this paper, we revisit the formalism of
epistemic specification. We offer a new definition of the formalism, propose sev-
eral semantics (one of which, under syntactic restrictions we assume, turns out to
be equivalent to the original semantics by Gelfond), derive some complexity re-
sults and, finally, show the effectiveness of the formalism for modeling problems
requiring meta-reasoning considered recently by Faber and Woltran. All these
results show that epistemic specifications deserve much more attention that has
been afforded to them so far.

1 Introduction

Early 1990s were marked by several major developments in knowledge representation
and nonmonotonic reasoning. One of the most important among them was the intro-
duction of disjunctive logic programs with classical negation by Michael Gelfond and
Vladimir Lifschitz [1]. The language of the formalism allowed for rules

H1 ∨ . . . ∨Hk ← B1, . . . , Bm,not Bm+1, . . . ,not Bn,

where Hi and Bi are classical literals, that is, atoms and classical or strong negations
(¬) of atoms. In the paper, we will write “strong” rather than “classical” negation, as it
reflects more accurately the role and the behavior of the operator. The answer-set se-
mantics for programs consisting of such rules, introduced in the same paper, generalized
the stable-model semantics of normal logic programs proposed a couple of years earlier
also by Gelfond and Lifschitz [2]. The proposed extensions of the language of nor-
mal logic programs were motivated by knowledge representation considerations. With
two negation operators it was straightforward to distinguish between P being false by
default (there is no justification for adopting P), and P being strongly false (there is
evidence for ¬P). The former would be written as not P while the latter as ¬P . And
with the disjunction in the head of rules one could model “indefinite” rules which, when

applied, provide partial information only (one of the alternatives in the head holds, but
no preference to any of them is given).

Soon after disjunctive logic programs with strong negation were introduced, Michael
Gelfond proposed an additional important extension, this time with a modal operator
[3]. He called the resulting formalism the language of epistemic specifications. The
motivation came again from knowledge representation. The goal was to provide means
for the “correct representation of incomplete information in the presence of multiple
extensions” [3].

Surprisingly, despite their evident relevance to the theory of nonmonotonic reason-
ing as well as to the practice of knowledge representation, epistemic specifications have
received relatively little attention so far. This state of affairs may soon change. Re-
cent work by Faber and Woltran on meta-reasoning with answer-set programming [4,
5] shows the need for languages, in which one could express properties holding across
all answer sets of a program, something Michael Gelfond foresaw already two decades
ago.

Our goal in this paper is to revisit the formalism of epistemic specifications and
show that they deserve a second look, in fact, a place in the forefront of knowledge rep-
resentation research. We will establish a general semantic framework for the formalism,
and identify in it the precise location of Gelfond’s epistemic specifications. We will de-
rive several complexity results. We will also show that the original idea of Gelfond to
use a modal operator to model “what is known to a reasoner” has a broader scope of
applicability. In particular, we will show that it can also be used in combination with
the classical logic.

Complexity results presented in this paper provide an additional motivation to study
epistemic specifications. Even though programs with strong negation often look “more
natural” as they more directly align with the natural language description of knowledge
specifications, the extension of the language of normal logic programs with the strong
negation operator does not actually increase the expressive power of the formalism.
This point was made already by Gelfond and Lifschitz, who observed that there is a
simple and concise way to compile the strong negation away. On the other hand, the
extension allowing the disjunction operator in the heads of rules is an essential one.
As the complexity results show [6, 7], the class of problems that can be represented
by means of disjunctive logic programs is strictly larger (assuming no collapse of the
polynomial hierarchy) than the class of problems that can be modeled by normal logic
programs. In the same vein, extension by the modal operator along the lines proposed
by Gelfond is essential, too. It does lead to an additional jump in the complexity.

2 Epistemic Specifications

To motivate epistemic specifications, Gelfond discussed the following example. A cer-
tain college has these rules to determine the eligibility of a student for a scholarship:

1. Students with high GPA are eligible
2. Students from underrepresented groups and with fair GPA are eligible

3. Students with low GPA are not eligible
4. When these rules are insufficient to determine eligibility, the student should be

interviewed by the scholarship committee.

Gelfond argued that there is no simple way to represent these rules as a disjunctive logic
program with strong negation. There is no problem with the first three rules. They are
modeled correctly by the following three logic program rules (in the language with both
the default and strong negation operators):

1. eligible(X)← highGPA(X)
2. eligible(X)← underrep(X), fairGPA(X)
3. ¬eligible(X)← lowGPA(X).

The problem is with the fourth rule, as it has a clear meta-reasoning flavor. It should
apply when the possible worlds (answer sets) determined by the first three rules do
not fully specify the status of eligibility of a student a: neither all of them contain
eligible(a) nor all of them contain ¬eligible(a). An obvious attempt at a formalization:

4. interview(X)← not eligible(X),not ¬eligible(X)

fails. It is just another rule to be added to the program. Thus, when the answer-set
semantics is used, the rule is interpreted with respect to individual answer sets and not
with respect to collections of answer-sets, as required for this application. For a concrete
example, let us assume that all we know about a certain student named Mike is that
Mike’s GPA is fair or high. Clearly, we do not have enough information to determine
Mike’s eligibility and so we must interview Mike. But the program consisting of rules
(1)-(4) and the statement

5. fairGPA(mike) ∨ highGPA(mike)

about Mike’s GPA, has two answer sets:

{highGPA(mike), eligible(mike)}
{fairGPA(mike), interview(mike)}.

Thus, the query ?interview(mike) has the answer “unknown.” To address the prob-
lem, Gelfond proposed to extend the language with a modal operator K and, speaking
informally, interpret premises Kϕ as “ϕ is known to the program” (the original phrase
used by Gelfond was “known to the reasoner”), that is, true in all answer-sets. With this
language extension, the fourth rule can be encoded as

4′. interview(X)← not K eligible(X),not K¬eligible(X)

which, intuitively, stands for “interview if neither the eligibility nor the non-eligibility
is known.”

The way in which Gelfond [3] proposed to formalize this intuition is strikingly
elegant. We will now discuss it. We start with the syntax of epistemic specifications. As

elsewhere in the paper, we restrict attention to the propositional case. We assume a fixed
infinite countable set At of atoms and the corresponding language L of propositional
logic. A literal is an atom, say A, or its strong negation ¬A. A simple modal atom is
an expression Kϕ, where ϕ ∈ L, and a simple modal literal is defined accordingly. An
epistemic premise is an expression (conjunction)

E1, . . . , Es,not Es+1, . . . ,not Et,

where every Ei, 1 ≤ i ≤ t, is a simple modal literal. An epistemic rule is an expression
of the form

L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln, E,

where every Li, 1 ≤ i ≤ k, is a literal, and E is an epistemic premise. Collections of
epistemic rules are epistemic programs. It is clear that (ground versions of) rules (1)-(5)
and (4′) are examples of epistemic rules, with rule (4′) being an example of an epistemic
rule that actually takes advantage of the extended syntax. Rules such as

a ∨ ¬d← b,not ¬c,¬K(d ∨ ¬c)
¬a← ¬c,not ¬K(¬(a ∧ c)→ b)

are also examples of epistemic rules. We note that the language of epistemic programs
is only a fragment of the language of epistemic specifications by Gelfond. However, it is
still expressive enough to cover all examples discussed by Gelfond and, more generally,
a broad range of practical applications, as natural-language formulations of domain
knowledge typically assume a rule-based pattern.

We move on to the semantics, which is in terms of world views. The definition of
a world view consists of several steps. First, let W be a consistent set of literals from
L. We regard W as a three-valued interpretation of L (we will also use the term three-
valued possible world), assigning to each atom one of the three logical values t, f and u.
The interpretation extends by recursion to all formulas in L, according to the following
truth tables

¬
f t
t f
u u

∨ t u f

t t t t
u t u u
f t u f

∧ t u f

t t u f
u u u f
f f f f

→ t u f

t t u f
u t u u
f t t t

Fig. 1. Truth tables for the 3-valued logic of Kleene.

By a three-valued possible-world structure we mean a non-empty family of con-
sistent sets of literals (three-valued possible worlds). Let A be a three-valued possible-
world structure and let W be a consistent set of literals. For every formula ϕ ∈ L, we
define

1. 〈A,W 〉 |= ϕ, if vW (ϕ) = t
2. 〈A,W 〉 |= Kϕ, if for every V ∈ A, vV (ϕ) = t
3. 〈A,W 〉 |= ¬Kϕ, if there is V ∈ A such that vV (ϕ) = f .

Next, for every literal or simple modal literal L, we define

4. 〈A,W 〉 |= not L if 〈A,W 〉 6|= L.

We note that neither 〈A,W 〉 |= Kϕ nor 〈A,W 〉 |= ¬Kϕ depend on W . Thus, we will
often write A |= F , when F is a simple modal literal or its default negation.

In the next step, we introduce the notion of the G-reduct of an epistemic program.

Definition 1. Let P be an epistemic program, A a three-valued possible-world struc-
ture and W a consistent set of literals. The G-reduct of P with respect to 〈A,W 〉, in
symbols P 〈A,W 〉, consists of the heads of all rules r ∈ P such that 〈A,W 〉 |= α, for
every conjunct α occurring in the body of r.

Let H be a set of disjunctions of literals from L. A set W of literals is closed with
respect to H if W is consistent and contains at least one literal in common with every
disjunction in H . We denote by Min(H) the family of all minimal sets of literals that
are closed with respect to H . With the notation Min(H) in hand, we are finally ready
to define the concept of a world view of an epistemic program P .

Definition 2. A three-valued possible-world structure A is a world view of an epis-
temic program P if A = {W |W ∈ Min(P 〈A,W 〉)}.

Remark 1. The G-reduct of an epistemic program consists of disjunctions of literals.
Thus, the concept of a world view is well defined.

Remark 2. We note that Gelfond considered also inconsistent sets of literals as minimal
sets closed under disjunctions. However, the only such set he allowed consisted of all
literals. Consequently, the difference between the Gelfond’s semantics and the one we
described above is that some programs have a world view in the Gelfond’s approach
that consists of a single set of all literals, while in our approach these programs do not
have a world view. But in all other cases, the two semantics behave in the same way.

Let us consider the ground program, say P , corresponding to the scholarship eligi-
bility example (rule (5), and rules (1)-(3) and (4′), grounded with respect to the Her-
brand universe {mike}). The only rule involving simple modal literals is

interview(mike)← not K eligible(mike),not K¬eligible(mike).

Let A be a world view of P . Being a three-valued possible-world structure, A 6= ∅.
No matter what W we consider, no minimal set closed with respect to P 〈A,W 〉 con-
tains lowGPA(mike) and, consequently, no minimal set closed with respect to P 〈A,W 〉

contains ¬eligible(mike). It follows that A 6|= K¬eligible(mike).

Let us assume that A |= K eligible(mike). Then, no reduct P 〈A,W 〉 contains
interview(mike). LetW = {fairGP(mike)}. It follows that P 〈A,W 〉 consists only of
fairGPA(mike) ∨ highGPA(mike). Clearly, W ∈ Min(P 〈A,W 〉) and, consequently,
W ∈ A. Thus, A 6|= K eligible(mike), a contradiction.

It must be then thatA |= not K eligible(mike) andA |= not K¬eligible(mike).
Let W be an arbitrary consistent set of literals. Clearly, the reduct P 〈A,W 〉 contains
interview(mike) and fairGPA(mike)∨ highGPA(mike). If highGPA(mike) ∈W ,
the reduct also contains eligible(mike). Thus, W ∈ Min(P 〈A,W 〉) if and only if

W = {fairGPA(mike), interview(mike)}, or
W = {highGPA(mike), eligible(mike), interview(mike)}.

It follows that if A is a world view for P then it consists of these two possible worlds.
Conversely, it is easy to check that a possible-world structure consisting of these two
possible worlds is a world view for P . Thus, interview(mike) holds in A, and so our
representation of the example as an epistemic program has the desired behavior.

3 Epistemic Specifications — a Broader Perspective

The discussion in the previous section demonstrates the usefulness of formalisms such
as that of epistemic specifications for knowledge representation and reasoning. We will
now present a simpler yet, in many respects, more general framework for epistemic
specifications. The key to our approach is that we consider the semantics given by two-
valued interpretations (sets of atoms), and standard two-valued possible-world struc-
tures (nonempty collections of two-valued interpretations). We also work within a rather
standard version of the language of modal propositional logic and so, in particular, we
allow only for one negation operator. Later in the paper we show that epistemic speci-
fications by Gelfond can be encoded in a rather direct way in our formalism. Thus, the
restrictions we impose are not essential even though, admittedly, not having two kinds
of negation in the language in some cases may make the modeling task harder.

We start by making precise the syntax of the language we will be using. As we stated
earlier, we assume a fixed infinite countable set of atoms At . The language we consider
is determined by the set At , the modal operator K, and by the boolean connectives ⊥
(0-place), and ∧, ∨, and→ (binary). The BNF expression

ϕ ::= ⊥ |A | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |Kϕ,

where A ∈ At , provides a concise definition of a formula. The parentheses are used
only to disambiguate the order of binary connectives. Whenever possible, we omit them.
We define the unary negation connective ¬ and the 0-place connective > as abbrevia-
tions:

¬ϕ ::= ϕ→ ⊥
> ::= ¬⊥.

We call formulas Kϕ, where ϕ ∈ LK , modal atoms (simple modal atoms that we
considered earlier and will consider below are special modal atoms with K-depth equal
to 1). We denote this language by LK and refer to subsets of LK as epistemic theories.
We denote the modal-free fragment of LK by L.

While we will eventually describe the semantics (in fact, several of them) for arbi-
trary epistemic theories, we start with an important special case. Due to close analogies
between the concepts we define below and the corresponding ones defined earlier in the
context of the formalism of Gelfond, we “reuse” the terms used there. Specifically, by
an epistemic premise we mean a conjunction of simple modal literals. Similarly, by an
epistemic rule we understand an expression of the form

E ∧ L1 ∧ . . . ∧ Lm → A1 ∨ . . . ∨An, (1)

where E is an epistemic premise, Li’s are literals (in L) and Ai’s are atoms. Finally, we
call a collection of epistemic rules an epistemic program. It will always be clear from
the context, in which sense these terms are to be understood.

We stress that ¬ is not a primary connective in the language but a derived one (it
is a shorthand for some particular formulas involving the rule symbol). Even though
under some semantics we propose below this negation operator has features of default
negation, under some others it does not. Thus, we selected for it the standard negation
symbol ¬ rather than the “loaded” not .

A (two-valued) possible-world structure is any nonempty familyA of subsets of At
(two-valued interpretations). In the remainder of the paper, when we use terms “inter-
pretation” and “possible-world structure” without any additional modifiers, we always
mean a two-valued interpretation and a two-valued possible-world structure.

Let A be a possible-world structure and ϕ ∈ L. We recall that A |= Kϕ precisely
when W |= ϕ, for every W ∈ A, and A |= ¬Kϕ, otherwise. We will now define the
epistemic reduct of an epistemic program with respect to a possible-world structure.

Definition 3. Let P ⊆ LK be an epistemic program and let A be a possible-world
structure. The epistemic reduct of P with respect to A, PA in symbols, is the theory
obtained from P as follows: eliminate every rule with an epistemic premise E such that
A 6|= E; drop the epistemic premise from every remaining rule.

It is clear that PA ⊆ L, and that it consists of rules of the form

L1 ∧ . . . ∧ Lm → A1 ∨ . . . ∨An, (2)

where Li’s are literals (in L) and Ai’s are atoms.
Let P be a collection of rules (2). Then, P is a propositional theory. Thus, it can

be interpreted by the standard propositional logic semantics. However, P can also be
regarded as a disjunctive logic program (if we write rules from right to left rather than
from left to right). Consequently, P can also be interpreted by the stable-model seman-
tics [2, 1] and the supported-model semantics [8–11]. (For normal logic programs, the
supported-model semantics was introduced by Apt et al. [8]. The notion was extended
to disjunctive logic programs by Baral and Gelfond [9]. We refer to papers by Brass and

Dix [10], Definition 2.4, and Inoue and Sakama [11], Section 5, for more details). We
writeM(P), ST (P) and SP(P) for the sets of models, stable models and supported
models of P , respectively. An important observation is that each of these semantics
gives rise to the corresponding notion of an epistemic extension.

Definition 4. Let P ⊆ LK be an epistemic program. A possible-world structure A is
an epistemic model (respectively, an epistemic stable model, or an epistemic supported
model) of P , if A =M(PA) (respectively, A = ST (PA) or A = SP(PA)).

It is clear that Definition 4 can easily be adjusted also to other semantics of proposi-
tional theories and programs. We briefly mention two such semantics in the last section
of the paper.

We will now show that epistemic programs with the semantics of epistemic sta-
ble models can provide an adequate representation to the scholarship eligibility exam-
ple for Mike. The available information can be represented by the following program
P (mike) ⊆ LK :

1. eligible(mike) ∧ neligible(mike)→ ⊥
2. fairGPA(mike) ∨ highGPA(mike)
3. highGPA(mike)→ eligible(mike)
4. underrep(mike) ∧ fairGPA(mike)→ eligible(mike)
5. lowGPA(mike)→ neligible(mike)
6. ¬K eligible(mike),¬K neligible(mike)→ interview(mike).

We use the predicate neligible to model the strong negation of the predicate eligible
that appears in the representation in terms of epistemic programs by Gelfond (thus, in
particular, the presence of the first clause, which precludes the facts eligible(mike) and
neligible(mike) to be true together). This extension of the language and an extra rule
in the representation is the price we pay for eliminating one negation operator.

Let A consist of the interpretations

W1 = {fairGPA(mike), interview(mike)}
W2 = {highGPA(mike), eligible(mike), interview(mike)}.

Then the reduct [P (mike)]
A consists of rules (1)-(5), which are unaffected by the

reduct operation, and of the fact interview(mike), resulting from rule (6) when the
reduct operation is performed (as in logic programming, when a rule has the empty
antecedent, we drop the implication symbol from the notation). One can check that
A = {W1,W2} = ST ([P (mike)]A). Thus, A is an epistemic stable model of P (in
fact, the only one). Clearly, interview(mike) holds in the model (as we would expect
it to), as it holds in each of its possible-worlds. We note that in this particular case, the
semantics of epistemic supported models yields exactly the same solution.

4 Complexity

We will now study the complexity of reasoning with epistemic (stable, supported) mod-
els. We provide details for the case of epistemic stable models, and only present the

results for the other two semantics, as the techniques to prove them are very similar to
those we develop for the case of epistemic stable models.

First, we note that epistemic stable models of an epistemic program P can be rep-
resented by partitions of the set of all modal atoms of P . This is important as a priori
the size of possible-world structures one needs to consider as candidates for epistemic
stable models may be exponential in the size of a program. Thus, to obtain good com-
plexity bounds alternative polynomial-size representations of epistemic stable models
are needed.

Let P ⊆ LK be an epistemic program and (Φ, Ψ) be the set of modal atoms of P
(all these modal atoms are, in fact, simple). We write P|Φ,Ψ for the program obtained
from P by eliminating every rule whose epistemic premise contains a conjunct Kψ,
where Kψ ∈ Ψ , or a conjunct ¬Kϕ, where Kϕ ∈ Φ (these rules are “‘blocked” by
(Φ, Ψ)), and by eliminating the epistemic premise from every other rule of P .

Proposition 1. Let P ⊆ LK be an epistemic program. If a possible-world structure A
is an epistemic stable model of P , then there is a partition (Φ, Ψ) of the set of modal
atoms of P such that

1. ST (P|Φ,Ψ) 6= ∅
2. For every Kϕ ∈ Φ, ϕ holds in every stable model of P|Φ,Ψ
3. For every Kψ ∈ Ψ , ψ does not hold in at least one stable model of P|Φ,Ψ .

Conversely, if there are such partitions, P has epistemic stable models.

It follows that epistemic stable models can be represented by partitions (Φ, Ψ) sat-
isfying conditions (1)-(3) from the proposition above.

We observe that deciding whether a partition (Φ, Ψ) satisfies conditions (1)-(3) from
Proposition 1, can be accomplished by polynomially many calls to an ΣP

2 -oracle and,
if we restrict attention to non-disjunctive epistemic programs, by polynomially many
calls to an NP -oracle.

Remark 3. If we adjust Proposition 1 by replacing the term “stable” with the term “sup-
ported,” and replacing ST () with SP(), we obtain a characterization of epistemic sup-
ported models. Similarly, omitting the term “stable,” and replacing ST () with M()
yields a characterization of epistemic models. In each case, one can decide whether a
partition (Φ, Ψ) satisfies conditions (1)-(3) by polynomially many calls to an NP -oracle
(this claim is evident for the case of epistemic models; for the case of epistemic sup-
ported models, it follows from the fact that supported models semantics does not get
harder when we allow disjunctions in the heads or rules).

Theorem 1. The problem to decide whether a non-disjunctive epistemic program has
an epistemic stable model is ΣP

2 -complete.

Proof: Our comments above imply that the problem is in the class ΣP
2 . Let F =

∃Y ∀ZΘ, where Θ is a DNF formula. The problem to decide whether F is true is ΣP
2 -

complete. We will reduce it to the problem in question and, consequently, demonstrate

itsΣP
2 -hardness. To this end, we construct an epistemic programQ ⊆ LK by including

into Q the following clauses (atoms w, y′, y ∈ Y , and z′, z ∈ Z are fresh):

1. Ky → y ; and Ky′ → y′, for every y ∈ Y
2. y ∧ y′ → ; and ¬y ∧ ¬y′ → , for every y ∈ Y
3. ¬z′ → z ; and ¬z → z′, for z ∈ Z
4. σ(u1)∧ . . .∧σ(uk)→ w , where u1 ∧ . . .∧uk is a disjunct of Θ, and σ(¬a) = a′

and σ(a) = a, for every a ∈ Y ∪ Z
5. ¬Kw → .

Let us assume that A is an epistemic stable model of Q. In particular, A 6= ∅. It
must be that A |= Kw (otherwise, QA has no stable models, that is, A = ∅). Let us
define A = {y ∈ Y | A |= Ky}, and B = {y ∈ Y | A |= Ky′}. It follows that QA

consists of the following rules:

1. y, for y ∈ A, and y′, for y ∈ B
2. y ∧ y′ → ; and ¬y ∧ ¬y′ → , for every y ∈ Y
3. ¬z′ → z ; and ¬z → z′, for z ∈ Z
4. σ(u1)∧ . . .∧σ(uk)→ w , where u1 ∧ . . .∧uk is a disjunct of Θ, and σ(¬a) = a′

and σ(a) = a, for every a ∈ Y ∪ Z.

Since A = ST (QA) and A 6= ∅, B = Y \ A (due to clauses of type (2)). It is clear
that the program QA has stable models and that they are of the form A ∪ {y′ | y ∈
Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D}, if that set does not imply w through a rule of type
(4), or A ∪ {y′ | y ∈ Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D} ∪ {w}, otherwise, where D is
any subset of Z. As A |= Kw, there are no stable models of the first type. Thus, the
family of stable models of QA consists of all sets A∪ {y′ | y ∈ Y \A} ∪D ∪ {z′ | z ∈
Z \D}∪{w}, where D is an arbitrary subset of Z. It follows that for everyD ⊆ Z, the
set A ∪ {y′ | y ∈ Y \A} ∪D ∪ {z′ | z ∈ Z \D} satisfies the body of at least one rule
of type (4). By the construction, for every D ⊆ Z, the valuation of Y ∪ Z determined
by A and D satisfies the corresponding disjunct in Θ and so, also Θ. In other words,
∃Y ∀ZΘ is true.

Conversely, let ∃Y ∀ZΘ be true. Let A be a subset of Y such that Θ|Y/A holds for
every truth assignment of Z (by Θ|Y/A, we mean the formula obtained by simplifying
the formulaQwith respect to the truth assignment of Y determined byA). LetA consist
of all sets of the form A ∪ {y′ | y ∈ Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D} ∪ {w}, where
D ⊆ Z. It follows that QA consists of clauses (1)-(4) above, with B = Y \ A. Since
∀ZΘ|A/Y holds, it follows that A is precisely the set of stable models of QA. Thus, A
is an epistemic stable model of Q. 2

In the general case, the complexity goes one level up.

Theorem 2. The problem to decide whether an epistemic program P ⊆ LK has an
epistemic stable model is ΣP

3 -complete.

Proof: The membership follows from the earlier remarks. To prove the hardness part,
we consider a QBF formula F = ∃X∀Y ∃ZΘ, where Θ is a 3-CNF formula. For each

atom x ∈ X (y ∈ Y and z ∈ Z, respectively), we introduce a fresh atom x′ (y′ and z′,
respectively). Finally, we introduce three additional fresh atoms, w, f and g.

We now construct a disjunctive epistemic program Q by including into it the fol-
lowing clauses:

1. Kx→ x; and Kx′ → x′, for every x ∈ X
2. x ∧ x′ →; and ¬x ∧ ¬x′ →, for every x ∈ X
3. ¬g → f ; and ¬f → g
4. f → y ∨ y′; and f → z ∨ z′, for every y ∈ Y and z ∈ Z
5. f ∧ w → z; and f ∧ w → z′, for every z ∈ Z
6. f ∧ σ(u1) ∧ σ(u2) ∧ σ(u3)→ w, for every clause C = u1 ∨ u2 ∨ u3 of Θ, where
σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z

7. f ∧ ¬w → w
8. ¬K¬w →

Let us assume that ∃X∀Y ∃ZΘ is true. Let A ⊆ X describe the truth assignment on
X so that ∀Y ∃ZΦX/A holds (we define ΦX/A in the proof of the previous result). We
will show that Q has an epistemic stable model A = {A ∪ {a′ | a ∈ X \ A} ∪ {g}}.
Clearly, Kx, x ∈ A, and Kx′, x ∈ X \ A, are true in A. Also, K¬w is true in A. All
other modal atoms in Q are false in A. Thus, QA consists of rules x, for x ∈ A, x′, for
x ∈ X \ A and of rules (2)-(7) above. Let M be a stable model of QA containing f .
It follows that w ∈ M and so, Z ∪ Z ′ ⊆ M . Moreover, the Gelfond-Lifschitz reduct
of QA with respect to M consists of rules x, for x ∈ A, x′, for x ∈ X \ A, all ¬-free
constraints of type (2), rule f , and rules (4)-(6) above, and M is a minimal model of
this program.

Let B = Y ∩M . By the minimality of M , M = A ∪ {x′ | x ∈ X \ A} ∪ B ∪
{y′ | y ∈ Y \ B} ∪ Z ∪ Z ′ ∪ {f, w}. Since ∀Y ∃ZΦX/A holds, ∃ZΦX/A,Y/B holds,
too. Thus, let D ⊆ Z be a subset of Z such that ΦX/A,Y/B,Z/D is true. It follows that
M ′ = A ∪ {x′ | x ∈ X \ A} ∪ B ∪ {y′ | y ∈ Y \ B} ∪D ∪ {z′ | z ∈ Z \D} ∪ {f}
is also a model of the Gelfond-Lifschitz reduct of QA with respect to M , contradicting
the minimality of M .

Thus, if M is an answer set of QA, it must contain g. Consequently, it does not
contain f and so no rules of type (4)-(7) contribute to it. It follows that M = A ∪
{a′ | a ∈ X \A} ∪ {g} and, as it indeed is an answer set of QA, A = ST (QA). Thus,
A is a epistemic stable model, as claimed.

Conversely, let as assume that Q has an epistemic stable model, say, A. It must be
thatA |= K¬w (otherwise, QA contains a contradiction and has no stable models). Let
us define A = {x ∈ X | A |= Kx} and B = {x ∈ X | A |= Kx′}. It follows that QA

consists of the clauses:

1. x, for x ∈ A and x′, for x ∈ B
2. x ∧ x′ →; and ¬x ∧ ¬x′ →, for every x ∈ X
3. ¬g → f ; and ¬f → g
4. f → y ∨ y′; and f → z ∨ z′, for every y ∈ Y and z ∈ Z
5. f ∧ w → z; and f ∧ w → z′, for every z ∈ Z

6. f ∧ σ(u1) ∧ σ(u2) ∧ σ(u3)→ w, for every clause C = u1 ∨ u2 ∨ u3 of Φ, where
σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z.

7. f,¬w → w

We have that A is precisely the set of stable models of this program. Since A 6= ∅,
B = X \ A. If M is a stable model of QA and contains f , then it contains w. But
then, as M ∈ A, A 6|= K¬w, a contradiction. It follows that there is no stable model
containing f . That is, the program consisting of the following rules has no stable model:

1. x, for x ∈ A and x′, for x ∈ X \A
2. y ∨ y′; and z ∨ z′, for every y ∈ Y and z ∈ Z
3. w → z; and w → z′, for every z ∈ Z
4. σ(u1) ∧ σ(u2) ∧ σ(u3) → w, for every clause C = u1 ∨ u2 ∨ u3 of Θ, where
σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z.

5. ¬w → w

But then, the formula ∀Y ∃ZΘ|X/A is true and, consequently, the formula ∃X∀Y ∃ZΘ
is true, too. 2

For the other two epistemic semantics, Remark 1 implies that the problem of the
existence of an epistemic model (epistemic supported model) is in the class ΣP

2 . The
ΣP

2 -hardness of the problem can be proved by similar techniques as those we used for
the case of epistemic stable models. Thus, we have the following result.

Theorem 3. The problem to decide whether an epistemic program P ⊆ LK has an
epistemic model (epistemic supported model, respectively) is ΣP

2 -complete.

5 Modeling with Epistemic Programs

We will now present several problems which illustrate the advantages offered by the lan-
guage of epistemic programs we developed in the previous two sections. Whenever we
use predicate programs, we understand that their semantics is that of the corresponding
ground programs.

First, we consider two graph problems related to the existence of Hamiltonian cy-
cles. Let G be a directed graph. An edge in G is critical if it belongs to every hamilto-
nian cycle in G. The following problems are of interest:

1. Given a directed graph G, find the set of all critical edges of G
2. Given a directed graph G, and integers p and k, find a set R of no more than p new

edges such that G ∪R has no more than k critical edges.

Let HC(vtx, edge) be any standard ASP encoding of the Hamiltonian cycle prob-
lem, in which predicates vtx and edge represent G, and a predicate hc represents edges
of a candidate hamiltonian cycle. We assume the rules of HC(vtx, edge) are written
from left to right so that they can be regarded as elements of L. Then, simply adding to
HC(vtx, edge) the rule:

Khc(X,Y)→ critical(X,Y)

yields a correct representation of the first problem. We writeHCcr(vtx, edge) to denote
this program. Also, for a directed graph G = (V,E), we define

D = {vtx(v) | v ∈ V } ∪ {edge(v, w) | (v, w) ∈ E}.

We have the following result.

Theorem 4. Let G = (V,E) be a directed graph. If HCcr(vtx, edge) ∪ D has no
epistemic stable models, then every edge in G is critical (trivially). Otherwise, the epis-
temic program HCcr(vtx, edge) ∪ D has a unique epistemic stable model A and the
set {(v, w) | A |= critical(u, v)} is the set of critical edges in G.

Proof (Sketch): LetH be the grounding ofHCcr(vtx, edge)∪D. IfH has no epistemic
stable models, it follows that the “non-epistemic” part H ′ of H has no stable models
(as no atom of the form critical(x, y) appears in it). As H ′ encodes the existence of
a hamiltonian cycle in G, it follows that G has no Hamiltonian cycles. Thus, trivially,
every edge of G belongs to every Hamiltonian cycle of G and so, every edge of G is
critical.

Thus, let us assume that A is an epistemic stable model of H . Also, let S be the
set of all stable models of H ′ (they correspond to Hamiltonian cycles of G; each model
contains, in particular, atoms of the form hc(x, y), where (x, y) ranges over the edges
of the corresponding Hamiltonian cycle). The reductHA consists ofH ′ (non-epistemic
part of H is unaffected by the reduct operation) and of C ′, a set of some facts of the
form critical(x, y). Thus, the stable models of the reduct are of the formM∪C ′, where
M ∈ S. That is, A = {M ∪ C ′ | M ∈ S}. Let us denote by C the set of the atoms
critical(x, y), where (x, y) belongs to every hamiltonian cycle of G (is critical). One
can compute now that HA = H ′ ∪ C. Since A = ST (HA), A = {M ∪ C |M ∈ S}.
Thus, HCcr(vtx, edge) ∪ D has a unique epistemic stable model, as claimed. It also
follows that the set {(v, w) | A |= critical(u, v)} is the set of critical edges in G. 2

To represent the second problem, we proceed as follows. First, we “select” new
edges to be added to the graph and impose constraints that guarantee that all new edges
are indeed new, and that no more than p new edges are selected (we use here lparse
syntax for brevity; the constraint can be encoded strictly in the language LK).

vtx(X) ∧ vtx(Y)→ newEdge(X,Y)
newEdge(X,Y) ∧ edge(X,Y)→ ⊥
(p+ 1){newEdge(X,Y) : vtx(X), vtx(Y)} → ⊥.

Next, we define the set of edges of the extended graph, using a predicate edgeEG:

edge(X,Y)→ edgeEG(X,Y)
newEdge(X,Y)→ edgeEG(X,Y)

Finally, we define critical edges and impose a constraint on their number (again, ex-
ploiting the lparse syntax for brevity sake):

edgeEG(X,Y) ∧Khc(X,Y)→ critical(X,Y)
(k + 1){critical(X,Y) : edgeEG(X,Y)} → ⊥.

We define Q to consist of all these rules together with all the rules of the program
HC(vtx, edgeEG). We now have the following theorem. The proof is similar to that
above and so we omit it.

Theorem 5. Let G be a directed graph. There is an extension of G with no more than
p new edges so that the resulting graph has no more than k critical edges if and only if
the program Q ∪D has an epistemic stable model.

For another example we consider the unique model problem: given a CNF formula
F , the goal is to decide whether F has a unique minimal model. The unique model
problem was also considered by Faber and Woltran [4, 5]. We will show two encodings
of the problem by means of epistemic programs. The first one uses the semantics of
epistemic models and is especially direct. The other one uses the semantics of epistemic
stable models.

Let F be a propositional theory consisting of constraints L1∧ . . .∧Lk → ⊥, where
Li’s are literals. Any propositional theory can be rewritten into an equivalent theory of
such form. We denote by FK the formula obtained from F by replacing every atom x
with the modal atom Kx.

Theorem 6. For every theory F ⊆ L consisting of constraints, F has a least model if
and only if the epistemic program F ∪ FK has an epistemic model.

Proof: Let us assume that F has a least model. We define A to consist of all models
of F , and we denote the least model of F by M . We will show that A is an epistemic
model of F ∪ FK . Clearly, for every x ∈ M , A |= Kx. Similarly, for every x 6∈ M ,
A |= ¬Kx. Thus, [FK]

A
= ∅. Consequently, [F ∪ FK]

A
= F and so, A is precisely

the set of all models of [F ∪ FK]
A. Thus, A is an epistemic model.

Conversely, let A be an epistemic model of F ∪ FK . It follows that [FK]
A

= ∅
(otherwise, [F ∪ FK]

A contains ⊥ and A would have to be empty, contradicting the
definition of an epistemic model). Thus, [F ∪ FK]

A
= F and consequently, A is the

set of all models of F . Let M = {x ∈ At | A |= Kx} and let

a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn → ⊥ (3)

be a rule in F . Then,

Ka1 ∧ . . . ∧Kam ∧ ¬Kb1 ∧ . . . ∧ ¬Kbn → ⊥

is a rule in FK . As [FK]
A
= ∅,

A 6|= Ka1 ∧ . . . ∧Kam ∧ ¬Kb1 ∧ . . . ∧ ¬Kbn.

Thus, for some i, 1 ≤ i ≤ m, A 6|= Kai, or for some j, 1 ≤ j ≤ n, A |= Kbj . In
the first case, ai /∈ M , in the latter, bj ∈ M . In either case, M is a model of rule (3).

It follows that M is a model of F . Let M ′ be a model of F . Then M ′ ∈ A and, by the
definition of M , M ⊆M ′. Thus, M is a least model of F . 2

Next, we will encode the same problem as an epistemic program under the epistemic
stable model semantics. The idea is quite similar. We only need to add rules to generate
all candidate models.

Theorem 7. For every theory F ⊆ L consisting of constraints, F has a least model if
and only if the epistemic program

F ∪ FK ∪ {¬x→ x′ | x ∈ At} ∪ {¬x′ → x | x ∈ At}

has an epistemic stable model.

We note that an even simpler encoding can be obtained if we use lparse choice
rules. In this case, we can replace {¬x → x′ | x ∈ At} ∪ {¬x′ → x | x ∈ At} with
{{x} | x ∈ At}.

6 Connection to Gelfond’s Epistemic Programs

We will now return to the original formalism of epistemic specifications proposed by
Gelfond [3] (under the restriction to epistemic programs we discussed here). We will
show that it can be expressed in a rather direct way in terms of our epistemic programs
in the two-valued setting and under the epistemic supported-model semantics.

The reduction we are about to describe is similar to the well-known one used to
eliminate the “strong” negation from disjunctive logic programs with strong negation.
In particular, it requires an extension to the language L. Specifically, for every atom
x ∈ At we introduce a fresh atom x′ and we denote the extended language by L′. The
intended role of x′ is to represent in L′ the literal ¬x from L. Building on this idea, we
assign to each set W of literals in L the set

W ′ = (W ∩At) ∪ {x′ | ¬x ∈W}.

In this way, sets of literals from L (in particular, three-valued interpretations of L) are
represented as sets of atoms from L′ (two-valued interpretations of L′).

We now note that the truth and falsity of a formula form L under a three-valued
interpretation can be expressed as the truth and falsity of certain formulas from L′ in
the two-valued setting. The following result is well known.

Proposition 2. For every formula ϕ ∈ L there are formulas ϕ−, ϕ+ ∈ L′ such that for
every set of literals W (in L)

1. vW (ϕ) = t if and only if uW ′(ϕ+) = t
2. vW (ϕ) = f if and only if uW ′(ϕ−) = f

Moreover, the formulas ϕ− and ϕ+ can be constructed in polynomial time with respect
to the size of ϕ.

Proof: This a folklore result. We provide a sketch of a proof for the completeness sake.
We define ϕ+ and ϕ− by recursively as follows:

1. x+ = x and x− = ¬x′, if x ∈ At
2. (¬ϕ)+ = ¬ϕ− and (¬ϕ)− = ¬ϕ+

3. (ϕ ∨ ψ)+ = ϕ+ ∨ ψ+ and (ϕ ∨ ψ)− = ϕ− ∨ ψ−; the case of the conjunction is
dealt with analogously

4. (ϕ→ ψ)+ = ϕ− → ψ+ and (ϕ→ ψ)− = ϕ+ → ψ−.

One can check that formulas ϕ+ and ϕ− defined in this way satisfy the assertion. 2

We will now define the transformation σ that allows us to eliminate strong negation.
First, for a literal L ∈ L, we now define

σ(L) =

{
x if L = x
x′ if L = ¬x

Furthermore, if E is a simple modal literal or its default negation, we define

σ(E) =


Kϕ+ if E = Kϕ
¬Kϕ− if E = ¬Kϕ
¬Kϕ+ if E = not Kϕ
Kϕ− if E = not ¬Kϕ

and for an epistemic premise E = E1, . . . , Et (where each Ei is a simple modal literal
or its default negation) we set

σ(E) = σ(E1) ∧ . . . ∧ σ(Et).

Next, if r is an epistemic rule

L1 ∨ . . . ∨ Lk ← F1, . . . , Fm,not Fm+1, . . . ,not Fn, E

we define

σ(r) = σ(E)∧σ(F1)∧. . .∧σ(Fm)∧¬σ(Fm+1)∧. . .∧¬σ(Fn)→ σ(L1)∨. . .∨σ(Lk).

Finally, for an epistemic program P , we set

σ(P) = {σ(r) | r ∈ P}) ∪ {x ∧ x′ → ⊥}.

We note that σ(P) is indeed an epistemic program in the language LK (according to
our definition of epistemic programs). The role of the rules x∧x′ → ⊥ is to ensure that
sets forming epistemic (stable, supported) models of σ(P) correspond to consistent sets
of literals (the only type of set of literals allowed in world views).

Given a three-valued possible structure A, we define A′ = {W ′ | W ∈ A}, and
we regard A′ as a two-valued possible-world structure. We now have the following
theorem.

Theorem 8. Let P be an epistemic program according to Gelfond. Then a three-valued
possible-world structure A is a world view of P if and only if a two-valued possible-
world structure A′ is an epistemic supported model of σ(P).

Proof (Sketch): Let P be an epistemic program according to Gelfond, A a possible-
world structure and W a set of literals. We first observe that the G-reduct P 〈A,W 〉 can
be described as the result of a certain two-step process. Namely, we define the epistemic
reduct of P with respect to A to be the disjunctive logic program PA obtained from P
by removing every rule whose epistemic premise E satisfies A 6|= E, and by removing
the epistemic premise from every other rule in P . This construction is the three-valued
counterpart to the one we employ in our approach. It is clear that the epistemic reduct
of P with respect to A, with some abuse of notation we will denote it by PA, is a
disjunctive logic program with strong negation.

Let Q be a disjunctive program with strong negation and W a set of literals. By
the supp-reduct of Q with respect to W , Rsp(Q,W), we mean the set of the heads of
all rules whose bodies are satisfied by W (which in the three-valued setting means that
every literal in the body not in the scope of not is in W , and every literal in the body
in the scope of not is not in W). A consistent set W of literals is a supported answer
set of Q if W ∈ Min(Rsp(Q,W)) (this is a natural extension of the definition of a
supported model [8, 9] to the case of disjunctive logic programs with strong negation;
again, we do not regard inconsistent sets of literals as supported answer sets).

Clearly, P 〈A,W 〉 = Rsp(PA,W). Thus, A is a world view of P according to the
definition by Gelfond if and only if A is a collection of all supported answer sets of
PA.

We also note that by Proposition 2, if E is an epistemic premise, thenA |= E if and
only if A′ |= σ(E). It follows that σ(PA) = σ(P)

A′
. In other words, constructing the

epistemic reduct of P with respect to A and then translating the resulting disjunctive
logic program with strong negation into the corresponding disjunctive logic program
without strong negation yields the same result as first translating the epistemic program
(in the Gelfond’s system) into our language of epistemic programs and then computing
the reduct with respect to A′. We note that there is a one-to-one correspondence be-
tween supported answer sets of PA and supported models of σ(PA) (σ, when restricted
to programs consisting of rules without epistemic premises, is the standard transforma-
tion eliminating strong negation and preserving the stable and supported semantics).
Consequently, there is a one-to-one correspondence between supported answer sets of
PA and supported models of σ(P)A

′
(cf. our observation above). Thus, A consists of

supported answer sets of PA if and only ifA′ consists of supported models of σ(P)A
′
.

Consequently,A is a world view of P if and only ifA′ is an epistemic supported model
of σ(P). 2

7 Epistemic Models of Arbitrary Theories

So far, we defined the notions of epistemic models, epistemic stable models and epis-
temic supported models only for the case of epistemic programs. However, this restric-

tion is not essential. We recall that the definition of these three epistemic semantics
consists of two steps. The first step produces the reduct of an epistemic program P
with respect to a possible-world structure, say A. This reduct happens to be (modulo a
trivial syntactic transformation) a standard disjunctive logic program in the language L
(no modal atoms anymore). If the set of models (respectively, stable models, supported
models) of the reduct program coincides withA,A is an epistemic model (respectively,
epistemic stable or supported model) of P . However, the concepts of a model, stable
model and supported model are defined for arbitrary theories in L. This is obviously
well known for the semantics of models. The stable-model semantics was extended to
the full language L by Ferraris [12] and the supported-model semantics by Truszczyn-
ski [13]. Thus, there is no reason precluding the extension of the definition of the cor-
responding epistemic types of models to the general case. We start be generalizing the
concept of the reduct.

Definition 5. Let T be an arbitrary theory in LK and let A be a possible-world struc-
ture. The epistemic reduct of T with respect toA, TA in symbols, is the theory obtained
from T by replacing each maximal modal atom Kϕ with >, if A |= Kϕ, and with ⊥,
otherwise.

We note that if T is an epistemic program, this notion of the reduct does not coincide
with the one we discussed before. Indeed, now no rule is dropped and no modal literals
are dropped; rather modal atoms are replaced with> and⊥. However, the replacements
are executed in such a way as to ensure the same behavior. Specifically, one can show
that models, stable models and supported models of the two reducts coincide.

Next, we generalize the concepts of the three types of epistemic models.

Definition 6. Let T be an arbitrary theory in LK . A possible-world structure A is an
epistemic model (respectively, an epistemic stable model, or an epistemic supported
model) of P , ifA is the set of models (respectively, stable models or supported models)
ofM(PA).

From the comments we made above, it follows that if T is an epistemic program,
this more general definition yields the came notions of epistemic models of the three
types as the earlier one.

We note that even in the more general setting the complexity of reasoning with
epistemic (stable, supported) models remains unchanged. Specifically, we have the fol-
lowing result.

Theorem 9. The problem to decide whether an epistemic theory T ⊆ LK has an epis-
temic stable model isΣP

3 -complete. The problem to decide whether an epistemic theory
T ⊆ LK has an epistemic model (epistemic supported model, respectively) is ΣP

2 -
complete.

Proof(Sketch): The hardness part follows from our earlier results concerning epistemic
programs. To prove membership, we modify Proposition 1, and show a polynomial time
algorithm with a ΣP

2 oracle (NP oracle for the last two problems) that decides, given a
propositional theory S and a modal formula Kϕ (with ϕ ∈ LK and not necessarily in
L) whether ST (S) |= Kϕ (respectively,M(S) |= Kϕ, or SP(S) |= Kϕ). 2

8 Discussion

In this paper, we proposed a two-valued formalism of epistemic theories — subsets
of the language of modal propositional logic. We proposed a uniform way, in which
semantics of propositional theories (the classical one as well as nonmonotonic ones:
stable and supported) can be extended to the case of epistemic theories. We showed that
the semantics of epistemic supported models is closely related to the original seman-
tics of epistemic specifications proposed by Gelfond. Specifically we showed that the
original formalism of Gelfond can be expressed in a straightforward way by means of
epistemic programs in our sense under the semantics of epistemic supported models.
Essentially all that is needed is to use fresh symbols x′ to represent strong negation ¬x,
and use the negation operator of our formalism, ϕ → ⊥ or, in the shorthand, ¬ϕ, to
model the default negation not ϕ.

We considered in more detail the three semantics mentioned above. However, other
semantics may also yield interesting epistemic counterparts. In particular, it is clear that
Definition 6 can be used also with the minimal model semantics or with the Faber-
Leone-Pfeifer semantics [14]. Each semantics gives rise to an interesting epistemic for-
malism that warrants further studies.

In logic programming, eliminating strong negation does not result in any loss of the
expressive power but, at least for the semantics of stable models, disjunctions cannot
be compiled away in any concise way (unless the polynomial hierarchy collapses). In
the setting of epistemic programs, the situation is similar. The strong negation can be
compiled away. But the availability of disjunctions in the heads and the availability of
epistemic premises in the bodies of rules are essential. Each of these factors separately
brings the complexity one level up. Moreover, when used together under the semantics
of epistemic stable models they bring the complexity two levels up. This points to the
intrinsic importance of having in a knowledge representation language means to repre-
sent indefiniteness in terms of disjunctions, and what is known to a program (theory)
— in terms of a modal operator K.

Acknowledgments
This work was partially supported by the NSF grant IIS-0913459.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

2. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of
the 5th International Conference on Logic Programming (ICLP 1988), MIT Press (1988)
1070–1080

3. Gelfond, M.: Strong introspection. In: Proceedings of AAAI 1991. (1991) 386–391
4. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In Erdem, E., Lin,

F., Schaub, T., eds.: Logic Programming and Nonmonotonic Reasoning, 10th International
Conference, LPNMR 2009. Volume 5753 of Lecture Notes in Computer Science., Springer
(2009) 115–128

5. Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In this volume,
Springer (2011)

6. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38 (1991) 588–619
7. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: proposi-

tional case. Annals of Mathematics and Artificial Intelligence 15 (1995) 289–323
8. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In Minker, J.,

ed.: Foundations of deductive databases and logic programming, Morgan Kaufmann (1988)
89–142

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic
Programming 19/20 (1994) 73–148

10. Brass, S., Dix, J.: Characterizations of the Disjunctive Stable Semantics by Partial Evalua-
tion. Journal of Logic Programming 32(3) (1997) 207–228

11. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35
(1998) 39–78

12. Ferraris, P.: Answer sets for propositional theories. In: Logic Programming and Non-
monotonic Reasoning, 8th International Conference, LPNMR 2005. Volume 3662 of LNAI.,
Springer (2005) 119–131

13. Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and general-
izations of semantics of logic programs. Artificial Intelligence (2010) In press, available
through Science Direct at http://dx.doi.org/10.1016/j.artint.2010.08.004.

14. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: se-
mantics and complexity. In: Proceedings of the 9th European Conference on Artificial Intel-
ligence (JELIA 2004). Volume 3229 of LNAI., Springer (2004) 200 – 212

