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Abstract

Recent research in nonmonotonic logic programming has fo-
cused on program equivalence relevant for program optimiza-
tion and modular programming. So far, most results con-
cern the stable-model semantics. However, other semantics
for logic programs are also of interest, especially the seman-
tics of supported models which, when properly generalized,
is closely related to the autoepistemic logic of Moore. In
this paper, we consider a framework of equivalence notions
for logic programs under the supported (minimal) model-
semantics and provide characterizations for this framework in
model-theoretic terms. We use these characterizations to de-
rive complexity results concerning testing hyperequivalence
of logic programs wrt supported (minimal) models.

Introduction
The problem of the equivalence of logic programs wrt the
stable-model semantics has received substantial attention
in the answer-set programming research community in the
past several years (Lifschitz, Pearce, & Valverde 2001;
Lin 2002; Turner 2003; Inoue & Sakama 2004; Eiter, Tom-
pits, & Woltran 2005; Eiter, Fink, & Woltran 2007; Oikari-
nen & Janhunen 2006; Oetsch, Tompits, & Woltran 2007;
Woltran 2008). The problem can be stated as follows. Given
a classC of logic programs (we will refer to them ascon-
texts), we say that programsP andQ areequivalent rela-
tive to C if for every programR ∈ C, P ∪ R andQ ∪ R
have the samestable models. Clearly, for every classC, the
equivalence relative toC implies the standard nonmonotonic
equivalence of programs, where two programsP andQ are
nonmonotonically equivalentif they have the same stable
models. Therefore, we will refer to these stronger versions
of equivalence collectively ashyperequivalence.

Understanding hyperequivalence is fundamental for the
development of modular answer-set programs and knowl-
edge bases. The problem is non-trivial due to the nonmono-
tonic nature of the stable-model semantics. IfS is a module
within a larger programT , replacingS with S′ results in
the programT ′ = (T \ S) ∪ S′, which must have the same
meaning (the same stable models) asT . The nonmonotonic
equivalence ofS andS′ does not guarantee it. The hyper-
equivalence relative to the class of all programs does. How-
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ever, the latter may be a too restrictive approach in certain
application scenarios, in particular if properties of possible
realizations forT are known in advance.

Thus, several interesting notions of hyperequivalence, im-
posing restrictions on the context classC, have been stud-
ied. If C is unrestricted, that is, any program is a possible
context, we obtainstrongequivalence (Lifschitz, Pearce, &
Valverde 2001). IfC is the collection of all sets of facts, we
obtainuniform equivalence (Eiter, Fink, & Woltran 2007).
Another direction is to restrict the alphabet over which con-
texts are given. The resulting notions of hyperequivalence
are calledrelativized(wrt the context alphabet), and can be
combined with strong and uniform equivalence (Eiter, Fink,
& Woltran 2007). Even more generally, we can specify dif-
ferent alphabets for bodies and heads of rules in contexts.
This gives rise to a common view on strong and uniform
equivalence (Woltran 2008). A yet different approach to
hyperequivalence is to compare only some dedicated pro-
jected output atoms rather than entire stable models (Eiter,
Tompits, & Woltran 2005; Oikarinen & Janhunen 2006;
Oetsch, Tompits, & Woltran 2007).

All those results concern the stable-model semantics1. In
this paper, we address the problem of the hyperequivalence
of programs wrt the other major semantics, that of supported
models (Clark 1978). We define several concepts of hyper-
equivalence, depending on the class of programs allowed as
contexts. We obtain characterizations of hyperequivalence
wrt supported models in terms of semantic objects, simi-
lar to se-models (Turner 2003) or ue-models (Eiter, Fink,
& Woltran 2007), that one can attribute to programs.

Since the minimality property is fundamental from the
perspective of knowledge representation, we also consider
in the paper the semantics of supported models that are
minimal (as models). While it seems to have received lit-
tle attention in the area of logic programming, it has been
studied extensively in a more general setting of modal non-
monotonic logics, first under the name of the semantics
of moderately grounded expansionsfor autoepistemic logic
(Konolige 1988) and then, under the name ofground S-
expansions, for an arbitrary nonmonotonic modal logicS
(Kaminski 1991; Truszczýnski 1991). The complexity of

1There is little work on other semantics, with (Cabalaret al.
2006) being a notable exception.



reasoning with moderately grounded expansion was estab-
lished in (Eiter & Gottlob 1992) to be complete for classes
at the third level of the polynomial hierarchy.

Here, we study this semantics in the form tailored to logic
programming. By refining techniques we develop for the
case of supported models, we characterize the concept of
hyperequivalence wrt supported minimal models relative to
several classes of contexts.

The characterizations allow us to derive results on the
complexity of problems to decide whether two programs are
hyperequivalent wrt supported (minimal) models. They are
especially useful in establishing upper bounds which, typi-
cally, are easy to derive but in the context of hyperequiva-
lence are not obvious. Our results paint a detailed picture of
the complexity landscape for relativized hyperequivalence
wrt supported (minimal) models. For proofs and additional
discussion we refer to (Truszczyński & Woltran 2008).

Preliminaries
We fix a countable setAt of atoms (possibly infinite). All
programs we consider here consist ofrulesof the form

a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn,

whereai, bi andci are atoms inAt , ‘|’ stands for the dis-
junction, ‘,’ stands for the conjunction, andnot is thede-
fault negation. Ifk = 0, the rule is aconstraint. If k ≤ 1,
the rule isnormal.

For a ruler of the form given above, we call the set
{a1, . . . , ak} the head ofr and denote it byhd(r). Simi-
larly, we call the conjunctionb1, . . . , bm,not c1, . . . ,not cn

the body ofr and denote it bybd(r). We will also use
bd

±(r) to denote the set{b1, . . . , bm, c1, . . . , cn} of atoms
in the body ofr.

An interpretationM ⊆ At is a modelof a ruler, writ-
tenM |= r, if wheneverM satisfies every literal inbd(r),
written M |= bd(r), we have thathd(r) ∩M 6= ∅, written
M |= hd(r).

An interpretationM ⊆ At is a modelof a programP ,
writtenM |= P , if M |= r for everyr ∈ P . If, in addition,
M is a minimal hitting set of{hd(r) | r ∈ P and M |=
bd(r)}, thenM is a supportedmodel ofP (Brass & Dix
1997; Inoue & Sakama 1998).

For a ruler = a1| . . . |ak ← bd , wherek ≥ 1, ashift of r
is a normal program rule of the form

ai ← bd ,not a1, . . . ,not ai−1,not ai+1, . . . ,not ak,

wherei = 1, . . . , k. If r is a constraint, the onlyshift of r
is r itself. A program consisting of all shifts of rules in a
programP is theshift of P . We denote it bysh(P ). It is
evident that a setY of atoms is a (minimal) model ofP if
and only ifY is a (minimal) model ofsh(P ). It is easy to
check thatY is a supported model ofP if and only if it is a
supported model ofsh(P ).

Supported models of anormal logic programP have
a useful characterization in terms of the (partial) one-step
provability operatorTP (van Emden & Kowalski 1976), de-
fined as follows. ForM ⊆ At , if there is a constraintr ∈ P

such thatM |= bd(r) (that is, M 6|= r), thenTP (M) is
undefined. Otherwise,

TP (M) = {hd(r) | r ∈ P and M |= bd(r)}.

Whenever we useTP (M) in a relation such as (proper) in-
clusion, equality or inequality, we always implicitly assume
thatTP (M) is defined.

It is well known thatM is a model ofP if and only if
TP (M) ⊆ M (that is, TP is defined forM and satisfies
TP (M) ⊆ M ). Similarly, M is a supportedmodel ofP
if TP (M) = M (that is,TP is defined forM and satisfies
TP (M) = M ) (Apt 1990).

It follows thatM is a model of a disjunctive programP if
and only ifTsh(P )(M) ⊆ M . Moreover,M is a supported
model ofP if and only if Tsh(P )(M) = M .

Hyperequivalence with Respect to Supported
Models

Disjunctive programsP andQ aresupp-equivalentrelative
to a classC of disjunctive programs if for everyR ∈ C, P∪R
andQ ∪R have the same supported models.

Supp-equivalence is a non-trivial concept, different than
equivalence wrt models, stable models, and hyperequiva-
lence wrt stable models.

Example 1 Let P1 = {a ← a} andQ1 = ∅. Clearly, P1

andQ1 have the same models and the same stable models.
Moreover, for every programR, P1 ∪ R andQ1 ∪ R have
the same stable models, that is,P1 andQ1 are strongly (and
so, also uniformly) equivalent wrt stable models. However,
P1 andQ1 have different supported models. Thus, they are
not supp-equivalent relative toanyclass of programs.

Next, letP2 = {a ← a; a ← not a} and Q2 = {a}.
One can check that for every programR, P2 ∪ R andQ2 ∪
R have the same supported models, that is,P2 andQ2 are
supp-equivalent relative toanyclass of programs. They are
also equivalent wrt classical models However,P2 and Q2

do not have the same stable models and so, they are not
equivalent wrt stable models nor hyperequivalent wrt stable
models relative toanyclass of programs.

Finally, let P3 = {← b} ∪ P2 and Q3 = Q2. Then,
P3 and Q3 are neither hyperequivalent wrt stable models
relative to any class of programs nor equivalent wrt classical
models. StillP3 and Q3 have the same supported models,
and for any programR, such thatb does not appear in rule
heads ofR, P3 ∪ R andQ3 ∪ R have the same supported
models, that is,P3 andQ3 are supp-equivalent wrt this class
of programs (we will verify this claim later). As we will see,
supp-equivalence wrtall programs implies equivalence wrt
models and so, it is not a coincidence that in the last example
we used a restricted class of contexts. In fact,P3 andQ3 are
notsupp-equivalence wrt all programs. ForR = {b}, {a, b}
is a supported model ofQ3 ∪R, but not ofP3 ∪R.

We observe that supp-equivalence relative toC implies
supp-equivalence relative to anyC′, such thatC′ ⊆ C (in
particular, forC′ = {∅}, this implies standard equivalence
wrt supported models), but the converse is not true in gen-
eral as illustrated by programsP3 andQ3.



In this section we characterize supp-equivalence relative
to classes of programs defined in terms of atoms that can
appear in the heads and in the bodies of rules. LetA,B ⊆
At . By HBd(A,B) we denote the class of all disjunctive
programsP such thathd(P ) ⊆ A (atoms in the heads of
rules inP must be fromA) and bd

±(P ) ⊆ B (atoms in
the bodies of rules inP must be fromB). We denote by
HBn(A,B) the class of all normal programs inHBd(A,B)
(possibly with constraints). These classes of programs were
considered in the context of hyperequivalence of programs
wrt the stable-model semantics in (Woltran 2008).

We start with an observation implied by the fact that mod-
els and supported models are preserved under shifting.

Theorem 2 LetP andQ be disjunctive logic programs, and
let A,B ⊆ At . The following conditions are equivalent

1. P andQ are supp-equivalent relative toHBd(A,B)

2. P andQ are supp-equivalent relative toHBn(A,B)

3. sh(P ) and sh(Q) are supp-equivalent relative to
HBn(A,B)

Theorem 2 allows us to focus on normal programs and
normal contexts and, then, obtain characterizations of the
general disjunctive case as corollaries. It is important, as
in the normal program case, we can take advantage of the
one-step provability operator.

Given a normal programP , and a setA ⊆ At , we define

ModA(P ) = {Y ⊆ At | Y |= P andY \ TP (Y ) ⊆ A}.

We have the following characterization of the supp-equi-
valence relative toHBn(A,B).

Theorem 3 Let P and Q be normal programs,A ⊆ At ,
and C a class of programs such thatHBn(A, ∅) ⊆ C ⊆
HBn(A,At). Then,P and Q are supp-equivalent relative
to C if and only if ModA(P ) = ModA(Q) and for every
Y ∈ ModA(P ), TP (Y ) = TQ(Y ).

Theorem 3 has several corollaries. The first one deals with
the case whenA = At , in which the characterizing condi-
tion simplifies.

Corollary 4 LetP andQ be normal programs andC a class
of programs such thatHBn(At , ∅) ⊆ C ⊆ HBn(At ,At).
Then,P andQ are supp-equivalent relative toC if and only
if P andQ have the same models and for every modelY of
P , TP (Y ) = TQ(Y ).

This result applies, in particular, toC = HBn(At , ∅) and
C = HBn(At ,At) and, consequently, characterizes strong
and uniform supp-equivalence of normal programs.

Next, for the caseA = ∅ we have the following result.

Corollary 5 LetP andQ be normal programs andC a class
of programs such thatHBn(∅, ∅) ⊆ C ⊆ HBn(∅,At). The
following conditions are equivalent:

1. P andQ are supp-equivalent relative toC
2. P andQ have the same supported models
3. Mod∅(P ) = Mod∅(Q)

We will now apply our results to some pairs of programs
discussed in Example 1.

Example 6 First, we note thatP1 and Q1 have the same
models. In particular,{a} is a model of both programs.
However,TP1

({a}) = {a} and TQ1
({a}) = ∅. Thus,

TP1
({a}) 6= TQ1

({a}) and so,P1 and Q1 are not supp-
equivalent relative toHBn(At , ∅) (by Corollary 4).

On the other hand,P2 andQ2 have the same models and
for everyY (in particular, for everymodelY of P2 andQ2),
TP2

(Y ) = {a} = TQ2
(Y ). Thus,P2 and Q2 are supp-

equivalent relative toHBn(At ,At).
Finally, Y ∈ ModAt\{b}(P3) if and only if Y |= P3

and Y \ TP3
(Y ) ⊆ At \ {b}. Since the former implies

the latter,Y ∈ ModAt\{b}(P3) if and only if a ∈ Y and
b /∈ Y . One can check that this condition also charac-
terizesY ∈ ModAt\{b}(Q3). Thus,ModAt\{b}(P3) =
ModAt\{b}(Q3). Moreover, ifY ∈ ModAt\{b}(P3) (a ∈ Y
and b /∈ Y ), TP3

(Y ) = {a} = TQ3
(Y ). Consequently,P3

andQ3 are supp-equivalent relative toHBn(At \ {b},At).

The last corollary concerns the disjunctive case and de-
pends also on Theorem 2.

Corollary 7 LetP andQ be disjunctive programs,A ⊆ At ,
and C a class of programs such thatHBn(A, ∅) ⊆ C ⊆
HBd(A,At). Then,P and Q are supp-equivalent relative
to C if and only ifModA(sh(P )) = ModA(sh(Q)) and for
everyY ∈ ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Corollary 7 applies, in particular, to the cases whenC is
any of the following classes:HBd(A,At), HBn(A,At),
HBd(A, ∅), andHBn(A, ∅). It also implies that the alpha-
bet allowed for the bodies of context programs plays no role
in the case of supp-equivalence, unlike in the case of hyper-
equivalence wrt stable models (Woltran 2008). In particular,
for the semantics of supported models, there is no difference
between strong and uniform equivalence.

Finally, we note that Theorem 3 also implies characteri-
zations of uniform hyperequivalence wrt stable models for
tight logic programs, as for such programs stable and sup-
ported models coincide. The approach yields an alternative
to a characterization given in (Gebseret al. 2008).

Hyperequivalence with Respect to Supported
Minimal Models

A set M of atoms is asupported minimal model(suppmin
model, for short) of a logic programP if it is a supported
model ofP and a minimal model ofP .

Disjunctive programsP and Q are suppmin-equivalent
relative to a classC of disjunctive programs if for every
R ∈ C, P ∪ R andQ ∪ R have the same suppmin mod-
els. Suppmin-equivalence is a different concept than other
types of equivalence we considered.

Example 8 The programsP2 and Q2 from Example 1 are
suppmin-equivalent wrt any class of programs, as for every
programR, programsP2 ∪ R and Q2 ∪ R have the same
models and the same supported models. However, as we
pointed out earlier, they are not equivalent wrt stable models
nor hyperequivalent wrt stable models relative toanyclass
of programs.



ThenP4 = P2 and Q4 = {a ← not a} have the same
models, stable models, and are hyperequivalent wrt stable
models relative to an arbitrary class of programs. However,
P4 andQ4 are not suppmin-equivalent (they have different
suppmin models).

Next, one can show that for every setU of atoms, pro-
gramsP1 ∪ U andQ1 ∪ U have the same suppmin models,
but the programs themselves have different supported mod-
els. Thus,P1 andQ1 are suppmin-equivalent relative to the
class of all programs consisting of atoms (HBn(At , ∅)) but
they are not supp-equivalent relative to the same class. We
note thatP1 andQ1 are not suppmin-equivalent relative to
HBn(At ,At), as witnessed by the contextR = {← not a}.

Finally, P5 = {a ← b; b ← b; ← not a,not b} and
Q5 = {a ← b; b ← a; ← not a,not b} have the same
supported models but different suppmin models ({a, b} is
the only supported model ofP5 and Q5, and a suppmin
model forQ5 but not forP5). Thus, the programs are supp-
equivalent relative toHBn(∅, ∅) (which contains the empty
program only) but not suppmin-equivalent wrt that class.

Our examples distinguishing between supp- and suppmin-
equivalence refer to restricted classes of contexts. As we
show later, it is not coincidental. The two types of equiva-
lence are the same if all programs are allowed as contexts.

A refinement of the method used in the previous sec-
tion provides a characterization of suppmin-equivalence rel-
ative to contexts fromHBn(A,B) andHBd(A,B), where
A,B ⊆ At . Compared to supp-equivalence the second al-
phabet,B, has now to be taken into consideration!

As before, since models, minimal models and supported
models are preserved under shifting, it suffices to focus on
the case of normal programs.

Theorem 9 Let P and Q be disjunctive programs, and
A,B ⊆ At . The following conditions are equivalent

1. P andQ are suppmin-equivalent relative toHBd(A,B)

2. P andQ are suppmin-equivalent relative toHBn(A,B)

3. sh(P ) and sh(Q) are suppmin-equivalent relative to
HBn(A,B)

To characterize suppmin-equivalence fornormal pro-
gramsP andQ, we defineMod

B
A(P ) to be the set of all

pairs(X,Y ) such that

1. Y ∈ ModA(P )

2. X ⊆ Y |A∪B

3. for eachZ ⊂ Y such thatZ|A∪B = Y |A∪B , Z 6|= P

4. for eachZ ⊂ Y such thatZ|B = X|B andZ|A ⊇ X|A,
Z 6|= P

5. if X|B = Y |B , thenY \ TP (Y ) ⊆ X

Suppmin-equivalence of normal logic programsP andQ
depends on setsMod

B
A(P ) andMod

B
A(Q) as follows.

Theorem 10 Let A,B ⊆ At and letP,Q be normal pro-
grams. The following conditions are equivalent

1. P andQ are suppmin-equivalent relative toHBn(A,B)

2. Mod
B
A(P ) = Mod

B
A(Q) and for every (X,Y ) ∈

Mod
B
A(P ), TP (Y )|B = TQ(Y )|B

3. Mod
B
A(P ) = Mod

B
A(Q) and for every (X,Y ) ∈

Mod
B
A(P ), TP (Y ) \ (A \B) = TQ(Y ) \ (A \B)

We have several corollaries for some special choices of
A and B. The first one concerns the case whenB = ∅,
that is, the case of relativized uniform suppmin-equivalence.
Since the conditionTP (Y )|B = TQ(Y )|B is now trivially
satisfied, Theorem 10 implies the following result.

Corollary 11 Let A ⊆ At . Normal programsP and Q
are suppmin-equivalent relative toHBn(A, ∅) if and only
if Mod

∅
A(P ) = Mod

∅
A(Q).

Moreover, the description ofMod
B
A(P ), whenB = ∅

simplifies. In fact,(X,Y ) ∈ Mod
∅
A(P ) if and only if

1. Y ∈ ModA(P )

2. X ⊆ Y |A

3. for eachZ with X ⊆ Z ⊂ Y , Z 6|= P

4. Y \ TP (Y ) ⊆ X

When A = B = At (strong suppmin-equivalence), it
turns out that supp-equivalence and suppmin-equivalence
coincide (cf. comments at the end of Example 8).

Corollary 12 Normal programsP and Q are suppmin-
equivalent relative toHBn(At ,At) if and only ifP andQ
are supp-equivalent relative toHBn(At ,At).

We will now use our results to resolve the issue of
suppmin-equivalence of programs discussed earlier.

Example 13 If P is a program such that every set of atoms
is a model ofP , thenMod

∅
At(P ) = {(Y, Y ) | Y ⊆ At}.

This observation applies both toP1 and Q1. Thus, by
Corollary 11, P1 and Q1 are suppmin-equivalent relative
to HBn(At , ∅). We note thatP1 andQ1 are not suppmin-
equivalent relative toHBn(At ,At). Indeed, they are not
supp-equivalent (cf. Example 6) and so, not suppmin-
equivalent (by Corollary 12).

Next, we consider programsP5 andQ5. We note that for
every programP , Mod

∅
∅(P ) consists of pairs(∅, Y ), where

Y is a suppmin model ofP . Thus,Mod
∅
∅(P5) = ∅ and

Mod
∅
∅(Q5) = {(∅, {a, b})}. By Corollary 11,P5 and Q5

are not suppmin-equivalent relative toHBn(∅, ∅).

Thanks to Theorem 9, all results concerning normal pro-
grams lift to the disjunctive case. To illustrate it, we give
two such results below.

Corollary 14 LetA,B ⊆ At . Disjunctive programsP and
Q are suppmin-equivalent relative toHBd(A,B) if and only
if Mod

B
A(sh(P )) = Mod

B
A(sh(Q)) and for every(X,Y ) ∈

Mod
B
A(sh(P )), Tsh(P )(Y )|B = Tsh(Q)(Y )|B .

Corollary 15 Disjunctive programsP andQ are suppmin-
equivalent relative toHBd(At ,At) if and only ifP andQ

are supp-equivalent relative toHBd(At ,At).



Complexity of Supp-Equivalence
We focus entirely on the case of normal programs and nor-
mal contexts. As we noted, it is not an essential restriction,
and all results we obtain hold without it. We will study
deciding hyperequivalence relative to classesHBn(A,B).
Specifically, we will consider the following problems:
SUPP: given programsP,Q (over At) and A,B ⊆ At ,
decide whetherP and Q are supp-equivalent relative to
HBn(A,B)
SUPPA: given programsP,Q (overAt) andB ⊆ At , decide
whetherP andQ are supp-equivalent relative toHBn(A,B)
SUPPB : given programsP,Q (overAt) andA ⊆ At , decide
whetherP andQ are supp-equivalent relative toHBn(A,B)
SUPPBA : given programsP,Q (overAt), decide whetherP
andQ are supp-equivalent relative toHBn(A,B).
We emphasize the changing roles of the setsA and B.
In some cases, they are used to specify a problem (A in
SUPPBA and SUPPA); in others, they belong to the specifi-
cation of an instance (A in SUPPB and SUPP). In the first
role, they can be finite or infinite. For instance,SUPPAt de-
notes the problem to decide, given programsP,Q (overAt)
andB ⊆ At , whetherP andQ are supp-equivalent relative
toHBn(At , B). In the second role, they need to have finite
representations.

To establish the complexity of a problem, we derive an
upper and a lower bound (membership and hardness). We
start by pointing out that establishing an upper bound is not
entirely straightforward. A natural witness against supp-
equivalence is a pair(R, Y ), whereR is a finite program
in C andY is finite set of atoms such thatY is a supported
model of exactly one ofP ∪ R andQ ∪ R. The problem is
that the size of such a programR might not be bounded by
a polynomial in the size ofP , Q, and possibly alsoA and
B, depending on the problem. Thus, the most direct attempt
to prove the membership of the problem in the class coNP
fails. The bound can, however, be derived from our charac-
terization theorem for several classes of context programs.

Theorem 16 The following problems are in the class coNP:
(1) SUPP; (2) SUPPA, for every finiteA ⊆ At ; (3) SUPPBA ,
for every finiteA ⊆ At , and for everyB ⊆ At ; (4) SUPPB ,
for everyB ⊆ At ; (5) SUPPB

At
, for everyB ⊆ At .

In problems (3) - (5) we do not need any explicit or im-
plicit representation ofB, as the supp-equivalence relative
toHBn(A,B) depends onA only.

We move on to the lower bound (hardness). We have the
following result.

Theorem 17 For every finiteA ⊆ At andA = At , and for
everyB ⊆ At , the problemSUPPBA is coNP-hard.

We observe that for the result to hold we do not need to
know B. Putting together Theorems 16 and 17 we obtain
the following result.

Corollary 18 The problems listed in Theorem 16 are coNP-
complete.

Problems we considered so far do not impose restrictions
on input programsP andQ. In particular, they contain in-
stances withModA(P ) 6= ModA(Q). We will now consider

the problem to decide whether normal programsP andQ
such thatModA(P ) = ModA(Q) are supp-equivalent rela-
tive toHBn(A,B). It turns out that this additional informa-
tion is of no help as the complexity does not go down.
Theorem 19 LetA be a fixed finite non-empty subset ofAt

or let A = At . For every setB ⊆ At , the following problem
is coNP-complete: given two normal programsP and Q
such thatModA(P ) = ModA(Q), decide whether they are
supp-equivalent relativeHBn(A,B).

The requirement thatA 6= ∅ is necessary for the complex-
ity result of Theorem 19. Indeed, by Corollary 5, ifA = ∅,
programsP andQ with ModA(P ) = ModA(Q) are neces-
sarily supp-equivalent.

Complexity of Suppmin-Equivalence
We will use here the same notational schema as in the pre-
vious section, but replace supp-equivalence with suppmin-
equivalence and writeSUPPMIN instead ofSUPP. For in-
stance, we writeSUPPMINB (for B fixed and not part of the
input) to denote the following problem: given normal pro-
gramsP andQ, andA ⊆ At , decide whetherP andQ are
suppmin-equivalent relative toHBn(A,B).

Deciding suppmin-equivalence relative toHBn(A,B),
whereA = At or B = At , remains in the class coNP.
Theorem 20 The following problems are coNP-complete:
SUPPMINB

At
, for every finiteB ⊆ At , SUPPMINAt

A , for every
finiteA ⊆ At , SUPPMINAt , SUPPMINAt , andSUPPMINAt

At
.

The general problem is of higher complexity.
Theorem 21 The problemSUPPMIN is in ΠP

2 .
We now have the following result. The membership fol-

lows from the fact that problemsSUPPMINB , SUPPMINA,
SUPPMINB

A (for finite A,B ⊆ At) reduce toSUPPMIN.
The hardness can be established by showing that already
the problemSUPPMINB

A is ΠP
2 -hard. The proof exploits the

characterization given by Theorem 10, and depends on a re-
duction from the problem to decide whether a QBF∀Y ∃Xϕ
is true, known to beΠP

2 -complete.
Theorem 22 The following problems areΠP

2 -complete:
SUPPMIN, SUPPMINB , SUPPMINA, SUPPMINB

A , for every fi-
niteA,B ⊆ At .

As for supp-equivalence, having additional information
that setsMod

B
A(P ) andMod

B
A(Q) coincide does not make

the problem of deciding suppmin-equivalence easier.
Theorem 23 LetA,B ⊆ At be finite and such thatA∩B 6=
∅. The following problem isΠP

2 -complete: given normal
programsP , Q such thatMod

B
A(P ) = Mod

B
A(Q), de-

cide whetherP and Q are suppmin-equivalent relative to
HBn(A,B).

This theorem cannot be extended to a wider class of finite
setsA andB. LetA∩B = ∅ andP , Q two normal programs
such thatMod

B
A(P ) = Mod

B
A(Q). Let (X,Y ) ∈ Mod

B
A(P )

andb ∈ TP (Y )|B . Thenb ∈ Y andb /∈ A. SinceY ∈
ModA(Q), Y \TQ(Y ) ⊆ A. It follows thatb ∈ TQ(Y ) and,
asb ∈ B, b ∈ TQ(Y )|B . Thus,TP (Y )|B ⊆ TQ(Y )|B and,
by symmetry,TP (Y )|B = TQ(Y )|B . Consequently,P and
Q are suppmin-equivalent.



Conclusions
In this paper we extended the concept of hyperequivalence to
two other major semantics of logic programs: the supported-
model semantics and the suppmin-model semantics. We
characterized these concepts of hyperequivalence and de-
rived several complexity results.

There are similarities between hyperequivalence wrt sup-
ported (minimal) models and hyperequivalence wrt stable
models. However, strong and uniform equivalence coincide
for supp-equivalence, even for disjunctive programs, while
for stable semantics strong and uniform equivalence are dif-
ferent, as long as negation as failure is permitted.

As concerns the complexity, the picture is uniform in the
case of hyperequivalence wrt supported models — problems
that arise naturally turn out to be coNP-complete. The sit-
uation is different for hyperequivalence wrt suppmin mod-
els. When at least one ofA andB consists of all atoms,
the corresponding problems of deciding hyperequivalence
are coNP-complete. As soon as this is not the case, the com-
plexity goes up toΠP

2 -completeness.2 The results we pre-
sented demonstrate that with problems in which the depar-
ture fromAt is major:At is replaced with a finite set (either
a parameter of the problem, or a part of the input). However,
much less drastic change has the same effect. One can show
that for every finiteA,B ⊆ At such thatA 6= ∅, the fol-
lowing problem isΠP

2 -complete: given normal programsP
andQ, decide whetherP andQ are suppmin-equivalent rel-
ative toHBn(At \ A,B). Thus, even if just one atom from
At is forbidden from appearing in heads of rules in context
programs, the complexity jumps one level up.

Finally, we note that our characterizations and techniques
behind proofs are algebraic and suggest generalizations to
the language of partial operators on boolean algebras (cf.
(Truszczýnski 2006) for algebraic generalizations of hyper-
equivalence wrt stable models). Thus, it may be possible
to extend the results on supp- and suppmin-equivalence to
other nonmonotonic logics. One direction is to study hyper-
equivalence in autoepistemic logic wrt expansions and mod-
erately grounded expansions. Indeed, autoepistemic logic
with the semantics of (moderately grounded) expansions,
when restricted to theories in which the modal operator is
applied to atoms, can be regarded as a modal variant of
logic programming with the semantics of supported (min-
imal) models. This is the subject of our future work.
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