
Aspps Manual

Deborah East

Department of Computer Science

Southwest Texas State University

San Marcos, TX 78666, USA

Lengning Liu, Stephen Logsdon,

Victor Marek and Miros law Truszczyński

Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046, USA

October 30, 2006

Contents

1 Introduction 1

2 Syntax 2

2.1 Basics . 2
2.1.1 Variables and Constants . 2
2.1.2 PS+ atoms . 2
2.1.3 Clauses . 4
2.1.4 Arithmetic . 4

2.2 Data File . 4
2.2.1 Data Predicates — the instance-representation schema 4

2.3 Program File . 5
2.3.1 Program predicates . 5
2.3.2 Variables . 6
2.3.3 Clauses . 6

2.4 Theories and Models . 6

3 Semantics 6

3.1 Grounding . 6
3.1.1 Simplification . 7

3.2 Grounding Examples . 8
3.2.1 Atoms . 8
3.2.2 E-Atoms . 8
3.2.3 Conditional E-Atoms . 8
3.2.4 C-Atoms . 9
3.2.5 Clauses . 9

3.3 Models and Satisfaction . 10

4 Installation 10

4.1 Obtaining the PS+ software . 10
4.2 System Requirements . 10
4.3 Installing psgrnd on Unix Systems . 10
4.4 Installing aspps on Unix Systems . 11

5 Invoking psgrnd 11

6 psgrnd Output Format 12

6.1 Atoms . 13
6.2 C-atoms . 13
6.3 Clauses . 13

7 Invoking aspps 13

8 aspps Output 14

8.1 aspps.stat . 14
8.2 Output of Answer Sets . 15

9 Examples 15

9.1 Graph Coloring . 15
9.2 N-Queens . 17
9.3 Wire Routing . 19
9.4 Missionaries and Cannibals . 24
9.5 Blocks-world Planning . 27
9.6 Vertex-cover Problem . 33

i

1 Introduction

The PS+ software is an implementation of an answer-set programming formal-
ism based on the logic of propositional schemata, PS+ [1, 2]. The language of
the logic PS+ includes constant, variable and predicate symbols.

PS+ formulas are clause-like expressions built of PS+ atoms: first-order
atoms, existential atoms and weight atoms. We typically refer to PS+ formulas
as PS+ clauses. We always write PS+ clauses as implications, with a conjunc-
tion of atoms as the antecedent and the disjunction of atoms as the consequent.

A theory in the logic PS+ is a pair (D,P), where D is a set of ground atoms
(only constant symbols as arguments) representing an instance of a problem (in-
put data) and P is a set of PS+ clauses representing a program (an abstraction
of the problem). The meaning of a PS+ theory T = (D,P) is given by a family
of PS+ models of T . PS+ models of T are defined as models of a propositional
theory in the language of propositional logic extended by weight atoms, denoted
PLwa. This theory is obtained by a form of grounding (we refer for details to
[1, 2], Section 3.1).

The PS+ software is designed to allow the programmer to:

1. model search problems as PS+ theories, and

2. solve search problems modeled as PS+ theories.

The tasks are supported by two programs: the program psgrnd that grounds
(“compiles”) PS+ theories to a theory in the propositional logic PLwa, and the
program aspps that computes models of theories in the logic PLwa. To model
a search problem Π the programmer needs to design:

1. a relational schema to represent problem instances, we refer to it as an
instance-representation schema (a relational schema specifies names of
predicate symbols and their arities), and

2. a program P , a collection of PS+ clauses capturing specifications of the
problem Π.

To describe P , the programmer will use variable symbols and predicate sym-
bols. The predicate symbols are of three types: (i) the predicate symbols from
the instance-representation schema, (ii) predefined relation symbols, which we
discuss below, and (iii) additional predicate symbols, called program predicate
symbols, which the programmer needs to introduce.

The program needs to be designed so that for every instance of the prob-
lem Π, represented by a set D of ground atoms in the instance-representation
schema, models of the PS+ theory (D,P) encode solutions to the problem Π
for the instance D. We refer to Section 9 for examples of search problems and
their representations as programs in the logic PS+.

Thus, to solve a problem Π, represented as a PS+ program P , for an instance
of Π, represented as a set D of ground atoms in the instance-representation
schema, the programmer needs to perform two steps:

1

1. ground the PS+ theory (D,P) by invoking the program psgrnd

2. compute models of the theory produced by psgrnd by invoking a PLwa

solver aspps.

In the remainder of the document we provide a detailed description of the
language supported by the programs psgrnd and aspps, and illustrate its usage
with examples.

2 Syntax

A precise description of the PS+ syntax requiers a formal grammar. This section
seeks to explain the PS+ syntax in a more accessible, step-by-step manner.

2.1 Basics

2.1.1 Variables and Constants

PS+ programs and data sets contain occurrences of variable and constant sym-
bols. We always adhere to the convention that variable names start with upper-
case letters and alpha-numeric constant names start with lower-case letters. We
note that we also use integers as constants.

PS+ software allows the programmer to use symbolic representations for
some numeric (specifically, integer) constants and define their values at the
command line (we discuss the details later). We refer to such constants as
symbolic constants. As with constants, we use strings starting with lower-case
letters to denote them.

The language does not contain function symbols. Thus, the only terms of
the language are variables and constants.

2.1.2 PS+ atoms

PS+ programs and data sets contain occurrences of predicate symbols. These
predicate symbols (i) come from the instance-representation schema, (ii) are
introduced by the programmer, or (iii) are predefined predicate symbols to rep-
resent equality (==), inequality (!=), and arithmetic relations (<=, >=, <, and >).
Predicate symbols allow the programmer to form atoms.

Simple atoms. They are expressions of the form:

atom-id (atom-arguments)

where atom-id is a string of one or more alphanumeric characters (A-Z, a-z,
0-9,) beginning with a letter, and atom-arguments is a comma-delimited list
of one or more constants or variables. An example of a simple atom is:

color(X,Y)

2

In the case of predefined predicate symbols, ==, !=, <=, >=, <, or >, we write
atoms using the standard infix notation. For example, we write:

Y!=Z

rather than !=(Y,Z).

Existential atoms (or e-atoms). They are like simple atoms with one excep-
tion: their atom-arguments list contains an underscore character (‘ ’) in place
of one or more arguments. For example, the following expression is an e-atom:

color(X,)

Conditional E-Atoms. These atoms are expressions of the form:

atom-id (atom-arguments)[variable-list]: condition-list

where atom-id and atom-arguments have the same meaning as before. The
expression variable-list is a comma-delimited list of variables to be quanti-
fied existentially1, and condition-list is a colon-delimited list of conditions
to impose. These conditions may only involve predicate symbols that come from
the instance-representation schema or are predefined. The precise meaning of
conditional e-atoms is given later in the document. The following two examples
illustrate the syntax of conditional e-atoms:

color(X,Y)[Y]: X<=5

color(X,Y): vtx(X): clr(Y)

Weight atoms or w-atoms. In this document we only focus on a special class
of weight atoms — cardinality atoms (or simply, c-atoms). They are expressions
of the form:

k {atom-list }l

where atom-list is a comma-delimited list of atoms, e-atoms, or conditional
e-atoms, and k and l are optional constants or variables representing inclusive
lower and upper bounds, respectively, on how many atoms in the list may be
true (a precise meaning of these atoms is described later). Examples of a valid
c-atoms are:

1{path(X,Y)[X]:edge(X,Y)}1
1{color(X,)}2
1{path(X,Y)[X]:edge(X,Y),p(X):cond(X)}1
k{path(X,Y)[X]:edge(X,Y),p(X):cond(X)}l

In this last example, k and l stand for symbolic constants.
1See section 3.1 for an explanation of existential and universal quantification.

3

2.1.3 Clauses

Clauses in PS+ take the form:

body -> head.

where body is a conjunction of atoms (of any type except e-atoms and condi-
tional e-atoms) separated by commas (‘,’) and head is a disjunction of atoms
(of any type) separated by pipes (‘|’). The head and body are separated by a
dash followed by a greater than sign (“->”), and the clause is terminated with
a period (‘.’). Thus, a standard clause is of the form

atom1,...,atomi -> atomi+1|...|atomj.

Either of the body and head may be omitted. Some examples of valid clauses
are

path(X,Y),path(Y,Z) -> path(X,Z) | 1{color(X,C): clr(C)}.
1{color(X,)}1.
color(X,K),color(Y,K),edge(X,Y) -> .

2.1.4 Arithmetic

The aspps implementation predefines arithmetic operators such as +, -, *, and
/. The functions abs, mod, max, and min are also available. We assign to these
symbols their standard interpretation. The programmer can use these operators
and functions to build arithmetic expressions and use them as arguments to
predicate symbols. Examples of valid uses are:

X!=Y+Z

abs(X)>4

mod(X,2)==0

min(X,Y)<2

color(X+Y,C)

2.2 Data File

2.2.1 Data Predicates — the instance-representation schema

PS+ data file provides an implicit definition of the instance-representation
schema and an explicit representation of a particular problem instance for which
the problem is to be solved. These definitions are of the following form:

data-id (data-arguments).

where data-id consists of one or more alphanumeric characters (A-Z, a-z, 0-9,
) beginning with a letter, and data-arguments consists of either a semicolon-
delimited list of constants, or a data range. Data ranges are specified as a pair
of integers or symbolic constants, separated with the string “..”.

Data predicate declarations are terminated with a single period, ‘.’. Exam-
ples of valid data predicate declarations are:

4

clr(red).

clr(green).

clr(blue).

or, the equivalent:

clr(red;green;blue).

Versions 2003.06.04 and later of psgrnd support the following range specifi-
cation for predicate declaration2:

num(1..100).

This is meant to represent one hundred atomic expressions:

num(1).
...

num(100).

2.3 Program File

The program file consists of a preamble containing declarations of program
predicate and of variables, followed by zero or more PS+ clauses, defining the
problem.

2.3.1 Program predicates

Program predicate declarations are of the form:

pred predicate-name (data-id1,...,data-idn).

where predicate-name is a user-specified string naming the predicate, and each
data-idi is a name of a unary predicate specified in the data file. Examples of
valid program predicate declarations are:

pred color(vtx,clr).

pred visited(vtx).

They assume that predicates color and vtx are part of the instance-representation
schema and are defined in the data file.

2Older versions of psgrnd require the use of square brackets (‘[’ and ‘]’) when specifying
ranges.

5

2.3.2 Variables

Variables used in the program file are declared as follows:

var data-id variable-name1,...,variable-namen.

where data-id is a unary predicate specified in the data file, and each variable-namei

is a user-specified string of one or more alphanumeric characters which is used
as a variable name. As we noted these names will start with upper-case letters.
Two examples of variable declarations are:

var num X,Y.

var vtx V.

2.3.3 Clauses

Clauses follow the predicate and variable declarations and are constructed as
described in section 2.1.3.

2.4 Theories and Models

A theory in the logic PS+ is a pair (D,P), where D is a data file and P is a
program file. We often refer to PS+ theories as data-program pairs.

3 Semantics

The meaning of a PS+ theory (D,P) is given by a family of PS+ models of
(D,P). A set of ground atoms, selected from the set of all ground atoms built of
program predicates defined in P and of constants listed in D, is a PS+ model of
(D,P) if it is a model of the propositional theory obtained by grounding (D,P)
and then simplifying the result [1, 2]. We denote this theory by grs(D,P). The
next two subsections describe grounding and simplification.

3.1 Grounding

All clauses in PS+ programs are grounded separately using the following steps.

1. First, each underscore is replaced by a variable of the proper type. For ex-
ample, the e-atom p() will become p(X)[X], where X is a unique variable
name.

2. Variables listed in square brackets alongside conditional e-atoms (including
those which have replaced underscores) are existential. All the remaining
variables are universal.

3. Next, we instantiate clauses by taking all possible substitutions for uni-
versal variables (as defined by their domain, in the data file) and creating
new instances of the clause, one per substitution.

6

4. Once we have all the instantiations, only existential variables remain.

5. For each resulting clause, e-atoms are expanded to a disjunction of atoms
containing all possible substitutions for each existential variable, as limited
by each variable’s respective domain.

6. Conditional e-atoms are likewise expanded to such a disjunction, but the
values of their existential variables are constrained to those that satisfy
their conditions.

7. E-atoms and conditional e-atoms inside of c-atoms are expanded to a set
rather than a disjunction.

8. Next, arithmetic expressions such as +, -, *, /, abs(), and mod() are
evaluated.

9. Built-in predicates and data predicates are then evaluated, as are compar-
isons using relational operators such as <, >, <=, >=, and ==. (All but
== apply only to integers; == may apply to arbitrary constants as well.)

3.1.1 Simplification

Finally, the process of simplification begins. Program predicates with invalid
parameters (any values outside the domain of the data type) are marked false.
Program predicates with valid parameters are marked true.

Built-in atoms and data atoms, once evaluated, enable certain simplifica-
tions.

• True atoms which occur in the body of a clause are eliminated.

• False atoms in the head of a clause are likewise eliminated.

• False atoms in the body of a clause cause the entire clause to be elimi-
nated.

• True atoms in the head of a clause also cause the entire clause to be
eliminated.

• When an atom within a c-atom is determined to be true, the atom is
eliminated and the c-atom bounds are decremented by one.

• If an atom within a c-atom is false, it is likewise eliminated, but the
bounds are preserved.

The resulting clauses are output as a ground propositional theory grs(D,P)
in the language of the logic PLwa. Formulas of this logic look like propositional
clauses written in the implication notation. That is, they are implications with
the antecedent being a conjunction of atoms and propositional c-atoms, and the
consequent being a disjunction of atoms and propositional c-atoms. In Section
3.3 we specify when such clauses are satisfied by a set of ground atoms. But
first we illustrate grounding and simplification with examples.

7

3.2 Grounding Examples

3.2.1 Atoms

Given the data file:

num(1..3).

and the rule file:

pred atom(num).

atom(1).

atom(3).

The following grounding is obtained:

atom(1).

atom(3).

3.2.2 E-Atoms

Given the data file:

num(1..2).

clr(r).

clr(g).

clr(b).

and the rule file:

pred color(num,clr).

var num X.

color(X,_).

The following grounding is obtained:

color(1,r)|color(1,g)|color(1,b).

color(2,r)|color(2,g)|color(2,b).

3.2.3 Conditional E-Atoms

Given the data file:

num(1..3).

and the rule file:

pred lessthan(num,num).

var num X,Y.

lessthan(X,Y)[Y]: X<Y.

8

The following grounding is obtained:

lessthan(1,2)|lessthan(1,3).

lessthan(2,3).

3.2.4 C-Atoms

Given the data file:

num(1..2).

clr(r).

clr(g).

clr(b).

and the rule file:

pred color(num,clr).

var num X.

1{color(X,_)}2.

The following grounding is obtained:

1{color(1,r),color(1,g),color(1,b)}2.
1{color(2,r),color(2,g),color(2,b)}2.

3.2.5 Clauses

Given the data file:

num(1..3).

clr(r).

clr(g).

clr(b).

and the rule file:

pred color(num,clr).

var num X.

var clr K.

1{color(X,K)[K]}1.
color(X,K),X<=2 -> color(X,r).

color(X,K),X>2 -> color(X,b).

The following grounding is obtained:

1{color(1,r),color(1,g),color(1,b)}1.
1{color(2,r),color(2,g),color(2,b)}1.
1{color(3,r),color(3,g),color(3,b)}1.

9

color(1,r) -> color(1,r).

color(1,g) -> color(1,r).

color(1,b) -> color(1,r).

color(2,r) -> color(2,r).

color(2,g) -> color(2,r).

color(2,b) -> color(2,r).

color(3,r) -> color(3,b).

color(3,g) -> color(3,b).

color(3,b) -> color(3,b).

3.3 Models and Satisfaction

A model of a grounded and simplified PS+ theory T = (D,P) (and so, of the
theory itself) is an assignment of truth values to atoms such that all clauses in
grs(D,P) are satisfied.

• A clause is satisfied in all cases except when its body is true (possibly
because it is empty) and its head is false (possibly because it is empty).

• The body of a clause, as a conjunction, is true only when all of its atoms
and c-atoms are true.

• The head of a clause, a disjunction, is true when at least one of its atoms
or c-atoms is true.

• A c-atom is satisfied when the number of true atoms it contains is within
its lower and upper bounds.

4 Installation

4.1 Obtaining the PS+ software

The programs psgrnd and aspps and several related programs and utilities can
be obtained at http://www.cs.uky.edu/ai/aspps/.

4.2 System Requirements

The programs psgrnd and aspps work on most Unix-like systems with the gcc
compiler available, including Linux (gcc 2.95.3 and 3.2.2), Solaris (gcc 2.95.3),
Freebsd 4.7 (gcc 2.95.4), and the Cygwin environment for Windows (gcc 3.2).
The utilities require Perl 5 or greater.

4.3 Installing psgrnd on Unix Systems

Installing psgrnd is straightforward:

10

1. Type gunzip -c psgrnd.XXXX.XX.XX.tar.gz | tar xvf - to extract
the source code archive (where XXXX.XX.XX is the version-specific date
of psgrnd).

2. Type cd Psgrnd

3. Type make to compile psgrnd .

4. Install the compiled program by placing it in a directory for executable
files. For example, type cp psgrnd /usr/local/bin/

4.4 Installing aspps on Unix Systems

The installation process for aspps is similar.

1. Type gunzip -c aspps.XXXX.XX.XX.tar.gz | tar xvf - to extract the
source code archive (where XXXX.XX.XX is the version-specific date of
aspps).

2. Type cd aspps

3. Type make to compile aspps.

4. Install the compiled program by placing it in a directory for executable
files. For example, type cp aspps /usr/local/bin/

5 Invoking psgrnd

The grounding of PS+ theories is performed by the program psgrnd . The re-
quired input to execute psgrnd is a single program file, one or more data files,
and values for symbolic constants to be specified at the command line. If no er-
rors are found while reading the files and during grounding, a machine-readable
ground program is generated and printed to the standard output (unless the -o
command line option is used). The format of the psgrnd output is covered in
Section

psgrnd has the following command line options:

psgrnd -r rfile -d dfile1 [dfile2 ... dfilem] [-c c1=v1

[c2=v2 ... cn=vn]] [-o [theoryfile]] [-C]

Required Arguments:
-r rfile

rfile is the file describing the problem (the program file). There
must be exactly one program file.

-d dfile1 [dfile2 ... dfilem]

Each dfilei is a data file containing data that will be used to in-
stantiate the theory.

11

Optional Arguments:
-c c1=v1 [c2=v2 ... cn=vn]

This option allows the use of constants in both the data and program
files. When ci is found while reading input files, it is replaced by vi.
vi can be any string that is valid for the data type. If ci is to be
used in a range specification, then vi must be an integer.

-o [theoryfile]

If theoryfile is specified, psgrnd will save its output to that file-
name. Otherwise, the name of the output file is a catenation of the
constants and the program and data file names, with the extension
.aspps (or .cnf, if the -C flag is used).

-C

This option changes psgrnd ’s output to DIMACS CNF format [3].
It can only be used if no weight (in particular, cardinality) atoms
are present in the program file.

The ordering of the command line options is unimportant, provided the data
files and constants are enumerated together in their respective lists.

Example Usage of psgrnd :

psgrnd -r program file -d data file -c n=8 -o theory file.aspps

6 psgrnd Output Format

The ground programs generated by psgrnd are similar to the DIMACS CNF
format.

• All lines are terminated by a single linefeed character, ‘\n’.

• Every line that starts with the letter ‘c’ is a comment and is ignored.

• All other lines are the clauses of the ground program.

• Atoms are represented by positive integers.

However, unlike the DIMACS CNF format:

• Each file has a header line of the form:

p <num of atoms> <num of clauses>

• Clauses are terminated by the end of the line (‘\n’), not with a ‘0’.

• C-atoms are preserved and represented using special notation.

12

6.1 Atoms

We use positive integers from the set { 1, 2, ..., <number of atoms> } to repre-
sent ground atoms. The mapping between a ground atom and its corresponding
integer is explicitly listed by the comment lines appearing at the end of each
file.

Comments which start with the number ‘0’ represent atoms which were
computed during grounding. These atoms are always true and are therefore
present in all answer sets. Atoms which are always false do not appear at all in
the ground programs.

6.2 C-atoms

A c-atom k{ a1 , ... , an }m is represented after grounding as:

{ k m inta1
... intan

}

where intai
’s are integer representations of ground atoms in the c-atom. All

integers are separated by space characters.

6.3 Clauses

A clause A1 , ... , Am -> B1 | ... | Bn is expressed after grounding as:

r(A1) ... r(Am) , r(B1) ... r(Bn)

where r(A) = inta, if A = a, for some ground atom a, and r(A) = { k m inta1

... intan
}, if A = k{ a1 , ... , an }m is a cardinality atom (as before,

we write inta to denote the integer representing a ground atom a). All integers
are separated by space characters, and the body and the head are separated by
a comma.

7 Invoking aspps

The solver, aspps, is used to compute models of the ground PLwa theory pro-
duced by psgrnd . The name of the file containing the theory is input on the
command line. After executing the aspps program, a file named aspps.stat is
created or appended with statistics concerning this execution of aspps. Depend-
ing on which command line options were used, aspps may generate additional
output. See Section 8 for further information on the output of aspps, including
the format of aspps.stat.

The program aspps has the following command line options:

aspps -f filename [-A] [-P] [-C [x]] [-L [x]] [-S name1 [name2

... namem]] [-r]

Required Arguments:
-f filename

13

Where filename is the name of the file containing a ground theory
in PLwa format.

Optional Arguments:
-A

Prints atoms that are true in the computed model, in readable form.

-C [x]

Counts the number of solutions. If the -C flag is not used, aspps

stops after the first solution is found or after the whole search space
is exhausted, whichever comes first. If the flag is used but x is not
specified, aspps finds all solutions. Finally, if the flag is used and x

is specified (where x is a positive integer), aspps stops after finding
x solutions or exhausting the whole search space, whichever comes
first.

-L [x]

Enables look-ahead (disabled by default). If x is specified, aspps

will look ahead x atoms. If x is omitted, the default value of 5 will
be used.

-S name1 [name2 ... namem]

Shows positive atoms built of predicates namei.

-r

For versions of aspps that allow restarts (for instance, version of
05/17/2005), turns restarts of

Example Usage of aspps:

aspps -f theory file.aspps -A -C

8 aspps Output

8.1 aspps.stat

When aspps is run, it creates (or updates) a file named aspps.stat. This file
contains statistics about the last run of aspps. Its fields are, in order:

Var The number of variables in the input program.
Clause The number of clauses in the input program.

Sat The status of the theory: sat or unsat, respectively
CPU Time The amount of CPU time used, in seconds.

Branch The number of branch points.
Bcktrck The number of times aspps backtracked.
Count The number of solutions found.

Filename The filename of the input program.

14

The fields are separated by one or more spaces, and each run of aspps is
represented by a different line, delimited by the linefeed (‘\n’) character.

The graph-coloring example from Section 9 will cause aspps to generate lines
similar to the following:

Var Clause Sat CPU Time Branch Bcktrck Count Filename

16 13 sat 0 22 24 24 gc.aspps

The line containing column labels is written when the aspps.stat file is first
created. Subsequent executions of aspps append the file only with statistics like
those in the second line.

8.2 Output of Answer Sets

Three aspps parameters affect its output: -A, -C, and -S. When the -A command
line option is used, aspps prints to the standard output atoms that are true in
the computed model. This output is in human-readable form. Atoms which
were determined during grounding to always be true are listed once, at the
beginning. Next, the true atoms from answer sets are listed. The number of
answer sets printed is controlled by the -C command line flag, as discussed in
Section 7. Any atoms which were determined during grounding to be false are
omitted from the output of aspps. If the -S flag is used, aspps will display all
positive atoms constructed from the specified predicate (or predicates).

For example, when a solution is found for the graph-coloring example us-
ing the command aspps -f gc.aspps -A (where gc.aspps is the name of the
filename containing the ground PLwa program), aspps will output the following:

aspps.2003.01.09

Atoms determined during grounding:

Answer-set 1:

color(1,r)

color(2,g)

color(3,r)

color(4,g)

9 Examples

This section contains examples of common problems and puzzles implemented
in PS+.

9.1 Graph Coloring

Given an undirected graph, the goal is to assign colors to its vertices such that
no two vertices connected by an edge share the same color.

15

Data File
This is a data file for the graph 3-coloring problem.

% The next line defines the four vertices of the input graph.

vtx(1). vtx(2). vtx(3). vtx(4).

% The next line specifies the edges of the input graph;

% its parameters must be vertices as defined above.

edge(1,4). edge(1,2). edge(3,2).

% Finally, the next line defines three available colors: r, g,

% and b.

clr(r). clr(g). clr(b).

Program File
The single program predicate color(X,K) represents the fact that vertex X

is assigned color K.

% We define the predicate color, to associate each vertex with a

% color.

pred color(vtx,clr).

% We declare two variables of type vtx.

var vtx X,Y.

% We declare one variable of type clr.

var clr K.

% Each vertex has exactly one color.

1{color(X,_)}1.

% Adjacent vertices cannot share the same color.

color(X,K),color(Y,K),edge(X,Y) -> .

aspps and psgrnd Output

$ psgrnd -r 1_gc.rule -d 1_gc.data -o 1_gc.aspps

Version: psgrnd 7-Jul-2005

SUCCESS: Created file "1_gc.aspps"

16

$ aspps -f 1_gc.aspps -A

aspps.2003.06.04

Atoms determined during grounding:

Answer-set 1:

color(1,b)

color(2,g)

color(3,b)

color(4,g)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

16 13 sat 0 4 0 1 1_gc.aspps

9.2 N-Queens

Given an n × n chessboard, the goal is to place on it n queens so that no two
queens attack each other (that is, no two queens are in the same row, column,
or in the same diagonal).

Data File
Data predicate number specifies the number of queens and the dimensions

of the board.

% We declare a range of numbers, from 1 to the constant n.

% Constant n will be specified on the command line.

number(1..n).

Program File
A simple encoding of the N-Queens problem is used here for the sake of

clarity.
The main program predicate is queen. Atom queen(R,C) represents the fact

that a queen is placed in the position (R,C).

% We declare a predicate queen, which represents the placement of a

% queen on the chess board.

pred queen(number,number).

% We declare three variables of type number.

var number R,C,I.

17

% There is exactly one queen per row.

1{queen(R,_)}1.

% There is exactly one queen per column.

1{queen(_,C)}1.

% There is at most one queen per diagonal.

% For the following comments, we assume the rows and columns of

% the chessboard are labeled from 1 to n starting from the

% bottom left corner.

% Allow at most one queen per diagonal in the upper

% left corner of the board.

{queen(R+I-1,I)[I]}1.

% Allow at most one queen per diagonal in the bottom

% right corner of the board.

{queen(I,C+I-1)[I]}1.

% Allow at most one queen per diagonal in the bottom

% left corner of the board.

{queen(R-I+1,I)[I]}1.

% Allow at most one queen per diagonal in the upper

% right corner of the board.

{queen(n-I+1,C+I-1)[I]}1.

Aspps and Asppsgrnd Output

$ psgrnd -r 2_nq.rule -d 2_nq.data -c n=8 -o 2_nq.aspps

Version: psgrnd 7-Jul-2005

SUCCESS: Created file "2_nq.aspps"

$ aspps -f 2_nq.aspps -A

aspps.2003.06.04

Atoms determined during grounding:

Answer-set 1:

queen(1,7)

18

queen(2,1)

queen(3,3)

queen(4,8)

queen(5,6)

queen(6,4)

queen(7,2)

queen(8,5)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

112 48 sat 0 4 0 1 2_nq.aspps

9.3 Wire Routing

Given pairs of terminals on a grid and a set of obstacles, the goal is to connect
terminals by wires so that the wires:

• do not intersect

• do not enter obstacles

• do not share grid edges

The provided data file for this example models the following wire routing con-
figuration:

1 2 3 4 6 7 8 9 10
1

3

4

5

6

7

8

9

10

5

T2
T1

T3

T2

T4

T1

T3

T4

2

Data File

% We define four wires.

wire(1). wire(2). wire(3). wire(4).

19

% We define the number of columns and rows

crd(1). crd(2). crd(3). crd(4). crd(5).

crd(6). crd(7). crd(8). crd(9). crd(10).

% We define terminal locations.

% terminal(X,Y,Z) means the end of wire Z is in (X,Y).

terminal(6,4,1). terminal(10,8,1).

terminal(7,9,2). terminal(9,4,2).

terminal(4,9,3). terminal(9,9,3).

terminal(8,6,4). terminal(3,4,4).

% We define blocked points

blocked(4,3). blocked(4,4). blocked(4,5). blocked(4,6).

blocked(5,3). blocked(5,4). blocked(5,5). blocked(5,6).

blocked(7,1). blocked(7,2). blocked(8,1). blocked(8,2).

Program File

% Declare program predicate path: point (I,J) is on wire W

pred path(crd, crd, wire).

% Declare variables

var crd I, J, K, L, M, N.

var wire W.

% Terminal points are on the path

terminal(I,J,W) -> path(I,J,W).

% Terminal points have exactly one adjacent point on the path

terminal(I,J,W) -> 1 { path(L,M,W)[L,M]: abs(I-L)+abs(J-M)==1 } 1.

% All other points on the path have exactly two adjacent points

path(I,J,W) -> terminal(I,J,W) |

2 { path(L,M,W)[L,M]: abs(I-L)+abs(J-M)==1 } 2.

% Only one wire can pass through any point

20

{ path(I,J,W)[W] } 1.

% Blocked points are unavailable

blocked(I,J), path(I,J,W) -> .

Aspps and Asppsgrnd Output

$ psgrnd -r 3_wr.rule -d 3_wr.data -o 3_wr.aspps

Version: psgrnd 7-Jul-2005

WARNING: The following program variables were declared but never used: K, N

SUCCESS: Created file "3_wr.aspps"

$ aspps -f 3_wr.aspps -A

aspps.2003.06.04

Atoms determined during grounding:

Answer-set 1:

path(1,3,2)

path(1,4,2)

path(1,5,2)

path(1,7,2)

path(1,8,2)

path(1,9,2)

path(2,2,2)

path(2,3,2)

path(2,5,2)

path(2,6,2)

path(2,7,2)

path(2,9,2)

path(2,10,2)

path(3,1,2)

path(3,2,2)

path(3,4,4)

path(3,5,4)

path(3,6,4)

path(3,7,4)

path(3,10,2)

path(4,1,2)

path(4,7,4)

path(4,8,3)

path(4,9,3)

path(4,10,2)

path(5,1,2)

path(5,2,2)

21

path(5,7,4)

path(5,8,3)

path(5,9,2)

path(5,10,2)

path(6,2,2)

path(6,3,2)

path(6,4,1)

path(6,6,4)

path(6,7,4)

path(6,8,3)

path(6,9,2)

path(7,3,2)

path(7,4,1)

path(7,6,4)

path(7,8,3)

path(7,9,2)

path(8,3,2)

path(8,4,1)

path(8,5,1)

path(8,6,4)

path(8,8,3)

path(8,9,3)

path(9,1,1)

path(9,2,1)

path(9,3,2)

path(9,4,2)

path(9,5,1)

path(9,6,1)

path(9,7,1)

path(9,8,1)

path(9,9,3)

path(10,1,1)

path(10,2,1)

path(10,8,1)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

900 556 sat 24.04 318801 325275 1 3_wr.aspps

The program above provides the following solution:

22

1 2 3 4 6 7 8 9 10
1

3

4

5

6

7

8

9

10

5

T2
T1

T3

T2

T4

T1

T3

T4

2

There are several problems with this solution. Meandering paths between ter-
minals result in unnecessarily long wires. Loops also may occur, as seen in
the upper left corner of the grid. These problems can be eliminated with the
addition of further constraints to the wire-routing program, however.

Program File (continued)

% At most m points on each wire

{ path(I,J,W)[I,J] } m.

% Do not choose points at distance m or more from a terminal point

terminal(I,J,W), path(L,M,W), m < abs(I-L)+abs(J-M) -> .

% Eliminate cycles of length 4

path(I,J,W), path(I+1,J,W), path(I+1,J+1,W), path(I,J+1,W) -> .

% Limit search space to rectangle formed by terminal points

% (or its relaxation). The rectangle is expanded by k units.

terminal(I,J,W), terminal(M,N,W), path(K,L,W) -> K >= min(I,M)-k.

terminal(I,J,W), terminal(M,N,W), path(K,L,W) -> K <= max(I,M)+k.

terminal(I,J,W), terminal(M,N,W), path(K,L,W) -> L >= min(J,N)-k.

terminal(I,J,W), terminal(M,N,W), path(K,L,W) -> L <= max(J,N)+k.

Aspps and Asppsgrnd Output
This output is incorrect. To be fixed.

$ psgrnd -r 3_wr.rule -d 3_wr.data -c m=11 k=1 -o 3_wr.aspps

Version: psgrnd 7-Jul-2005

23

SUCCESS: Created file "3_wr.aspps"

$ aspps -f 3_wr.aspps -A

aspps.2003.06.04

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

904 2666 unsat 0 0 0 0 3_wr.aspps

The revised program with these extra clauses provides the following solution:

1 2 3 4 6 7 8 9 10
1

3

4

5

6

7

8

9

10

5

T2
T1

T3

T2

T4

T1

T3

T4

2

As one can see, the problems are no longer present.

9.4 Missionaries and Cannibals

There are three cannibals and three missionaries on the left bank of a river.
They have a boat. The boat has capacity 2. If at any time there are more
cannibals than missionaries on either bank, the cannibals eat the missionaries.
The goal is to arrange a way of moving all 6 of them to the right bank. The
problem of missionaries and cannibals is a classic AI puzzle that received much
attention [Lif00].

Data File
This example instance requires 11 moves to solve.

% Specify time range (number of moves) in which the solution

% is to be found

time(0..t).

% Specify allowed number of cannibals (or missionaries) on a bank

num(0..3).

24

% 0 - boat on the left bank

% 1 - boat on the right bank

boat(0..1).

% Initial state

instate(3,3,0).

Program File
The two key predicates are state and move. Atom state(T,CC,MM,B) has

the following meaning: at time T there are CC cannibals and MM missionaries
on the left bank. B = 0 means that the boat is on the left bank, B = 1 means
that the boat is on the right bank. Atom move(T,C,M) means that at time T ,
C cannibals and M missionaries are moving to the opposite bank of the river
(the direction depends on the location of the boat).

% Declare predicates

pred state(time,num,num,boat).

pred move(time,num,num).

% Declare variables

var time T.

var num M,C,MM,CC.

var boat B.

% At time 0, the state coincides with the initial state given

% by the input

state(0,CC,MM,B) -> instate(CC,MM,B).

% Select a configuration at time T

1{state(T,CC,MM,B)[CC,MM,B]}1.

% Select a move for time T

T<t -> 1{move(T,C,M)[C,M]}1.

% No moves at time t (the plan ends at time t)

move(t,C,M) -> .

% Enforce the boat capacity costraint

25

move(T,C,M) -> M+C<=2.

% At least one person must be moving to the other bank

move(T,C,M) -> 0<C+M.

% If the boat is on the left bank no more than CC cannibals

% and no more than MM missionaries may be chosen to move to

% the other side

state(T,CC,MM,0),move(T,C,M) -> C<=CC.

state(T,CC,MM,0),move(T,C,M) -> M<=MM.

% If the boat is on the right bank no more than 3-CC cannibals

% (this is how many of them ae on the right bank) and no more

% than 3-MM missionaries may be chosen to move to the other side

state(T,CC,MM,1),move(T,C,M) -> C<=3-CC.

state(T,CC,MM,1),move(T,C,M) -> M<=3-MM.

% Ensure that a move is not immediately "undone"

0<T, T<t, move(T,C,M), move(T-1,C,M) -> .

% Relate the next state to the previous one and to the

% move chosen

T<t, move(T,C,M), state(T,CC,MM,0) -> state(T+1,CC-C,MM-M,1).

T<t, move(T,C,M), state(T,CC,MM,1) -> state(T+1,CC+C,MM+M,0).

% Eliminate states not safe for the missionaries

state(T,CC,MM,B), MM!=0, CC > MM -> .

state(T,CC,MM,B), MM!=3, CC < MM -> .

% At time t the goal state must be reached

state(t,0,0,1).

Aspps and Asppsgrnd Output

$ psgrnd -r 5_mc.rule -d 5_mc.data -c t=11 -o 5_mc.aspps

Version: psgrnd 7-Jul-2005

SUCCESS: Created file "5_mc.aspps"

$ aspps -f 5_mc.aspps -S move

26

aspps.2003.06.04

Atoms determined during grounding:

move

Answer-set 1:

move(0,1,1)

move(1,0,1)

move(2,2,0)

move(3,1,0)

move(4,0,2)

move(5,1,1)

move(6,0,2)

move(7,1,0)

move(8,2,0)

move(9,1,0)

move(10,2,0)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

599 10747 sat 0.02 6 5 1 5_mc.aspps

9.5 Blocks-world Planning

Blocks are arranged in stacks on the floor. Each block is located on exactly one
block or on the floor. No two blocks are placed on the same block. A block that
is on top of its stack can be moved and placed on the top of another stack or
on the floor. Find a plan (a sequence of actions) to rearrange the blocks into
a desired final configuration. Both sequential (only one block moved in a step)
and concurrent (allows for several blocks to be moved in the same step) versions
are of interest. This is a classic planning problem in AI.

Data File
Data predicate time specifies the time horizon (constant t is entered from

the command line). Data predicate block defines the set of blocks (constant
k is entered from the command line). Data predicate on0 defines the initial
configuration. Atom on0 (A,B) means that block A is (initially) on block B.
Similarly, data predicate onF provides a specification for the goal configuration.
Atom onF (A,B) means that in the goal configuration block A must be on
block B. The specification of the goal configuration may be incomplete. The
data file given here is the example large.c, proposed by Kautz and Selman
(http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html).

% We define the time horizon

27

time(0..t).

% We define the number of blocks

block(0..15).

% Initial configuration

on0(13,0). on0(12,13). on0(1,12). on0(2,1). on0(3,2).

on0(15,0). on0(14,15). on0(4,14). on0(5,4). on0(10,5).

on0(11,10). on0(6,0). on0(7,6). on0(8,7). on0(9,8).

% Partial description of the goal configuration

onF(5,10). onF(1,5). onF(14,1). onF(9,4). onF(8,9).

onF(13,8). onF(15,13). onF(11,7). onF(3,11). onF(2,3).

onF(12,2).

Program File
Key program predicates are on, move and top. Atom on(T,A,B) means that

at time T block A is on block B. Atom move(T,A) represents the fact that at
time T , block A is one of the blocks to be moved. Finally, atom top(T.A) means
that at time T block A is at the top of its stack of blocks.

% Declare predicates

pred on(time,block,block).

pred move(time,block).

pred top(time,block).

% Declare variables

var time T.

var block A,B,C.

% Specify an arrangement of blocks at time T

% Each block other than the floor is on top of exactly one

% block

0<A -> 1 { on(T,A,B)[B] } 1.

% Each block other than the floor is either a top block or

% is under exactly one block or is the top block

0<A -> 1{top(T,A); on(T,B,A)[B]}1.

28

% floor is never on any other block

on(T,0,A) -> .

% floor is never a top

top(T,0) -> .

% The state at time 0 must coincide with the initial configuration

on(0,A,B) -> on0(A,B).

on0(A,B) -> on(0,A,B).

% The state at time t must be consistent with the specification

% of the goal

onF(A,B) -> on(t,A,B).

% Constraints on moves

% Floor never moves

move(T,0) -> .

% Moved blocks are restricted to top blocks.

on(T,B,A), move(T,A) -> .

% No move is made at time t.

move(t,A) -> .

% A block cannot be moved on top of a block that is being moved

% in the same move

move(T,A),move(T,B),on(T+1,A,B) -> .

% No block is directly moved back where it was

move(T,A), on(T,A,B), on(T+2,A,B) -> .

% No block moves on the same location it was in

move(T,A), on(T,A,B), on(T+1,A,B) -> .

29

% Compute the new state

% None of these constraints is necessary. But when put together

% they seem to work best.

T<t, on(T,A,B) -> 1{on(T+1,A,B); move(T,A)}1.

on(T+1,A,B) -> 1{move(T,A); on(T,A,B)}1.

Aspps and Asppsgrnd Output

$ psgrnd -r 6_bwp.rule -d 6_bwp.data -c t=8 -o 6_bwp.aspps

Version: psgrnd 7-Jul-2005

SUCCESS: Created file "6_bwp.aspps"

$ aspps -f 6_bwp.aspps -S move

aspps.2003.06.04

Atoms determined during grounding:

on(0,1,12)

on(0,2,1)

on(0,3,2)

on(0,4,14)

on(0,5,4)

on(0,6,0)

on(0,7,6)

on(0,8,7)

on(0,9,8)

on(0,10,5)

on(0,11,10)

on(0,12,13)

on(0,13,0)

on(0,14,15)

on(0,15,0)

on(1,1,12)

on(1,2,1)

on(1,4,14)

on(1,5,4)

on(1,6,0)

on(1,7,6)

on(1,8,7)

on(1,10,5)

on(1,12,13)

on(1,13,0)

on(1,14,15)

on(1,15,0)

on(2,1,12)

30

on(2,4,14)

on(2,5,4)

on(2,6,0)

on(2,7,6)

on(2,12,13)

on(2,13,0)

on(2,14,15)

on(2,15,0)

on(3,4,14)

on(3,6,0)

on(3,12,13)

on(3,13,0)

on(3,14,15)

on(3,15,0)

on(4,13,0)

on(4,14,15)

on(4,15,0)

on(5,9,4)

on(5,11,7)

on(5,15,0)

on(6,3,11)

on(6,5,10)

on(6,8,9)

on(6,9,4)

on(6,11,7)

on(7,1,5)

on(7,2,3)

on(7,3,11)

on(7,5,10)

on(7,8,9)

on(7,9,4)

on(7,11,7)

on(7,13,8)

on(8,1,5)

on(8,2,3)

on(8,3,11)

on(8,5,10)

on(8,8,9)

on(8,9,4)

on(8,11,7)

on(8,12,2)

on(8,13,8)

on(8,14,1)

on(8,15,13)

move(0,11)

move(1,10)

31

move(2,5)

move(3,4)

move(4,9)

move(5,8)

move(6,13)

move(7,15)

top(0,3)

top(0,9)

top(0,11)

top(1,10)

top(1,11)

top(2,5)

top(2,10)

top(3,4)

top(3,5)

top(4,4)

top(4,9)

top(5,8)

top(5,9)

top(6,8)

top(6,13)

top(7,13)

top(7,15)

top(8,15)

move

Answer-set 1:

move(0,3)

move(0,9)

move(1,2)

move(1,3)

move(1,8)

move(2,1)

move(2,3)

move(2,7)

move(2,9)

move(3,3)

move(3,6)

move(3,7)

move(3,9)

move(3,11)

move(3,12)

move(4,6)

move(4,8)

move(4,11)

move(4,12)

32

move(4,13)

move(4,14)

move(5,3)

move(5,5)

move(5,6)

move(5,13)

move(5,15)

move(6,1)

move(6,2)

move(6,15)

move(7,12)

move(7,14)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

1620 2185 sat 0.34 922 920 1 6_bwp.aspps

9.6 Vertex-cover Problem

A set of vertices of an undirected graph is called a vertex cover if every edge
in the graph has at least one of its ends in the set. The problem is, given an
undirected graph G and an integer k, to compute a vertex cover of G with
no more than k vertices (if such a cover exists). The vertex-cover problem is
another classic NP-complete problem. It is also a difficult test problem for
search algorithms.

The data file defines the vertex set of the graph. It also lists all the edges of
the graph as facts edge(a, b).

Data File
This example instance has a solution when k equals 2.

% Define the vertex set of the graph.

vtx (1..5).

% Define the edges connecting the vertices.

edge(1,3). edge(3,2). edge(3,4). edge(4,5).

Program File
The main (and only) program predicate is incover . Atom incover(X) rep-

resents the fact that the vertex X is in a vertex cover.

% Declare program predicates

pred incover(vtx).

33

% Declare variables

var vtx X, Y.

% Select a set of vertices for a vertex cover

{ incover(X)[X] } k.

% Enforce the vertex-cover constraint:at least one end

% of each edge must be in the cover

edge(X,Y) -> incover(X) | incover(Y).

Aspps and Asppsgrnd Output

$ psgrnd -r 8_vc.rule -d 8_vc.data -c k=2 -o 8_vc.aspps

Version: psgrnd 7-Jul-2005

SUCCESS: Created file "8_vc.aspps"

$ aspps -f 8_vc.aspps -A

aspps.2003.06.04

Atoms determined during grounding:

Answer-set 1:

incover(3)

incover(4)

Aspps.stat Information

Variable Clauses Sat CPU Time Branch Bcktrck Count Filename

6 5 sat 0 2 0 1 8_vc.aspps

References

[1] D. East and M. Truszczyński. aspps – An Implementation of Answer-set
Programming with Propositional Schemata. In Proceedings of Logic Pro-
gramming and Nonmonotonic Reasoning Conference, LPNMR 2001, LNAI
2173, pages 402–405, Springer Verlag, 2001.

[2] D. East and M. Truszczyński. Propositional Satisfiability in Answer-set
Programming. In Proceedings of Joint German/Austrian Conference on
Artificial Intelligence, KI’2001, LNAI 2174, pages 138–153, Springer Verlag,
2001.

[3] http://www.satlib.org/

34

[Lif00] V. Lifschitz. Missionaries and cannibals in the causal calculator. In
Principles of Knowledge Representation and Reasoning, Proceedings of the
Seventh International Conference (KR2000), pages 85 – 96. Morgan Kauf-
mann Publishers, 2000.

35

