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Abstract. A method to scale and deform a trimmed
NURBS surface while holding the shape and size of specific
features (trimming curves) unchanged is presented. The new
surface is formed by scaling the given surface according to
the scaling requirement first, and then attaching the (orig-
inal) features to the scaled NURBS surface at appropriate
locations. The attaching process requires several geometric
operations and constrained free-form surface deformation.
The resulting surface has the same features as the original
surface and same boundary curves as the scaled surface while
reflecting the shape and curvature distribution of the scaled
surface. This is achieved by minimizing a shape-preserving
objective function which covers all the factors in the de-
formation process such as bending, stretching and spring
effects. The resulting surface maintains a NURBS represen-
tation and, hence, is compatible with most of the current
data-exchange standards. Test results on several car parts
with trimming curves are included. The quality of the re-
sulting surfaces is examined using the highlight line model.
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1 Introduction

A surface design problem of especial urgency to the design
community is the lack of constrained shape modification ca-
pabilities, i.e., lack of tools/techniques that are capable of
holding significant features of a model unchanged while glob-
ally or locally altering it. The altering process may involve
scaling and/or deformation. Addressing and solving this
problem would provide the design industry with the capa-
bility of globally or locally modifying an existing model in
length, height, or width without affecting certain significant
features and, consequently, avoiding expansive redesign pro-
cess.

Using scaling as an altering technique is common in de-
sign. The problem of constrained scaling (i.e., scaling a
model with some features fixed), however, has not been se-

riously addressed in the literature yet. Deformation as an
altering technique, on the other hand, is not as commonly
used in design. The free-form deformation (FFD) method
for surface design has been studied in several approaches.

The spatial deformation approach operates on the space
inside which the deformed objects are embedded. This
approach is independent of the representation of the
surface. Most works in this approach use trivariate
parametric volume. Deformation is performed by ma-
nipulating the control points of the trivariate volumes
[4][5][10][12][13][14][15][16][19]-

The physics-based deformation approach uses physical
simulation to obtain realistic shapes and motions. This
approach introduces a time variable into the surface rep-
resentation to form a dynamic model. The behavior of the
model is controlled by the physical laws, such as the physi-
cal properties of mass distribution, tension, rigidity, damp-
ing and the action of applied forces. The resulting surface is
determined by the equilibrium state of the dynamic model
[6][18][22][23][24]. This method is mainly used in computer
animation and focuses on the process of transforming phys-
ical forces into changes of the dynamic model.

Constrained deformation (i.e., deforming a model while
holding certain features of the model unchanged) was first
studied by Celniker and Welch [7]. The purpose was to pro-
vide a modeling technique that separates the surface rep-
resentation from the surface modeling operators. The user
controls the surface by requiring the surface to preserve a set
of geometric constraints while sculpturing it. The shape of
the surface is faired by minimizing a global energy function.
This technique has also been used in direct surface shape
manipulation [27]. However, most of the time, it is used in
surface interpolation and lofting, where a surface is designed
to interpolate a curve net or scattered discrete points.

In this paper, we will present a method that is capable of
holding certain features (trimming curves) of a surface un-
changed while scaling it. The new surface is formed by scal-
ing the given surface according to the scaling requirement
first; and then attaching the original features to the scaled
NURBS surface at appropriate locations. The attaching pro-



cess requires several geometric operations and constrained
free-form surface deformation. The deformation process is
similar to Celniker and Welch’s approach [7] but in a differ-
ent setting. The resulting surface has the same features as
the original surface and same boundary curves as the scaled
surface while reflecting the shape and curvature distribution
of the scaled surface. The resulting surface also maintains a
NURBS representation.

The remaining part of the paper is arranged as follows.
A formal description of the problem is given in Section 2.
The basic idea of the proposed method is presented in Sec-
tion 3. Techniques needed in constructing the new surface
are described in Sections 4-8. Implementation issues and
test results of the proposed method are shown in Section 9.
Concluding remarks are given in Section 10.

2 Problem Formulation

The problem of constrained surface scaling can be de-
scribed as follows: Given a NURBS surface S(u,v) and a set
of features C; in the domain of the surface, construct a new
surface S(u,v) whose representation is a scaled version of
the given surface S(u,v) but carries all the original features
So Cl

More specifically, let S(u,v) be a NURBS surface of de-
gree p in u direction and degree ¢ in v direction
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where @); ; are 3D control points, N;,(u) and N;,(v) are
B-spline basis functions of degree p and ¢, respectively, and
w; ; are weight functions. N;,(u) and N;,(v) are defined
with respect to the knot vectors 7 = {79, 71, ... , Tmip+1}s
and o0 = {09,01, ... ,0n4q+1}, respectively, with 79 = ... =
Tp =09 = ... = 0y = 0 and 71 = .. = Tygpt1 =
Ont1 = ... = Optq+1 = 1. The features to be held un-
changed are closed trimming curves S o C;(t), i = 1,2,...,7,
where C;(t) = (ui(t),vi(t)) are closed parametric curves de-
fined in the domain of S with SoC; N SoC; =0 if i # j.
All the trimming curves are inside the NURBS surface, they
do not intersect the boundary of the surface. If the scaling
factors in z, y and z directions are S;, Sy and S, respec-
tively, then the new surface S(u,v) is supposed to be equal
to Ts o S, the scaled NURBS surface, where T is a scaling

matrix defined as follows:

S, 0 0
T,=| 0o S, 0 |. 2)
0o 0 S

The requirement that the new surface carries all the original
features S o C; means that S o C; are also trimming curves
of the new surface subject to some translation and rotation.

In industrial applications, a trimming curve of a free-form
surface is usually represented as a linear polygon in the do-
main of the surface with vertices of the polygon being points
of the curve. We follow the same approach in this work.

3 Basic Idea

If the new surface is not required to be precisely the same
as Ts o S(u,v), but only close enough to and reflecting the
shape and curvature distribution of the scaled surface, then
an approach based on the concept of attach-and-deform can
be used to construct the new surface. The main idea of
this approach is to attach the original trimming curves to
the scaled NURBS surface at appropriate locations. The at-
taching process requires several geometric operations, such
as translation and rotation, and a deformation of the scaled
surface. The deformation is performed with constraints to
ensure that the trimming curves are attached to the surface
completely and the boundary continuity condition with ad-
jacent surfaces of the scaled surface are unchanged. The de-
formed surface is again a NURBS surface. The deformation
process will also ensure that the resulting surface reflects the
shape and curvature distribution of the scaled surface.

An algorithm is presented below. The last step is for the
user to visually examine the quality of the resulting surface
using a highlight line model.

1. Subdividing surface S(u,v)

2. Scaling S(u,v) with T

3. Relocating trimming curves S o C;(t)

4. Setting up shape-preserving objective function
5. Setting up constraints

6. Performing constrained surface deformation.
7. Rendering

The third step is the most critical step because it also de-
termines the outcome of the deformation process. Details of
the above steps, except Step 2, are given in the subsequent
sections.



4 Subdivision of S(u,v)

This step recursively subdivides the surface S(u, v) until the
following three conditions are satisfied:

1. Each subpatch intersects at most one trimming curve.

2. The trimming curves do not intersect any of the bound-
ary subpatches (subpatches adjacent to the boundary of
S(u,v)).

3. The number of trimming curve vertices contained in
each subpatch is at most (p+ 1)(¢ + 1).

The first two conditions are to provide enough flexibility for
setting up the trimming curve constraint and the boundary
constraint (to be discussed in detail in Section 7). The third
condition is to avoid over-determined systems in the defor-
mation process.

The first two conditions are satisfied if the dimension of
each subpatch is smaller than or equal to one half of the
minimimum of Q; and Q,: €; is the smallest distance be-
tween the vertices of the trimming curves S o C;(t) and the
boundary of the NURBS surface S(u,v), 2, is the small-
est distance between vertices of different trimming curves
S o Ci(t). The third condition has to be tested after each
level of recursive subdivision once the first two conditions

are satisfied.

The computation of 25 is straightforward while ; can be
computed using the Newton-Raphson method on the diriva-
tive of a distance function.

It is possible to perform subdivision on boundary spans
and spans that intersect the trimming curves only. This
would reduce the subdivision time to certain extent. How-
ever, the highlight line model of the deformation results show
that the curvature distribution in this case is not as good as
the results of uniform subdivision on all the spans (This is
reasonable because a movement of a control point in a large
patch causes shape change in a larger area).

Without loss of generality, we shall use the same notations
for the control points and parameter knots even though both
of them might have been changed after the subdivision pro-
cess.

5 Relocating Trimming Curves

This step is to move each original trimming curves S o C;(t)
to an appropriate location that is not only as close to the
scaled surface T50.S5(u,v) as possible but also with an appro-
priate orientation. The first requirement is to ensure that
only a small deformation is required to include the trimming

curve as a feature. The second requirement is to ensure that
deformation would not cause much distortion of the curva-
ture of the scaled surface. The closeness will be measured
in Euclidean distance.

We use three steps, two translations and one rotation,
to determine the new location for each 3D trimming curve
S o C;(t). First, the trimming curve S o C;(t) is translated
from P;, its centroid, to T5P;, the centroid of the scaled
trimming curve T o S o C;(¢). The mean normal vector N;
of the trimming curve S o C;(t),

1 &
N; = — ZM’,;’: (3)

where V; ; are normal vectors of the trimming curve SoC;(t)
at its vertices F; ;, is then rotated about the vector U; =
N; x TyN; until it is in the same direction as T N;, the mean
normal vector of the scaled trimming curve where

S,S. 0 0
T,=| 0 8,8 0 (4)
0 0 8,85,

These two steps align an original trimming curve with the
corresponding trimming curve on the scaled surface in both
centroid and direction. We will use the same notations for
the translated and rotated original trimming curves, includ-
ing their vertices.

After the translation and rotation, if one projects the ver-
tices P; ; of the trimming curve S o C;(t) onto the scaled
surface T o S(u,v) in the direction of T;N;, one gets a set
of points P;; on Ty o S(u,v). The distance between the
translated and rotated trimming curve and the scaled sur-
face Ty0S(u,v) is defined as the sum of the distances between
the vertices of the translated and rotated trimming curve to
their projections Piyj on the scaled surface.

The third step is to move the translated and rotated trim-
ming curve S o C;(t) along the vector Ty N; to be as close to
the scaled surface as possible, i.e, the distance defined above
is a minimum. This problem is equivalent to finding a plane
whose distance to a set of finite points is a minimum. Such
a problem can be solved using the least squares method.

The problem of finding P; ; for the translated and rotated
trimming curve is equivalent to finding the first intersection
point of an arrow and a parametric surface. This problem
can be solved using the adaptive subdivision method.

We use R; to represent the relocating transformation for
the trimming curve S o C;(¢) and C; to represent the trim-
ming curve on the scaled surface T 0 S(u,v) defined by P; ;.



6 Setting Up Shape-Preserving Ob-
jective Function

The deformation process requires the construction of a
shape-preserving objective function. This function is used to
determine the shape of the deformed surface in an optimiza-
tion process. The deformed surface must reflect the shape
and curvature distribution of the scaled surface. Hence, the
objective function should be constructed based on the differ-
ence of these two surfaces. In our problem, the displacement
function is

V(u,v) = (S — Ty 0 S)(u,v). (5)

where S(u,v) represents the new surface.

Several approximated energy functions have been
used as the objective fuctions in geometric deformation
[6][20][24][27]. The goal is to minimize the energy of the
displacement function so as to minimize the shape change of
the deformed surface. We will use a physics-based approach
in our work.

The deformation of a surface is like the deformation of a
thin plate. According to Courant [11], the energy of a de-
formed thin plate is composed of five parts: bending strain
energy, spring potential energy, gravity enerqy, moment en-
ergy and edge force energy, as follows:

E(V) = Ebending - Egravity + Espring - Emoment - Eedgeforce

(6)
In a typical geometric modeling problem, the external forces
such as moment, edge force and gravity are set to zero. This
leads to a free plate [21]. So the potential energy of a free
plate can be expressed as follows:

E(V) = Ebending + Espring (7)

Here we keep the spring potential energy because of the
requirment that the new surface should have the smallest
change in shape in order to keep characteristics of the origi-
nal surface such as smoothness and curvature. On the other
hand, deformation of a thin plate would also involve stretch-
ing if some features are required to be fixed, such as in sheet
metal stamping. So the stretching strain energy should be
included in eq. (7) as well, as follows:

E(V) = aEbending + BEstretching + 'yEspring- (8)

where «,  and v are weights. According to the theory of
mechanics [17][25], the strain energy for a thin plate bending
process is defined as follows:

1 . .
Ebenbz‘ng://DH[E(Vuu'FVvU)Z_(1_0)(Vuquv_VJv)]dudv
(9)

where o is the Poisson constant (set to 0 here) and & is a
constant depending on the thickness and material property
parameters of the plate.

The strain energy for the thin plate stretching process, by
ignoring the influence of the shearing strain, is

1 . .
Estretehing = 5/ / [(2G + )\)(VUZ + sz) + QA(VUVU)]dUd’U
J D

(10)
where G and \ are constants depending on the material
property parameters of the plate.

By introducing springs at the knots (7;, ;) to pull the
new surface toward the scaled surface, we can define the
corresponding potential spring energy as follows:

1
Baring =3 | [ K o)lVim, o ()
D
where K (7;, 0;) is the stiffness of the spring at (7;, o;).
For NURBS surfaces, egs. (9), (10) and (11) lead to a
quadratic equation with respect to the control points if ho-
mogeneous representation is used. The homogeneous repre-

sentations of T, o S(u,v) and S(u,v) (see Section 2 for the
definition of S(u,v)) are

DO (wijQijs wi ) Nip(w)Njy(v)

i=0 j=0
and
m n
DD (Wi Qijy wij)Nip(w)Nj 4 (v),
i=0 j=0
respectively.  For simplicity of notations, we shall use

Ty o0 S(u,v) and S(u,v) to represent their own homogeneous
forms, i.e., Q;; and @; ; are homogeneous control points of
the following forms:

Qi =

Ts o S(u,v) and S(u,v) can be written as linear equations
with respect to their control points as follows:

(wi;Qij, wij), Qij = (wi;Qij, wiy).

A
TSOS(U:U) = ZQka(u7v); (12)
i=0

A
S(u,0) = 3 QuNi(u,v) (13)

i=0

where

A=(m+1)x(n+1)—1 (14)
Qk = Qi,j; Qk = Qi,j, (15)

[
=2
=

Ni(u,v) = N p(u)Njq(v), (



with
i=k—[k/(m+1)] x(m+1),

j=Lk/(m+1)].

By substituting eqs. (12) and (13) into eq. (5) and egs.
(9), (10) and (11) and then subtituting eqs. (9), (10) and
(11) into eq. (8), one gets the following expression through
simple algebra:

EQ-Q)=[Q-Q"AQ - Q] (17)

where . o .
Q: [Q07 17"'7QA] (18)
Q =1[Qo,Q1,....Qa] (19)

and A is a (A+1) x (A+1) matrix whose entries are defined
as follows:

1 1
aiy = / / o NV (1, 0) N (1, )+ o N3 (1, 0) N (ar, 0)
0 0

+az N (u, v)NJ¥ (u,v) + ag N (u, v) N (u,v)

-|-51NZ-U(U,U)N;L(U,’U) + B2NZU(UIU)NJD(UIU)

+B3 N/ (u,v) Nj (u,v)]dudv + v1 N;i(u, v)Nj(u,v)  (20)

where N'*(u,v) is the second derivative of Ny (u,v) with re-
spect tou, ... etc.,and i, j = 0,1, ..., A. a1,as, az and a4 are
constants related to bending; 81, 82 and 3 are constants re-
lated to stretching; and 7, is a constant for the spring effect.
Since the bending energy affects surface curvature, while the
stretching energy affects surface area and the spring energy
affects the amount of surface displacement, we should ad-
just the weight constants according to practical requirement
during deformation.

The quadratic equation E(Q — Q) has a minimum at the
point where A(Q — Q) = 0. Hence, if the optimization pro-
cess is performed with no constraints, the resulting surface
will be exactly the same as the scaled surface.

7 Setting Up Constraints

Two types of constraints, boundary constraint and trimming
curve constraint, are used to control the deformation pro-
cess.

7.1 Boundary Constraint

The boundary constraint is to prevent the boundary curves
of the scaled surface from being changed during the defor-
mation process. Otherwise, the deformed surface might not
fit adjacent surfaces (parts) well. For simplicity, we shall

assume that the NURBS surface has multiple knots at the
beginning and end of its knot vectors. In this case, the
boundary curves of the surface are determined by the con-
trol points on the boundary of the control net only.

The C°-continuity boundary constraint for the deforma-
tion process is

Qoj = Qo Qumj = Qum.j, (21)
Qi,O - Qi,o: Qi,n - Qi,n: (22)
where Q” are the control points of the scaled surface

Ts o S(u,v) and Q; ; are the control points of the deformed
surface

13=0,...,n;

i=1,...,m—1.

For a surface without multiple knots, one can fix the
boundary of the surface by fixing a band of control points
that defines the boundary curves of the surface. The sub-
division process performed in the first step guarantees that
enough unconstrained control points will still be available
for the deformation process with the boundary constraint.
If G! continuity is required, additional equations should be
included as follows:

Q=01 Qm-1;=0Qm-1,
Qin=Qin,  Qin-1=CQin 1,

j=1,...,n—1; (23)

i=2,...,m—2. (24)

7.2 Trimming Curve Constraint

The trimming curve constraint is to ensure that, after defor-
mation, the relocated trimming curves R; o S o C;(t) become
trimming curves of the deformed surface S(u,v), i.e., ver-
tices P; ; = R;0S 0 C;(t; ;) of the relocated trimming curves
R; o S o Ci(t) are points of the surface S(u,v). Hence, for
each 1 <14 <r, there must exist (u; ;, v; ;) in the domain of

S(u,v) so that

A
Pij =Y QuNi(uij,vij),

k=0
j = 1,2,...,n; where A, Qr and Ni(u,v) are defined in
(14), (15), and (16). The best choice for (u;j, v; ;) is the

(25)

parameters of the point P;; constructed in Section 5. The
process of computing ]51-7]4 in Section 5 would actually find
its parameters first. Therefore, the values of (u; ;, v; ;) are
already available at this stage.

The equations in (25) can be put into matrix form as
follows

BQ=b (26)
where @ is defined in (18), and B and b are defined as
follows:

[ b1 b2 b1,a -‘
= 1 ; (27)

D bais |



with
M=ni+4+ns+...+n,

bij = N;(uki,vi)

where k is the smallest integer such that i < ny+ns+...+ng
andl=1i— (ny+na+...+np_1).

The trimming curve constraint and the boundary con-
straint can be merged into a single linear constraint system.

8 The Deformation Process

The optimization process of the quadratic equation with the
linear constraints can be solved using the Lagrange Mul-
tiplier method, which transfers the constrained optimiza-
tion problem into an unconstrained extremization problem.
This follows from the observation that the solution to the
quadratic optimization function E(z) = f(z) under con-
straint g(Z) is a critical point of E(z) = f(z) + Ag(Z). X is
called the Lagrange Multiplier.
For our application, the optimization function is

FQ-Q=3@-Q74Q-Q  (9)
and the linear constraint is
BQ=b (30)

By adding the Lagrange multiplier we have the following

linear system:
BTI[Q]
0 A

a=AQ

oo

} (31)

oTp

where

(32)

Solving the linear system (31) will obtain the control points
of the desired deformed surface.

9 Implementation

An issue about degree of freedom. should be noted when
implementing the above approach. The linear system con-
structed in Section 8 could be overly determined due to the
fact that the number of control points of a surface patch is
finite. This problem is resolve by performing subdivision in
Section 4 to fulfill the third requirement. We first deter-
mine the band that has influence on the trimming curves

and then insert some new knots and, consequently, some
new control points into this band. Thus we can avoid the
overly-determining problem.

The implementation of the above method is carried out
using B-spline representation. For NURBS representation,
one simply repeats this method first in the 4D space and
then project the result back into the 3D space. Since the
above method uses the control points as the variables, this
can be easily achieved.

Figure 1: Trimmed door panel before scaling.

Test results on two data sets are presented here. These
data sets include a trimmed door panel (Figures 1-2), and
a trimmed front hood (Figures 3-4). The front hood is a
degree 3 x 5 NURBS surface with 8 patches. The door panel
are bicubic NURBS surfaces with 36 patches each. These
three surfaces are also B-spline surfaces because the weights
in the NURBS representations of these surfaces are all equal
to one.

Two images are shown for each case: the first one shows
the trimmed surface before the scaling process and the sec-
ond one shows the result of the constrained scaling pro-
cess. The scaling factors for the two cases are: S, = 1.15,
Sy =12, S, = 1.3. The shaded trimmed surfaces before
scaling and after scaling are displayed with a set of highlight
lines [8][1][2]. Highlight lines are sensitive to the change of
normal directions, hence, can be used to detect surface nor-
mal (curvature) irregularities. This sometimes is not possi-
ble with wireframe drawings or shaded pictures [9][28].

From the images, one can see in each case that the re-
sult of the constrained scaling has the same features as the



Figure 2: Trimmed door panel after scaling.

original surface, while having the same shape as the scaled
surface. The curvature distribution of the result is also the
same as the scaled surface. This can be verified by compar-
ing the highlight lines on the surface before and after the
deformation process.

10 Conclusion

This paper presents a deformation based approach for con-
strained surface scaling of trimmed NURBS surfaces. The
new surface is formed by scaling the given surface first, and
then attaching the (original) features to the scaled NURBS
surface at appropriate locations. The attaching process re-
quires several geometric operations and constrained free-
form surface deformation. The resulting surface has the
same features as the original surface and same boundary
curves as the scaled surface while reflecting the shape and
curvature distribution of the scaled surface. The resulting
surface also maintains a NURBS representation and, hence,
is compatible with most of the current data-exchange stan-
dards.

The features considered in the examples are all within one
single NURBS surface. A future work is to consider the case
when a feature intersects the boundary of the given surface.
Another research direction is to scale different components
of an object with different scaling factors while maintaining
overall smoothness of the object and keeping certain features
fixed.

Figure 3: Trimmed front hood before scaling.
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