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ien
eUniversity of Kentu
ky, Lexington, Kentu
ky 40506-0046Abstra
t. A method to s
ale and deform a trimmedNURBS surfa
e while holding the shape and size of spe
i�
features (trimming 
urves) un
hanged is presented. The newsurfa
e is formed by s
aling the given surfa
e a

ording tothe s
aling requirement �rst, and then atta
hing the (orig-inal) features to the s
aled NURBS surfa
e at appropriatelo
ations. The atta
hing pro
ess requires several geometri
operations and 
onstrained free-form surfa
e deformation.The resulting surfa
e has the same features as the originalsurfa
e and same boundary 
urves as the s
aled surfa
e whilere
e
ting the shape and 
urvature distribution of the s
aledsurfa
e. This is a
hieved by minimizing a shape-preservingobje
tive fun
tion whi
h 
overs all the fa
tors in the de-formation pro
ess su
h as bending, stret
hing and springe�e
ts. The resulting surfa
e maintains a NURBS represen-tation and, hen
e, is 
ompatible with most of the 
urrentdata-ex
hange standards. Test results on several 
ar partswith trimming 
urves are in
luded. The quality of the re-sulting surfa
es is examined using the highlight line model.Keywords: 
onstrained s
aling, 
onstrained deformation,trimming 
urves, NURBS surfa
es, strain energy1 Introdu
tionA surfa
e design problem of espe
ial urgen
y to the design
ommunity is the la
k of 
onstrained shape modi�
ation 
a-pabilities, i.e., la
k of tools/te
hniques that are 
apable ofholding signi�
ant features of a model un
hanged while glob-ally or lo
ally altering it. The altering pro
ess may involves
aling and/or deformation. Addressing and solving thisproblem would provide the design industry with the 
apa-bility of globally or lo
ally modifying an existing model inlength, height, or width without a�e
ting 
ertain signi�
antfeatures and, 
onsequently, avoiding expansive redesign pro-
ess.Using s
aling as an altering te
hnique is 
ommon in de-sign. The problem of 
onstrained s
aling (i.e., s
aling amodel with some features �xed), however, has not been se-

riously addressed in the literature yet. Deformation as analtering te
hnique, on the other hand, is not as 
ommonlyused in design. The free-form deformation (FFD) methodfor surfa
e design has been studied in several approa
hes.The spatial deformation approa
h operates on the spa
einside whi
h the deformed obje
ts are embedded. Thisapproa
h is independent of the representation of thesurfa
e. Most works in this approa
h use trivariateparametri
 volume. Deformation is performed by ma-nipulating the 
ontrol points of the trivariate volumes[4℄[5℄[10℄[12℄[13℄[14℄[15℄[16℄[19℄.The physi
s-based deformation approa
h uses physi
alsimulation to obtain realisti
 shapes and motions. Thisapproa
h introdu
es a time variable into the surfa
e rep-resentation to form a dynami
 model. The behavior of themodel is 
ontrolled by the physi
al laws, su
h as the physi-
al properties of mass distribution, tension, rigidity, damp-ing and the a
tion of applied for
es. The resulting surfa
e isdetermined by the equilibrium state of the dynami
 model[6℄[18℄[22℄[23℄[24℄. This method is mainly used in 
omputeranimation and fo
uses on the pro
ess of transforming phys-i
al for
es into 
hanges of the dynami
 model.Constrained deformation (i.e., deforming a model whileholding 
ertain features of the model un
hanged) was �rststudied by Celniker and Wel
h [7℄. The purpose was to pro-vide a modeling te
hnique that separates the surfa
e rep-resentation from the surfa
e modeling operators. The user
ontrols the surfa
e by requiring the surfa
e to preserve a setof geometri
 
onstraints while s
ulpturing it. The shape ofthe surfa
e is faired by minimizing a global energy fun
tion.This te
hnique has also been used in dire
t surfa
e shapemanipulation [27℄. However, most of the time, it is used insurfa
e interpolation and lofting, where a surfa
e is designedto interpolate a 
urve net or s
attered dis
rete points.In this paper, we will present a method that is 
apable ofholding 
ertain features (trimming 
urves) of a surfa
e un-
hanged while s
aling it. The new surfa
e is formed by s
al-ing the given surfa
e a

ording to the s
aling requirement�rst; and then atta
hing the original features to the s
aledNURBS surfa
e at appropriate lo
ations. The atta
hing pro-1




ess requires several geometri
 operations and 
onstrainedfree-form surfa
e deformation. The deformation pro
ess issimilar to Celniker and Wel
h's approa
h [7℄ but in a di�er-ent setting. The resulting surfa
e has the same features asthe original surfa
e and same boundary 
urves as the s
aledsurfa
e while re
e
ting the shape and 
urvature distributionof the s
aled surfa
e. The resulting surfa
e also maintains aNURBS representation.The remaining part of the paper is arranged as follows.A formal des
ription of the problem is given in Se
tion 2.The basi
 idea of the proposed method is presented in Se
-tion 3. Te
hniques needed in 
onstru
ting the new surfa
eare des
ribed in Se
tions 4-8. Implementation issues andtest results of the proposed method are shown in Se
tion 9.Con
luding remarks are given in Se
tion 10.2 Problem FormulationThe problem of 
onstrained surfa
e s
aling 
an be de-s
ribed as follows: Given a NURBS surfa
e S(u; v) and a setof features Ci in the domain of the surfa
e, 
onstru
t a newsurfa
e �S(u; v) whose representation is a s
aled version ofthe given surfa
e S(u; v) but 
arries all the original featuresS Æ Ci.More spe
i�
ally, let S(u; v) be a NURBS surfa
e of de-gree p in u dire
tion and degree q in v dire
tionS(u; v) = Pmi=0Pnj=0 wi;jQi;jNi;p(u)Nj;q(v)Pmi=0Pnj=0 wi;jNi;p(u)Nj;q(v) ; (1)(u; v) 2 [0; 1℄� [0; 1℄where Qi;j are 3D 
ontrol points, Ni;p(u) and Nj;q(v) areB-spline basis fun
tions of degree p and q, respe
tively, andwi;j are weight fun
tions. Ni;p(u) and Nj;q(v) are de�nedwith respe
t to the knot ve
tors � = f�0; �1; ::: ; �m+p+1g,and � = f�0; �1; ::: ; �n+q+1g, respe
tively, with �0 = ::: =�p = �0 = ::: = �q = 0 and �m+1 = ::: = �m+p+1 =�n+1 = ::: = �n+q+1 = 1. The features to be held un-
hanged are 
losed trimming 
urves S Æ Ci(t), i = 1; 2; :::; r,where Ci(t) = (ui(t); vi(t)) are 
losed parametri
 
urves de-�ned in the domain of S with S Æ Ci \ S Æ Cj = ; if i 6= j.All the trimming 
urves are inside the NURBS surfa
e, theydo not interse
t the boundary of the surfa
e. If the s
alingfa
tors in x, y and z dire
tions are Sx, Sy and Sz, respe
-tively, then the new surfa
e �S(u; v) is supposed to be equalto Ts Æ S, the s
aled NURBS surfa
e, where Ts is a s
alingmatrix de�ned as follows:

Ts = 24 Sx 0 00 Sy 00 0 Sz 35 : (2)The requirement that the new surfa
e 
arries all the originalfeatures S Æ Ci means that S Æ Ci are also trimming 
urvesof the new surfa
e subje
t to some translation and rotation.In industrial appli
ations, a trimming 
urve of a free-formsurfa
e is usually represented as a linear polygon in the do-main of the surfa
e with verti
es of the polygon being pointsof the 
urve. We follow the same approa
h in this work.3 Basi
 IdeaIf the new surfa
e is not required to be pre
isely the sameas Ts Æ S(u; v), but only 
lose enough to and re
e
ting theshape and 
urvature distribution of the s
aled surfa
e, thenan approa
h based on the 
on
ept of atta
h-and-deform 
anbe used to 
onstru
t the new surfa
e. The main idea ofthis approa
h is to atta
h the original trimming 
urves tothe s
aled NURBS surfa
e at appropriate lo
ations. The at-ta
hing pro
ess requires several geometri
 operations, su
has translation and rotation, and a deformation of the s
aledsurfa
e. The deformation is performed with 
onstraints toensure that the trimming 
urves are atta
hed to the surfa
e
ompletely and the boundary 
ontinuity 
ondition with ad-ja
ent surfa
es of the s
aled surfa
e are un
hanged. The de-formed surfa
e is again a NURBS surfa
e. The deformationpro
ess will also ensure that the resulting surfa
e re
e
ts theshape and 
urvature distribution of the s
aled surfa
e.An algorithm is presented below. The last step is for theuser to visually examine the quality of the resulting surfa
eusing a highlight line model.1. Subdividing surfa
e S(u; v)2. S
aling S(u; v) with Ts3. Relo
ating trimming 
urves S Æ Ci(t)4. Setting up shape-preserving obje
tive fun
tion5. Setting up 
onstraints6. Performing 
onstrained surfa
e deformation.7. RenderingThe third step is the most 
riti
al step be
ause it also de-termines the out
ome of the deformation pro
ess. Details ofthe above steps, ex
ept Step 2, are given in the subsequentse
tions.2



4 Subdivision of S(u; v)This step re
ursively subdivides the surfa
e S(u; v) until thefollowing three 
onditions are satis�ed:1. Ea
h subpat
h interse
ts at most one trimming 
urve.2. The trimming 
urves do not interse
t any of the bound-ary subpat
hes (subpat
hes adja
ent to the boundary ofS(u; v)).3. The number of trimming 
urve verti
es 
ontained inea
h subpat
h is at most (p+ 1)(q + 1).The �rst two 
onditions are to provide enough 
exibility forsetting up the trimming 
urve 
onstraint and the boundary
onstraint (to be dis
ussed in detail in Se
tion 7). The third
ondition is to avoid over-determined systems in the defor-mation pro
ess.The �rst two 
onditions are satis�ed if the dimension ofea
h subpat
h is smaller than or equal to one half of theminimimum of 
1 and 
2: 
1 is the smallest distan
e be-tween the verti
es of the trimming 
urves S Æ Ci(t) and theboundary of the NURBS surfa
e S(u; v), 
2 is the small-est distan
e between verti
es of di�erent trimming 
urvesS Æ Ci(t). The third 
ondition has to be tested after ea
hlevel of re
ursive subdivision on
e the �rst two 
onditionsare satis�ed.The 
omputation of 
2 is straightforward while 
1 
an be
omputed using the Newton-Raphson method on the diriva-tive of a distan
e fun
tion.It is possible to perform subdivision on boundary spansand spans that interse
t the trimming 
urves only. Thiswould redu
e the subdivision time to 
ertain extent. How-ever, the highlight line model of the deformation results showthat the 
urvature distribution in this 
ase is not as good asthe results of uniform subdivision on all the spans (This isreasonable be
ause a movement of a 
ontrol point in a largepat
h 
auses shape 
hange in a larger area).Without loss of generality, we shall use the same notationsfor the 
ontrol points and parameter knots even though bothof them might have been 
hanged after the subdivision pro-
ess.5 Relo
ating Trimming CurvesThis step is to move ea
h original trimming 
urves S ÆCi(t)to an appropriate lo
ation that is not only as 
lose to thes
aled surfa
e TsÆS(u; v) as possible but also with an appro-priate orientation. The �rst requirement is to ensure thatonly a small deformation is required to in
lude the trimming


urve as a feature. The se
ond requirement is to ensure thatdeformation would not 
ause mu
h distortion of the 
urva-ture of the s
aled surfa
e. The 
loseness will be measuredin Eu
lidean distan
e.We use three steps, two translations and one rotation,to determine the new lo
ation for ea
h 3D trimming 
urveS Æ Ci(t). First, the trimming 
urve S Æ Ci(t) is translatedfrom Pi, its 
entroid, to TsPi, the 
entroid of the s
aledtrimming 
urve Ts Æ S Æ Ci(t). The mean normal ve
tor Niof the trimming 
urve S Æ Ci(t),Ni = 1ni niXj=1Ni;j ; (3)whereNi;j are normal ve
tors of the trimming 
urve SÆCi(t)at its verti
es Pi;j , is then rotated about the ve
tor Ui =Ni� �TsNi until it is in the same dire
tion as �TsNi, the meannormal ve
tor of the s
aled trimming 
urve where�Ts = 24 SySz 0 00 SxSz 00 0 SxSy 35 : (4)These two steps align an original trimming 
urve with the
orresponding trimming 
urve on the s
aled surfa
e in both
entroid and dire
tion. We will use the same notations forthe translated and rotated original trimming 
urves, in
lud-ing their verti
es.After the translation and rotation, if one proje
ts the ver-ti
es Pi;j of the trimming 
urve S Æ Ci(t) onto the s
aledsurfa
e Ts Æ S(u; v) in the dire
tion of �TsNi, one gets a setof points �Pi;j on Ts Æ S(u; v). The distan
e between thetranslated and rotated trimming 
urve and the s
aled sur-fa
e TsÆS(u; v) is de�ned as the sum of the distan
es betweenthe verti
es of the translated and rotated trimming 
urve totheir proje
tions �Pi;j on the s
aled surfa
e.The third step is to move the translated and rotated trim-ming 
urve S ÆCi(t) along the ve
tor �TsNi to be as 
lose tothe s
aled surfa
e as possible, i.e, the distan
e de�ned aboveis a minimum. This problem is equivalent to �nding a planewhose distan
e to a set of �nite points is a minimum. Su
ha problem 
an be solved using the least squares method.The problem of �nding �Pi;j for the translated and rotatedtrimming 
urve is equivalent to �nding the �rst interse
tionpoint of an arrow and a parametri
 surfa
e. This problem
an be solved using the adaptive subdivision method.We use Ri to represent the relo
ating transformation forthe trimming 
urve S Æ Ci(t) and �Ci to represent the trim-ming 
urve on the s
aled surfa
e Ts ÆS(u; v) de�ned by �Pi;j .3



6 Setting Up Shape-Preserving Ob-je
tive Fun
tionThe deformation pro
ess requires the 
onstru
tion of ashape-preserving obje
tive fun
tion. This fun
tion is used todetermine the shape of the deformed surfa
e in an optimiza-tion pro
ess. The deformed surfa
e must re
e
t the shapeand 
urvature distribution of the s
aled surfa
e. Hen
e, theobje
tive fun
tion should be 
onstru
ted based on the di�er-en
e of these two surfa
es. In our problem, the displa
ementfun
tion is V (u; v) = ( �S � Ts Æ S)(u; v): (5)where �S(u; v) represents the new surfa
e.Several approximated energy fun
tions have beenused as the obje
tive fu
tions in geometri
 deformation[6℄[20℄[24℄[27℄. The goal is to minimize the energy of thedispla
ement fun
tion so as to minimize the shape 
hange ofthe deformed surfa
e. We will use a physi
s-based approa
hin our work.The deformation of a surfa
e is like the deformation of athin plate. A

ording to Courant [11℄, the energy of a de-formed thin plate is 
omposed of �ve parts: bending strainenergy, spring potential energy, gravity energy, moment en-ergy and edge for
e energy, as follows:E(V ) = Ebending�Egravity+Espring�Emoment�Eedgefor
e(6)In a typi
al geometri
 modeling problem, the external for
essu
h as moment, edge for
e and gravity are set to zero. Thisleads to a free plate [21℄. So the potential energy of a freeplate 
an be expressed as follows:E(V ) = Ebending +Espring (7)Here we keep the spring potential energy be
ause of therequirment that the new surfa
e should have the smallest
hange in shape in order to keep 
hara
teristi
s of the origi-nal surfa
e su
h as smoothness and 
urvature. On the otherhand, deformation of a thin plate would also involve stret
h-ing if some features are required to be �xed, su
h as in sheetmetal stamping. So the stret
hing strain energy should bein
luded in eq. (7) as well, as follows:E(V ) = �Ebending + �Estret
hing + 
Espring : (8)where �, � and 
 are weights. A

ording to the theory ofme
hani
s [17℄[25℄, the strain energy for a thin plate bendingpro
ess is de�ned as follows:Ebenbing = Z ZD �[ 12(Vuu+Vvv)2�(1��)(VuuVvv�V 2uv)℄dudv(9)

where � is the Poisson 
onstant (set to 0 here) and � is a
onstant depending on the thi
kness and material propertyparameters of the plate.The strain energy for the thin plate stret
hing pro
ess, byignoring the in
uen
e of the shearing strain, isEstret
hing = 12 Z ZD [(2G+ �)(V 2u + V 2v ) + 2�(VuVv)℄dudv(10)where G and � are 
onstants depending on the materialproperty parameters of the plate.By introdu
ing springs at the knots (�i; �j) to pull thenew surfa
e toward the s
aled surfa
e, we 
an de�ne the
orresponding potential spring energy as follows:Espring = 12 Z ZDK(�i; �j)[V (�i; �j)℄2 (11)where K(�i; �j) is the sti�ness of the spring at (�i; �j).For NURBS surfa
es, eqs. (9), (10) and (11) lead to aquadrati
 equation with respe
t to the 
ontrol points if ho-mogeneous representation is used. The homogeneous repre-sentations of Ts Æ S(u; v) and �S(u; v) (see Se
tion 2 for thede�nition of S(u,v)) aremXi=0 nXj=0(wi;jQ̂ij ; wi;j)Ni;p(u)Nj;q(v)and mXi=0 nXj=0(wi;j �Qij ; wi;j)Ni;p(u)Nj;q(v);respe
tively. For simpli
ity of notations, we shall useTs ÆS(u; v) and �S(u; v) to represent their own homogeneousforms, i.e., Q̂i;j and �Qi;j are homogeneous 
ontrol points ofthe following forms:Q̂i;j = (wi;jQ̂ij ; wi;j); �Qi;j = (wi;j �Qij ; wi;j):Ts Æ S(u; v) and �S(u; v) 
an be written as linear equationswith respe
t to their 
ontrol points as follows:Ts Æ S(u; v) = �Xi=0 Q̂kNk(u; v); (12)�S(u; v) = �Xi=0 �QkNk(u; v); (13)where � � (m+ 1)� (n+ 1)� 1; (14)Q̂k = Q̂i;j ; �Qk = �Qi;j ; (15)Nk(u; v) = Ni;p(u)Nj;q(v); (16)4



with i = k � bk=(m+ 1)
 � (m+ 1);j = bk=(m+ 1)
:By substituting eqs. (12) and (13) into eq. (5) and eqs.(9), (10) and (11) and then subtituting eqs. (9), (10) and(11) into eq. (8), one gets the following expression throughsimple algebra:E( �Q� Q̂) = [ �Q� Q̂℄>A[ �Q� Q̂℄ (17)where Q̂ = [Q̂0; Q̂1; :::; Q̂�℄ (18)�Q = [ �Q0; �Q1; :::; �Q�℄ (19)and A is a (�+1)�(�+1) matrix whose entries are de�nedas follows:ai;j = Z 10 Z 10 [�1Nuui (u; v)Nuuj (u; v)+�2Nuvi (u; v)Nuvj (u; v)+�3Nuui (u; v)Nvvj (u; v) + �4Nvvi (u; v)Nvvj (u; v)+�1Nui (u; v)Nuj (u; v) + �2Nui (u; v)Nvj (u; v)+�3Nvi (u; v)Nvj (u; v)℄dudv + 
1Ni(u; v)Nj(u; v) (20)where Nuuk (u; v) is the se
ond derivative of Nk(u; v) with re-spe
t to u, ... et
., and i; j = 0; 1; :::;�. �1,�2, �3 and �4 are
onstants related to bending; �1, �2 and �3 are 
onstants re-lated to stret
hing; and 
1 is a 
onstant for the spring e�e
t.Sin
e the bending energy a�e
ts surfa
e 
urvature, while thestret
hing energy a�e
ts surfa
e area and the spring energya�e
ts the amount of surfa
e displa
ement, we should ad-just the weight 
onstants a

ording to pra
ti
al requirementduring deformation.The quadrati
 equation E( �Q� Q̂) has a minimum at thepoint where A( �Q� Q̂) = 0. Hen
e, if the optimization pro-
ess is performed with no 
onstraints, the resulting surfa
ewill be exa
tly the same as the s
aled surfa
e.7 Setting Up ConstraintsTwo types of 
onstraints, boundary 
onstraint and trimming
urve 
onstraint, are used to 
ontrol the deformation pro-
ess.7.1 Boundary ConstraintThe boundary 
onstraint is to prevent the boundary 
urvesof the s
aled surfa
e from being 
hanged during the defor-mation pro
ess. Otherwise, the deformed surfa
e might not�t adja
ent surfa
es (parts) well. For simpli
ity, we shall

assume that the NURBS surfa
e has multiple knots at thebeginning and end of its knot ve
tors. In this 
ase, theboundary 
urves of the surfa
e are determined by the 
on-trol points on the boundary of the 
ontrol net only.The C0-
ontinuity boundary 
onstraint for the deforma-tion pro
ess is�Q0;j = Q̂0;j ; �Qm;j = Q̂m;j ; j = 0; : : : ; n; (21)�Qi;0 = Q̂i;0; �Qi;n = Q̂i;n; i = 1; : : : ;m� 1: (22)where Q̂i;j are the 
ontrol points of the s
aled surfa
eTs Æ S(u; v) and �Qi;j are the 
ontrol points of the deformedsurfa
eFor a surfa
e without multiple knots, one 
an �x theboundary of the surfa
e by �xing a band of 
ontrol pointsthat de�nes the boundary 
urves of the surfa
e. The sub-division pro
ess performed in the �rst step guarantees thatenough un
onstrained 
ontrol points will still be availablefor the deformation pro
ess with the boundary 
onstraint.If G1 
ontinuity is required, additional equations should bein
luded as follows:�Q1;j = Q̂1;j ; �Qm�1;j = Q̂m�1;j ; j = 1; : : : ; n�1; (23)�Qi;1 = Q̂i;1; �Qi;n�1 = Q̂i;n�1; i = 2; : : : ;m� 2: (24)7.2 Trimming Curve ConstraintThe trimming 
urve 
onstraint is to ensure that, after defor-mation, the relo
ated trimming 
urves Ri ÆS ÆCi(t) be
ometrimming 
urves of the deformed surfa
e �S(u; v), i.e., ver-ti
es Pi;j = Ri ÆS ÆCi(ti;j) of the relo
ated trimming 
urvesRi Æ S Æ Ci(t) are points of the surfa
e �S(u; v). Hen
e, forea
h 1 � i � r, there must exist (ui;j , vi;j) in the domain of�S(u; v) so that Pi;j = �Xk=0QkNk(ui;j ; vi;j); (25)j = 1; 2; :::; ni, where �, Qk and Nk(u; v) are de�ned in(14), (15), and (16). The best 
hoi
e for (ui;j , vi;j) is theparameters of the point �Pi;j 
onstru
ted in Se
tion 5. Thepro
ess of 
omputing �Pi;j in Se
tion 5 would a
tually �ndits parameters �rst. Therefore, the values of (ui;j , vi;j) arealready available at this stage.The equations in (25) 
an be put into matrix form asfollows �BQ = �b (26)where Q is de�ned in (18), and �B and b are de�ned asfollows: �B = 264 b1;1 b1;2 : : : b1;�... ... ...bM;1 bM;2 : : : bM;� 375 (27)5



�b = [P1;1; : : : ; P1;n1 ; : : : ; P1;nr ; : : : ; Pr;nr ℄> (28)with M = n1 + n2 + : : :+ nrbi;j = Nj(uk;l; vk;l)where k is the smallest integer su
h that i � n1+n2+: : :+nkand l = i� (n1 + n2 + : : :+ nk�1).The trimming 
urve 
onstraint and the boundary 
on-straint 
an be merged into a single linear 
onstraint system.8 The Deformation Pro
essThe optimization pro
ess of the quadrati
 equation with thelinear 
onstraints 
an be solved using the Lagrange Mul-tiplier method, whi
h transfers the 
onstrained optimiza-tion problem into an un
onstrained extremization problem.This follows from the observation that the solution to thequadrati
 optimization fun
tion E(�x) = f(�x) under 
on-straint g(�x) is a 
riti
al point of �E(�x) = f(�x) + �g(�x). � is
alled the Lagrange Multiplier.For our appli
ation, the optimization fun
tion isE( �Q�Q) = 12( �Q�Q)>A( �Q�Q) (29)and the linear 
onstraint is�BQ = �b (30)By adding the Lagrange multiplier we have the followinglinear system: � A �B>�B 0 � � Q� � = � a�b � (31)where a = AQ (32)Solving the linear system (31) will obtain the 
ontrol pointsof the desired deformed surfa
e.9 ImplementationAn issue about degree of freedom. should be noted whenimplementing the above approa
h. The linear system 
on-stru
ted in Se
tion 8 
ould be overly determined due to thefa
t that the number of 
ontrol points of a surfa
e pat
h is�nite. This problem is resolve by performing subdivision inSe
tion 4 to ful�ll the third requirement. We �rst deter-mine the band that has in
uen
e on the trimming 
urves

and then insert some new knots and, 
onsequently, somenew 
ontrol points into this band. Thus we 
an avoid theoverly-determining problem.The implementation of the above method is 
arried outusing B-spline representation. For NURBS representation,one simply repeats this method �rst in the 4D spa
e andthen proje
t the result ba
k into the 3D spa
e. Sin
e theabove method uses the 
ontrol points as the variables, this
an be easily a
hieved.

Figure 1: Trimmed door panel before s
aling.Test results on two data sets are presented here. Thesedata sets in
lude a trimmed door panel (Figures 1-2), anda trimmed front hood (Figures 3-4). The front hood is adegree 3�5 NURBS surfa
e with 8 pat
hes. The door panelare bi
ubi
 NURBS surfa
es with 36 pat
hes ea
h. Thesethree surfa
es are also B-spline surfa
es be
ause the weightsin the NURBS representations of these surfa
es are all equalto one.Two images are shown for ea
h 
ase: the �rst one showsthe trimmed surfa
e before the s
aling pro
ess and the se
-ond one shows the result of the 
onstrained s
aling pro-
ess. The s
aling fa
tors for the two 
ases are: Sx = 1:15,Sy = 1:2, Sz = 1:3. The shaded trimmed surfa
es befores
aling and after s
aling are displayed with a set of highlightlines [8℄[1℄[2℄. Highlight lines are sensitive to the 
hange ofnormal dire
tions, hen
e, 
an be used to dete
t surfa
e nor-mal (
urvature) irregularities. This sometimes is not possi-ble with wireframe drawings or shaded pi
tures [9℄[28℄.From the images, one 
an see in ea
h 
ase that the re-sult of the 
onstrained s
aling has the same features as the6



Figure 2: Trimmed door panel after s
aling.original surfa
e, while having the same shape as the s
aledsurfa
e. The 
urvature distribution of the result is also thesame as the s
aled surfa
e. This 
an be veri�ed by 
ompar-ing the highlight lines on the surfa
e before and after thedeformation pro
ess.10 Con
lusionThis paper presents a deformation based approa
h for 
on-strained surfa
e s
aling of trimmed NURBS surfa
es. Thenew surfa
e is formed by s
aling the given surfa
e �rst, andthen atta
hing the (original) features to the s
aled NURBSsurfa
e at appropriate lo
ations. The atta
hing pro
ess re-quires several geometri
 operations and 
onstrained free-form surfa
e deformation. The resulting surfa
e has thesame features as the original surfa
e and same boundary
urves as the s
aled surfa
e while re
e
ting the shape and
urvature distribution of the s
aled surfa
e. The resultingsurfa
e also maintains a NURBS representation and, hen
e,is 
ompatible with most of the 
urrent data-ex
hange stan-dards.The features 
onsidered in the examples are all within onesingle NURBS surfa
e. A future work is to 
onsider the 
asewhen a feature interse
ts the boundary of the given surfa
e.Another resear
h dire
tion is to s
ale di�erent 
omponentsof an obje
t with di�erent s
aling fa
tors while maintainingoverall smoothness of the obje
t and keeping 
ertain features�xed.

Figure 3: Trimmed front hood before s
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